1*e71b7053SJung-uk Kim=pod 2*e71b7053SJung-uk Kim 3*e71b7053SJung-uk Kim=head1 NAME 4*e71b7053SJung-uk Kim 5*e71b7053SJung-uk KimEC_GROUP_get0_order, EC_GROUP_order_bits, EC_GROUP_get0_cofactor, 6*e71b7053SJung-uk KimEC_GROUP_copy, EC_GROUP_dup, EC_GROUP_method_of, EC_GROUP_set_generator, 7*e71b7053SJung-uk KimEC_GROUP_get0_generator, EC_GROUP_get_order, EC_GROUP_get_cofactor, 8*e71b7053SJung-uk KimEC_GROUP_set_curve_name, EC_GROUP_get_curve_name, EC_GROUP_set_asn1_flag, 9*e71b7053SJung-uk KimEC_GROUP_get_asn1_flag, EC_GROUP_set_point_conversion_form, 10*e71b7053SJung-uk KimEC_GROUP_get_point_conversion_form, EC_GROUP_get0_seed, 11*e71b7053SJung-uk KimEC_GROUP_get_seed_len, EC_GROUP_set_seed, EC_GROUP_get_degree, 12*e71b7053SJung-uk KimEC_GROUP_check, EC_GROUP_check_discriminant, EC_GROUP_cmp, 13*e71b7053SJung-uk KimEC_GROUP_get_basis_type, EC_GROUP_get_trinomial_basis, 14*e71b7053SJung-uk KimEC_GROUP_get_pentanomial_basis 15*e71b7053SJung-uk Kim- Functions for manipulating EC_GROUP objects 16*e71b7053SJung-uk Kim 17*e71b7053SJung-uk Kim=head1 SYNOPSIS 18*e71b7053SJung-uk Kim 19*e71b7053SJung-uk Kim #include <openssl/ec.h> 20*e71b7053SJung-uk Kim 21*e71b7053SJung-uk Kim int EC_GROUP_copy(EC_GROUP *dst, const EC_GROUP *src); 22*e71b7053SJung-uk Kim EC_GROUP *EC_GROUP_dup(const EC_GROUP *src); 23*e71b7053SJung-uk Kim 24*e71b7053SJung-uk Kim const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group); 25*e71b7053SJung-uk Kim 26*e71b7053SJung-uk Kim int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, 27*e71b7053SJung-uk Kim const BIGNUM *order, const BIGNUM *cofactor); 28*e71b7053SJung-uk Kim const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group); 29*e71b7053SJung-uk Kim 30*e71b7053SJung-uk Kim int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx); 31*e71b7053SJung-uk Kim const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group); 32*e71b7053SJung-uk Kim int EC_GROUP_order_bits(const EC_GROUP *group); 33*e71b7053SJung-uk Kim int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, BN_CTX *ctx); 34*e71b7053SJung-uk Kim const BIGNUM *EC_GROUP_get0_cofactor(const EC_GROUP *group); 35*e71b7053SJung-uk Kim 36*e71b7053SJung-uk Kim void EC_GROUP_set_curve_name(EC_GROUP *group, int nid); 37*e71b7053SJung-uk Kim int EC_GROUP_get_curve_name(const EC_GROUP *group); 38*e71b7053SJung-uk Kim 39*e71b7053SJung-uk Kim void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag); 40*e71b7053SJung-uk Kim int EC_GROUP_get_asn1_flag(const EC_GROUP *group); 41*e71b7053SJung-uk Kim 42*e71b7053SJung-uk Kim void EC_GROUP_set_point_conversion_form(EC_GROUP *group, point_conversion_form_t form); 43*e71b7053SJung-uk Kim point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP *); 44*e71b7053SJung-uk Kim 45*e71b7053SJung-uk Kim unsigned char *EC_GROUP_get0_seed(const EC_GROUP *x); 46*e71b7053SJung-uk Kim size_t EC_GROUP_get_seed_len(const EC_GROUP *); 47*e71b7053SJung-uk Kim size_t EC_GROUP_set_seed(EC_GROUP *, const unsigned char *, size_t len); 48*e71b7053SJung-uk Kim 49*e71b7053SJung-uk Kim int EC_GROUP_get_degree(const EC_GROUP *group); 50*e71b7053SJung-uk Kim 51*e71b7053SJung-uk Kim int EC_GROUP_check(const EC_GROUP *group, BN_CTX *ctx); 52*e71b7053SJung-uk Kim 53*e71b7053SJung-uk Kim int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx); 54*e71b7053SJung-uk Kim 55*e71b7053SJung-uk Kim int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx); 56*e71b7053SJung-uk Kim 57*e71b7053SJung-uk Kim int EC_GROUP_get_basis_type(const EC_GROUP *); 58*e71b7053SJung-uk Kim int EC_GROUP_get_trinomial_basis(const EC_GROUP *, unsigned int *k); 59*e71b7053SJung-uk Kim int EC_GROUP_get_pentanomial_basis(const EC_GROUP *, unsigned int *k1, 60*e71b7053SJung-uk Kim unsigned int *k2, unsigned int *k3); 61*e71b7053SJung-uk Kim 62*e71b7053SJung-uk Kim=head1 DESCRIPTION 63*e71b7053SJung-uk Kim 64*e71b7053SJung-uk KimEC_GROUP_copy copies the curve B<src> into B<dst>. Both B<src> and B<dst> must use the same EC_METHOD. 65*e71b7053SJung-uk Kim 66*e71b7053SJung-uk KimEC_GROUP_dup creates a new EC_GROUP object and copies the content from B<src> to the newly created 67*e71b7053SJung-uk KimEC_GROUP object. 68*e71b7053SJung-uk Kim 69*e71b7053SJung-uk KimEC_GROUP_method_of obtains the EC_METHOD of B<group>. 70*e71b7053SJung-uk Kim 71*e71b7053SJung-uk KimEC_GROUP_set_generator sets curve parameters that must be agreed by all participants using the curve. These 72*e71b7053SJung-uk Kimparameters include the B<generator>, the B<order> and the B<cofactor>. The B<generator> is a well defined point on the 73*e71b7053SJung-uk Kimcurve chosen for cryptographic operations. Integers used for point multiplications will be between 0 and 74*e71b7053SJung-uk Kimn-1 where n is the B<order>. The B<order> multiplied by the B<cofactor> gives the number of points on the curve. 75*e71b7053SJung-uk Kim 76*e71b7053SJung-uk KimEC_GROUP_get0_generator returns the generator for the identified B<group>. 77*e71b7053SJung-uk Kim 78*e71b7053SJung-uk KimThe functions EC_GROUP_get_order and EC_GROUP_get_cofactor populate the provided B<order> and B<cofactor> parameters 79*e71b7053SJung-uk Kimwith the respective order and cofactors for the B<group>. 80*e71b7053SJung-uk Kim 81*e71b7053SJung-uk KimThe functions EC_GROUP_set_curve_name and EC_GROUP_get_curve_name, set and get the NID for the curve respectively 82*e71b7053SJung-uk Kim(see L<EC_GROUP_new(3)>). If a curve does not have a NID associated with it, then EC_GROUP_get_curve_name 83*e71b7053SJung-uk Kimwill return 0. 84*e71b7053SJung-uk Kim 85*e71b7053SJung-uk KimThe asn1_flag value is used to determine whether the curve encoding uses 86*e71b7053SJung-uk Kimexplicit parameters or a named curve using an ASN1 OID: many applications only 87*e71b7053SJung-uk Kimsupport the latter form. If asn1_flag is B<OPENSSL_EC_NAMED_CURVE> then the 88*e71b7053SJung-uk Kimnamed curve form is used and the parameters must have a corresponding 89*e71b7053SJung-uk Kimnamed curve NID set. If asn1_flags is B<OPENSSL_EC_EXPLICIT_CURVE> the 90*e71b7053SJung-uk Kimparameters are explicitly encoded. The functions EC_GROUP_get_asn1_flag and 91*e71b7053SJung-uk KimEC_GROUP_set_asn1_flag get and set the status of the asn1_flag for the curve. 92*e71b7053SJung-uk KimNote: B<OPENSSL_EC_EXPLICIT_CURVE> was first added to OpenSSL 1.1.0, for 93*e71b7053SJung-uk Kimprevious versions of OpenSSL the value 0 must be used instead. Before OpenSSL 94*e71b7053SJung-uk Kim1.1.0 the default form was to use explicit parameters (meaning that 95*e71b7053SJung-uk Kimapplications would have to explicitly set the named curve form) in OpenSSL 96*e71b7053SJung-uk Kim1.1.0 and later the named curve form is the default. 97*e71b7053SJung-uk Kim 98*e71b7053SJung-uk KimThe point_conversion_form for a curve controls how EC_POINT data is encoded as ASN1 as defined in X9.62 (ECDSA). 99*e71b7053SJung-uk Kimpoint_conversion_form_t is an enum defined as follows: 100*e71b7053SJung-uk Kim 101*e71b7053SJung-uk Kim typedef enum { 102*e71b7053SJung-uk Kim /** the point is encoded as z||x, where the octet z specifies 103*e71b7053SJung-uk Kim * which solution of the quadratic equation y is */ 104*e71b7053SJung-uk Kim POINT_CONVERSION_COMPRESSED = 2, 105*e71b7053SJung-uk Kim /** the point is encoded as z||x||y, where z is the octet 0x04 */ 106*e71b7053SJung-uk Kim POINT_CONVERSION_UNCOMPRESSED = 4, 107*e71b7053SJung-uk Kim /** the point is encoded as z||x||y, where the octet z specifies 108*e71b7053SJung-uk Kim * which solution of the quadratic equation y is */ 109*e71b7053SJung-uk Kim POINT_CONVERSION_HYBRID = 6 110*e71b7053SJung-uk Kim } point_conversion_form_t; 111*e71b7053SJung-uk Kim 112*e71b7053SJung-uk KimFor POINT_CONVERSION_UNCOMPRESSED the point is encoded as an octet signifying the UNCOMPRESSED form has been used followed by 113*e71b7053SJung-uk Kimthe octets for x, followed by the octets for y. 114*e71b7053SJung-uk Kim 115*e71b7053SJung-uk KimFor any given x co-ordinate for a point on a curve it is possible to derive two possible y values. For 116*e71b7053SJung-uk KimPOINT_CONVERSION_COMPRESSED the point is encoded as an octet signifying that the COMPRESSED form has been used AND which of 117*e71b7053SJung-uk Kimthe two possible solutions for y has been used, followed by the octets for x. 118*e71b7053SJung-uk Kim 119*e71b7053SJung-uk KimFor POINT_CONVERSION_HYBRID the point is encoded as an octet signifying the HYBRID form has been used AND which of the two 120*e71b7053SJung-uk Kimpossible solutions for y has been used, followed by the octets for x, followed by the octets for y. 121*e71b7053SJung-uk Kim 122*e71b7053SJung-uk KimThe functions EC_GROUP_set_point_conversion_form and EC_GROUP_get_point_conversion_form set and get the point_conversion_form 123*e71b7053SJung-uk Kimfor the curve respectively. 124*e71b7053SJung-uk Kim 125*e71b7053SJung-uk KimANSI X9.62 (ECDSA standard) defines a method of generating the curve parameter b from a random number. This provides advantages 126*e71b7053SJung-uk Kimin that a parameter obtained in this way is highly unlikely to be susceptible to special purpose attacks, or have any trapdoors in it. 127*e71b7053SJung-uk KimIf the seed is present for a curve then the b parameter was generated in a verifiable fashion using that seed. The OpenSSL EC library 128*e71b7053SJung-uk Kimdoes not use this seed value but does enable you to inspect it using EC_GROUP_get0_seed. This returns a pointer to a memory block 129*e71b7053SJung-uk Kimcontaining the seed that was used. The length of the memory block can be obtained using EC_GROUP_get_seed_len. A number of the 130*e71b7053SJung-uk Kimbuiltin curves within the library provide seed values that can be obtained. It is also possible to set a custom seed using 131*e71b7053SJung-uk KimEC_GROUP_set_seed and passing a pointer to a memory block, along with the length of the seed. Again, the EC library will not use 132*e71b7053SJung-uk Kimthis seed value, although it will be preserved in any ASN1 based communications. 133*e71b7053SJung-uk Kim 134*e71b7053SJung-uk KimEC_GROUP_get_degree gets the degree of the field. For Fp fields this will be the number of bits in p. For F2^m fields this will be 135*e71b7053SJung-uk Kimthe value m. 136*e71b7053SJung-uk Kim 137*e71b7053SJung-uk KimThe function EC_GROUP_check_discriminant calculates the discriminant for the curve and verifies that it is valid. 138*e71b7053SJung-uk KimFor a curve defined over Fp the discriminant is given by the formula 4*a^3 + 27*b^2 whilst for F2^m curves the discriminant is 139*e71b7053SJung-uk Kimsimply b. In either case for the curve to be valid the discriminant must be non zero. 140*e71b7053SJung-uk Kim 141*e71b7053SJung-uk KimThe function EC_GROUP_check performs a number of checks on a curve to verify that it is valid. Checks performed include 142*e71b7053SJung-uk Kimverifying that the discriminant is non zero; that a generator has been defined; that the generator is on the curve and has 143*e71b7053SJung-uk Kimthe correct order. 144*e71b7053SJung-uk Kim 145*e71b7053SJung-uk KimEC_GROUP_cmp compares B<a> and B<b> to determine whether they represent the same curve or not. 146*e71b7053SJung-uk Kim 147*e71b7053SJung-uk KimThe functions EC_GROUP_get_basis_type, EC_GROUP_get_trinomial_basis and EC_GROUP_get_pentanomial_basis should only be called for curves 148*e71b7053SJung-uk Kimdefined over an F2^m field. Addition and multiplication operations within an F2^m field are performed using an irreducible polynomial 149*e71b7053SJung-uk Kimfunction f(x). This function is either a trinomial of the form: 150*e71b7053SJung-uk Kim 151*e71b7053SJung-uk Kimf(x) = x^m + x^k + 1 with m > k >= 1 152*e71b7053SJung-uk Kim 153*e71b7053SJung-uk Kimor a pentanomial of the form: 154*e71b7053SJung-uk Kim 155*e71b7053SJung-uk Kimf(x) = x^m + x^k3 + x^k2 + x^k1 + 1 with m > k3 > k2 > k1 >= 1 156*e71b7053SJung-uk Kim 157*e71b7053SJung-uk KimThe function EC_GROUP_get_basis_type returns a NID identifying whether a trinomial or pentanomial is in use for the field. The 158*e71b7053SJung-uk Kimfunction EC_GROUP_get_trinomial_basis must only be called where f(x) is of the trinomial form, and returns the value of B<k>. Similarly 159*e71b7053SJung-uk Kimthe function EC_GROUP_get_pentanomial_basis must only be called where f(x) is of the pentanomial form, and returns the values of B<k1>, 160*e71b7053SJung-uk KimB<k2> and B<k3> respectively. 161*e71b7053SJung-uk Kim 162*e71b7053SJung-uk Kim=head1 RETURN VALUES 163*e71b7053SJung-uk Kim 164*e71b7053SJung-uk KimThe following functions return 1 on success or 0 on error: EC_GROUP_copy, EC_GROUP_set_generator, EC_GROUP_check, 165*e71b7053SJung-uk KimEC_GROUP_check_discriminant, EC_GROUP_get_trinomial_basis and EC_GROUP_get_pentanomial_basis. 166*e71b7053SJung-uk Kim 167*e71b7053SJung-uk KimEC_GROUP_dup returns a pointer to the duplicated curve, or NULL on error. 168*e71b7053SJung-uk Kim 169*e71b7053SJung-uk KimEC_GROUP_method_of returns the EC_METHOD implementation in use for the given curve or NULL on error. 170*e71b7053SJung-uk Kim 171*e71b7053SJung-uk KimEC_GROUP_get0_generator returns the generator for the given curve or NULL on error. 172*e71b7053SJung-uk Kim 173*e71b7053SJung-uk KimEC_GROUP_get_order, EC_GROUP_get_cofactor, EC_GROUP_get_curve_name, EC_GROUP_get_asn1_flag, EC_GROUP_get_point_conversion_form 174*e71b7053SJung-uk Kimand EC_GROUP_get_degree return the order, cofactor, curve name (NID), ASN1 flag, point_conversion_form and degree for the 175*e71b7053SJung-uk Kimspecified curve respectively. If there is no curve name associated with a curve then EC_GROUP_get_curve_name will return 0. 176*e71b7053SJung-uk Kim 177*e71b7053SJung-uk KimEC_GROUP_get0_order() returns an internal pointer to the group order. 178*e71b7053SJung-uk KimEC_GROUP_get_order_bits() returns the number of bits in the group order. 179*e71b7053SJung-uk KimEC_GROUP_get0_cofactor() returns an internal pointer to the group cofactor. 180*e71b7053SJung-uk Kim 181*e71b7053SJung-uk KimEC_GROUP_get0_seed returns a pointer to the seed that was used to generate the parameter b, or NULL if the seed is not 182*e71b7053SJung-uk Kimspecified. EC_GROUP_get_seed_len returns the length of the seed or 0 if the seed is not specified. 183*e71b7053SJung-uk Kim 184*e71b7053SJung-uk KimEC_GROUP_set_seed returns the length of the seed that has been set. If the supplied seed is NULL, or the supplied seed length is 185*e71b7053SJung-uk Kim0, the return value will be 1. On error 0 is returned. 186*e71b7053SJung-uk Kim 187*e71b7053SJung-uk KimEC_GROUP_cmp returns 0 if the curves are equal, 1 if they are not equal, or -1 on error. 188*e71b7053SJung-uk Kim 189*e71b7053SJung-uk KimEC_GROUP_get_basis_type returns the values NID_X9_62_tpBasis or NID_X9_62_ppBasis (as defined in <openssl/obj_mac.h>) for a 190*e71b7053SJung-uk Kimtrinomial or pentanomial respectively. Alternatively in the event of an error a 0 is returned. 191*e71b7053SJung-uk Kim 192*e71b7053SJung-uk Kim=head1 SEE ALSO 193*e71b7053SJung-uk Kim 194*e71b7053SJung-uk KimL<crypto(7)>, L<EC_GROUP_new(3)>, 195*e71b7053SJung-uk KimL<EC_POINT_new(3)>, L<EC_POINT_add(3)>, L<EC_KEY_new(3)>, 196*e71b7053SJung-uk KimL<EC_GFp_simple_method(3)>, L<d2i_ECPKParameters(3)> 197*e71b7053SJung-uk Kim 198*e71b7053SJung-uk Kim=head1 COPYRIGHT 199*e71b7053SJung-uk Kim 200*e71b7053SJung-uk KimCopyright 2013-2017 The OpenSSL Project Authors. All Rights Reserved. 201*e71b7053SJung-uk Kim 202*e71b7053SJung-uk KimLicensed under the OpenSSL license (the "License"). You may not use 203*e71b7053SJung-uk Kimthis file except in compliance with the License. You can obtain a copy 204*e71b7053SJung-uk Kimin the file LICENSE in the source distribution or at 205*e71b7053SJung-uk KimL<https://www.openssl.org/source/license.html>. 206*e71b7053SJung-uk Kim 207*e71b7053SJung-uk Kim=cut 208