1*e71b7053SJung-uk Kim=pod 2*e71b7053SJung-uk Kim 3*e71b7053SJung-uk Kim=head1 NAME 4*e71b7053SJung-uk Kim 5*e71b7053SJung-uk KimDES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, 6*e71b7053SJung-uk KimDES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key, 7*e71b7053SJung-uk KimDES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt, 8*e71b7053SJung-uk KimDES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt, 9*e71b7053SJung-uk KimDES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, 10*e71b7053SJung-uk KimDES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt, 11*e71b7053SJung-uk KimDES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt, 12*e71b7053SJung-uk KimDES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys, 13*e71b7053SJung-uk KimDES_fcrypt, DES_crypt - DES encryption 14*e71b7053SJung-uk Kim 15*e71b7053SJung-uk Kim=head1 SYNOPSIS 16*e71b7053SJung-uk Kim 17*e71b7053SJung-uk Kim #include <openssl/des.h> 18*e71b7053SJung-uk Kim 19*e71b7053SJung-uk Kim void DES_random_key(DES_cblock *ret); 20*e71b7053SJung-uk Kim 21*e71b7053SJung-uk Kim int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule); 22*e71b7053SJung-uk Kim int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule); 23*e71b7053SJung-uk Kim int DES_set_key_checked(const_DES_cblock *key, DES_key_schedule *schedule); 24*e71b7053SJung-uk Kim void DES_set_key_unchecked(const_DES_cblock *key, DES_key_schedule *schedule); 25*e71b7053SJung-uk Kim 26*e71b7053SJung-uk Kim void DES_set_odd_parity(DES_cblock *key); 27*e71b7053SJung-uk Kim int DES_is_weak_key(const_DES_cblock *key); 28*e71b7053SJung-uk Kim 29*e71b7053SJung-uk Kim void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output, 30*e71b7053SJung-uk Kim DES_key_schedule *ks, int enc); 31*e71b7053SJung-uk Kim void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output, 32*e71b7053SJung-uk Kim DES_key_schedule *ks1, DES_key_schedule *ks2, int enc); 33*e71b7053SJung-uk Kim void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output, 34*e71b7053SJung-uk Kim DES_key_schedule *ks1, DES_key_schedule *ks2, 35*e71b7053SJung-uk Kim DES_key_schedule *ks3, int enc); 36*e71b7053SJung-uk Kim 37*e71b7053SJung-uk Kim void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output, 38*e71b7053SJung-uk Kim long length, DES_key_schedule *schedule, DES_cblock *ivec, 39*e71b7053SJung-uk Kim int enc); 40*e71b7053SJung-uk Kim void DES_cfb_encrypt(const unsigned char *in, unsigned char *out, 41*e71b7053SJung-uk Kim int numbits, long length, DES_key_schedule *schedule, 42*e71b7053SJung-uk Kim DES_cblock *ivec, int enc); 43*e71b7053SJung-uk Kim void DES_ofb_encrypt(const unsigned char *in, unsigned char *out, 44*e71b7053SJung-uk Kim int numbits, long length, DES_key_schedule *schedule, 45*e71b7053SJung-uk Kim DES_cblock *ivec); 46*e71b7053SJung-uk Kim void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output, 47*e71b7053SJung-uk Kim long length, DES_key_schedule *schedule, DES_cblock *ivec, 48*e71b7053SJung-uk Kim int enc); 49*e71b7053SJung-uk Kim void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out, 50*e71b7053SJung-uk Kim long length, DES_key_schedule *schedule, DES_cblock *ivec, 51*e71b7053SJung-uk Kim int *num, int enc); 52*e71b7053SJung-uk Kim void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out, 53*e71b7053SJung-uk Kim long length, DES_key_schedule *schedule, DES_cblock *ivec, 54*e71b7053SJung-uk Kim int *num); 55*e71b7053SJung-uk Kim 56*e71b7053SJung-uk Kim void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output, 57*e71b7053SJung-uk Kim long length, DES_key_schedule *schedule, DES_cblock *ivec, 58*e71b7053SJung-uk Kim const_DES_cblock *inw, const_DES_cblock *outw, int enc); 59*e71b7053SJung-uk Kim 60*e71b7053SJung-uk Kim void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output, 61*e71b7053SJung-uk Kim long length, DES_key_schedule *ks1, 62*e71b7053SJung-uk Kim DES_key_schedule *ks2, DES_cblock *ivec, int enc); 63*e71b7053SJung-uk Kim void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out, 64*e71b7053SJung-uk Kim long length, DES_key_schedule *ks1, 65*e71b7053SJung-uk Kim DES_key_schedule *ks2, DES_cblock *ivec, 66*e71b7053SJung-uk Kim int *num, int enc); 67*e71b7053SJung-uk Kim void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out, 68*e71b7053SJung-uk Kim long length, DES_key_schedule *ks1, 69*e71b7053SJung-uk Kim DES_key_schedule *ks2, DES_cblock *ivec, int *num); 70*e71b7053SJung-uk Kim 71*e71b7053SJung-uk Kim void DES_ede3_cbc_encrypt(const unsigned char *input, unsigned char *output, 72*e71b7053SJung-uk Kim long length, DES_key_schedule *ks1, 73*e71b7053SJung-uk Kim DES_key_schedule *ks2, DES_key_schedule *ks3, 74*e71b7053SJung-uk Kim DES_cblock *ivec, int enc); 75*e71b7053SJung-uk Kim void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out, 76*e71b7053SJung-uk Kim long length, DES_key_schedule *ks1, 77*e71b7053SJung-uk Kim DES_key_schedule *ks2, DES_key_schedule *ks3, 78*e71b7053SJung-uk Kim DES_cblock *ivec, int *num, int enc); 79*e71b7053SJung-uk Kim void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out, 80*e71b7053SJung-uk Kim long length, DES_key_schedule *ks1, 81*e71b7053SJung-uk Kim DES_key_schedule *ks2, DES_key_schedule *ks3, 82*e71b7053SJung-uk Kim DES_cblock *ivec, int *num); 83*e71b7053SJung-uk Kim 84*e71b7053SJung-uk Kim DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output, 85*e71b7053SJung-uk Kim long length, DES_key_schedule *schedule, 86*e71b7053SJung-uk Kim const_DES_cblock *ivec); 87*e71b7053SJung-uk Kim DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[], 88*e71b7053SJung-uk Kim long length, int out_count, DES_cblock *seed); 89*e71b7053SJung-uk Kim void DES_string_to_key(const char *str, DES_cblock *key); 90*e71b7053SJung-uk Kim void DES_string_to_2keys(const char *str, DES_cblock *key1, DES_cblock *key2); 91*e71b7053SJung-uk Kim 92*e71b7053SJung-uk Kim char *DES_fcrypt(const char *buf, const char *salt, char *ret); 93*e71b7053SJung-uk Kim char *DES_crypt(const char *buf, const char *salt); 94*e71b7053SJung-uk Kim 95*e71b7053SJung-uk Kim=head1 DESCRIPTION 96*e71b7053SJung-uk Kim 97*e71b7053SJung-uk KimThis library contains a fast implementation of the DES encryption 98*e71b7053SJung-uk Kimalgorithm. 99*e71b7053SJung-uk Kim 100*e71b7053SJung-uk KimThere are two phases to the use of DES encryption. The first is the 101*e71b7053SJung-uk Kimgeneration of a I<DES_key_schedule> from a key, the second is the 102*e71b7053SJung-uk Kimactual encryption. A DES key is of type I<DES_cblock>. This type is 103*e71b7053SJung-uk Kimconsists of 8 bytes with odd parity. The least significant bit in 104*e71b7053SJung-uk Kimeach byte is the parity bit. The key schedule is an expanded form of 105*e71b7053SJung-uk Kimthe key; it is used to speed the encryption process. 106*e71b7053SJung-uk Kim 107*e71b7053SJung-uk KimDES_random_key() generates a random key. The PRNG must be seeded 108*e71b7053SJung-uk Kimprior to using this function (see L<RAND_bytes(3)>). If the PRNG 109*e71b7053SJung-uk Kimcould not generate a secure key, 0 is returned. 110*e71b7053SJung-uk Kim 111*e71b7053SJung-uk KimBefore a DES key can be used, it must be converted into the 112*e71b7053SJung-uk Kimarchitecture dependent I<DES_key_schedule> via the 113*e71b7053SJung-uk KimDES_set_key_checked() or DES_set_key_unchecked() function. 114*e71b7053SJung-uk Kim 115*e71b7053SJung-uk KimDES_set_key_checked() will check that the key passed is of odd parity 116*e71b7053SJung-uk Kimand is not a weak or semi-weak key. If the parity is wrong, then -1 117*e71b7053SJung-uk Kimis returned. If the key is a weak key, then -2 is returned. If an 118*e71b7053SJung-uk Kimerror is returned, the key schedule is not generated. 119*e71b7053SJung-uk Kim 120*e71b7053SJung-uk KimDES_set_key() works like 121*e71b7053SJung-uk KimDES_set_key_checked() if the I<DES_check_key> flag is non-zero, 122*e71b7053SJung-uk Kimotherwise like DES_set_key_unchecked(). These functions are available 123*e71b7053SJung-uk Kimfor compatibility; it is recommended to use a function that does not 124*e71b7053SJung-uk Kimdepend on a global variable. 125*e71b7053SJung-uk Kim 126*e71b7053SJung-uk KimDES_set_odd_parity() sets the parity of the passed I<key> to odd. 127*e71b7053SJung-uk Kim 128*e71b7053SJung-uk KimDES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it 129*e71b7053SJung-uk Kimis ok. 130*e71b7053SJung-uk Kim 131*e71b7053SJung-uk KimThe following routines mostly operate on an input and output stream of 132*e71b7053SJung-uk KimI<DES_cblock>s. 133*e71b7053SJung-uk Kim 134*e71b7053SJung-uk KimDES_ecb_encrypt() is the basic DES encryption routine that encrypts or 135*e71b7053SJung-uk Kimdecrypts a single 8-byte I<DES_cblock> in I<electronic code book> 136*e71b7053SJung-uk Kim(ECB) mode. It always transforms the input data, pointed to by 137*e71b7053SJung-uk KimI<input>, into the output data, pointed to by the I<output> argument. 138*e71b7053SJung-uk KimIf the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input> 139*e71b7053SJung-uk Kim(cleartext) is encrypted in to the I<output> (ciphertext) using the 140*e71b7053SJung-uk Kimkey_schedule specified by the I<schedule> argument, previously set via 141*e71b7053SJung-uk KimI<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now 142*e71b7053SJung-uk Kimciphertext) is decrypted into the I<output> (now cleartext). Input 143*e71b7053SJung-uk Kimand output may overlap. DES_ecb_encrypt() does not return a value. 144*e71b7053SJung-uk Kim 145*e71b7053SJung-uk KimDES_ecb3_encrypt() encrypts/decrypts the I<input> block by using 146*e71b7053SJung-uk Kimthree-key Triple-DES encryption in ECB mode. This involves encrypting 147*e71b7053SJung-uk Kimthe input with I<ks1>, decrypting with the key schedule I<ks2>, and 148*e71b7053SJung-uk Kimthen encrypting with I<ks3>. This routine greatly reduces the chances 149*e71b7053SJung-uk Kimof brute force breaking of DES and has the advantage of if I<ks1>, 150*e71b7053SJung-uk KimI<ks2> and I<ks3> are the same, it is equivalent to just encryption 151*e71b7053SJung-uk Kimusing ECB mode and I<ks1> as the key. 152*e71b7053SJung-uk Kim 153*e71b7053SJung-uk KimThe macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES 154*e71b7053SJung-uk Kimencryption by using I<ks1> for the final encryption. 155*e71b7053SJung-uk Kim 156*e71b7053SJung-uk KimDES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining> 157*e71b7053SJung-uk Kim(CBC) mode of DES. If the I<encrypt> argument is non-zero, the 158*e71b7053SJung-uk Kimroutine cipher-block-chain encrypts the cleartext data pointed to by 159*e71b7053SJung-uk Kimthe I<input> argument into the ciphertext pointed to by the I<output> 160*e71b7053SJung-uk Kimargument, using the key schedule provided by the I<schedule> argument, 161*e71b7053SJung-uk Kimand initialization vector provided by the I<ivec> argument. If the 162*e71b7053SJung-uk KimI<length> argument is not an integral multiple of eight bytes, the 163*e71b7053SJung-uk Kimlast block is copied to a temporary area and zero filled. The output 164*e71b7053SJung-uk Kimis always an integral multiple of eight bytes. 165*e71b7053SJung-uk Kim 166*e71b7053SJung-uk KimDES_xcbc_encrypt() is RSA's DESX mode of DES. It uses I<inw> and 167*e71b7053SJung-uk KimI<outw> to 'whiten' the encryption. I<inw> and I<outw> are secret 168*e71b7053SJung-uk Kim(unlike the iv) and are as such, part of the key. So the key is sort 169*e71b7053SJung-uk Kimof 24 bytes. This is much better than CBC DES. 170*e71b7053SJung-uk Kim 171*e71b7053SJung-uk KimDES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with 172*e71b7053SJung-uk Kimthree keys. This means that each DES operation inside the CBC mode is 173*e71b7053SJung-uk Kiman C<C=E(ks3,D(ks2,E(ks1,M)))>. This mode is used by SSL. 174*e71b7053SJung-uk Kim 175*e71b7053SJung-uk KimThe DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by 176*e71b7053SJung-uk Kimreusing I<ks1> for the final encryption. C<C=E(ks1,D(ks2,E(ks1,M)))>. 177*e71b7053SJung-uk KimThis form of Triple-DES is used by the RSAREF library. 178*e71b7053SJung-uk Kim 179*e71b7053SJung-uk KimDES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block 180*e71b7053SJung-uk Kimchaining mode used by Kerberos v4. Its parameters are the same as 181*e71b7053SJung-uk KimDES_ncbc_encrypt(). 182*e71b7053SJung-uk Kim 183*e71b7053SJung-uk KimDES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This 184*e71b7053SJung-uk Kimmethod takes an array of characters as input and outputs and array of 185*e71b7053SJung-uk Kimcharacters. It does not require any padding to 8 character groups. 186*e71b7053SJung-uk KimNote: the I<ivec> variable is changed and the new changed value needs to 187*e71b7053SJung-uk Kimbe passed to the next call to this function. Since this function runs 188*e71b7053SJung-uk Kima complete DES ECB encryption per I<numbits>, this function is only 189*e71b7053SJung-uk Kimsuggested for use when sending small numbers of characters. 190*e71b7053SJung-uk Kim 191*e71b7053SJung-uk KimDES_cfb64_encrypt() 192*e71b7053SJung-uk Kimimplements CFB mode of DES with 64bit feedback. Why is this 193*e71b7053SJung-uk Kimuseful you ask? Because this routine will allow you to encrypt an 194*e71b7053SJung-uk Kimarbitrary number of bytes, no 8 byte padding. Each call to this 195*e71b7053SJung-uk Kimroutine will encrypt the input bytes to output and then update ivec 196*e71b7053SJung-uk Kimand num. num contains 'how far' we are though ivec. If this does 197*e71b7053SJung-uk Kimnot make much sense, read more about cfb mode of DES :-). 198*e71b7053SJung-uk Kim 199*e71b7053SJung-uk KimDES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as 200*e71b7053SJung-uk KimDES_cfb64_encrypt() except that Triple-DES is used. 201*e71b7053SJung-uk Kim 202*e71b7053SJung-uk KimDES_ofb_encrypt() encrypts using output feedback mode. This method 203*e71b7053SJung-uk Kimtakes an array of characters as input and outputs and array of 204*e71b7053SJung-uk Kimcharacters. It does not require any padding to 8 character groups. 205*e71b7053SJung-uk KimNote: the I<ivec> variable is changed and the new changed value needs to 206*e71b7053SJung-uk Kimbe passed to the next call to this function. Since this function runs 207*e71b7053SJung-uk Kima complete DES ECB encryption per numbits, this function is only 208*e71b7053SJung-uk Kimsuggested for use when sending small numbers of characters. 209*e71b7053SJung-uk Kim 210*e71b7053SJung-uk KimDES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output 211*e71b7053SJung-uk KimFeed Back mode. 212*e71b7053SJung-uk Kim 213*e71b7053SJung-uk KimDES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as 214*e71b7053SJung-uk KimDES_ofb64_encrypt(), using Triple-DES. 215*e71b7053SJung-uk Kim 216*e71b7053SJung-uk KimThe following functions are included in the DES library for 217*e71b7053SJung-uk Kimcompatibility with the MIT Kerberos library. 218*e71b7053SJung-uk Kim 219*e71b7053SJung-uk KimDES_cbc_cksum() produces an 8 byte checksum based on the input stream 220*e71b7053SJung-uk Kim(via CBC encryption). The last 4 bytes of the checksum are returned 221*e71b7053SJung-uk Kimand the complete 8 bytes are placed in I<output>. This function is 222*e71b7053SJung-uk Kimused by Kerberos v4. Other applications should use 223*e71b7053SJung-uk KimL<EVP_DigestInit(3)> etc. instead. 224*e71b7053SJung-uk Kim 225*e71b7053SJung-uk KimDES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte 226*e71b7053SJung-uk Kimchecksum from the input bytes. The algorithm can be iterated over the 227*e71b7053SJung-uk Kiminput, depending on I<out_count>, 1, 2, 3 or 4 times. If I<output> is 228*e71b7053SJung-uk Kimnon-NULL, the 8 bytes generated by each pass are written into 229*e71b7053SJung-uk KimI<output>. 230*e71b7053SJung-uk Kim 231*e71b7053SJung-uk KimThe following are DES-based transformations: 232*e71b7053SJung-uk Kim 233*e71b7053SJung-uk KimDES_fcrypt() is a fast version of the Unix crypt(3) function. This 234*e71b7053SJung-uk Kimversion takes only a small amount of space relative to other fast 235*e71b7053SJung-uk Kimcrypt() implementations. This is different to the normal crypt in 236*e71b7053SJung-uk Kimthat the third parameter is the buffer that the return value is 237*e71b7053SJung-uk Kimwritten into. It needs to be at least 14 bytes long. This function 238*e71b7053SJung-uk Kimis thread safe, unlike the normal crypt. 239*e71b7053SJung-uk Kim 240*e71b7053SJung-uk KimDES_crypt() is a faster replacement for the normal system crypt(). 241*e71b7053SJung-uk KimThis function calls DES_fcrypt() with a static array passed as the 242*e71b7053SJung-uk Kimthird parameter. This mostly emulates the normal non-thread-safe semantics 243*e71b7053SJung-uk Kimof crypt(3). 244*e71b7053SJung-uk KimThe B<salt> must be two ASCII characters. 245*e71b7053SJung-uk Kim 246*e71b7053SJung-uk KimThe values returned by DES_fcrypt() and DES_crypt() are terminated by NUL 247*e71b7053SJung-uk Kimcharacter. 248*e71b7053SJung-uk Kim 249*e71b7053SJung-uk KimDES_enc_write() writes I<len> bytes to file descriptor I<fd> from 250*e71b7053SJung-uk Kimbuffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default) 251*e71b7053SJung-uk Kimusing I<sched> for the key and I<iv> as a starting vector. The actual 252*e71b7053SJung-uk Kimdata send down I<fd> consists of 4 bytes (in network byte order) 253*e71b7053SJung-uk Kimcontaining the length of the following encrypted data. The encrypted 254*e71b7053SJung-uk Kimdata then follows, padded with random data out to a multiple of 8 255*e71b7053SJung-uk Kimbytes. 256*e71b7053SJung-uk Kim 257*e71b7053SJung-uk Kim=head1 BUGS 258*e71b7053SJung-uk Kim 259*e71b7053SJung-uk KimDES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt() 260*e71b7053SJung-uk Kiminstead. 261*e71b7053SJung-uk Kim 262*e71b7053SJung-uk KimDES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits. 263*e71b7053SJung-uk KimWhat this means is that if you set numbits to 12, and length to 2, the 264*e71b7053SJung-uk Kimfirst 12 bits will come from the 1st input byte and the low half of 265*e71b7053SJung-uk Kimthe second input byte. The second 12 bits will have the low 8 bits 266*e71b7053SJung-uk Kimtaken from the 3rd input byte and the top 4 bits taken from the 4th 267*e71b7053SJung-uk Kiminput byte. The same holds for output. This function has been 268*e71b7053SJung-uk Kimimplemented this way because most people will be using a multiple of 8 269*e71b7053SJung-uk Kimand because once you get into pulling bytes input bytes apart things 270*e71b7053SJung-uk Kimget ugly! 271*e71b7053SJung-uk Kim 272*e71b7053SJung-uk KimDES_string_to_key() is available for backward compatibility with the 273*e71b7053SJung-uk KimMIT library. New applications should use a cryptographic hash function. 274*e71b7053SJung-uk KimThe same applies for DES_string_to_2key(). 275*e71b7053SJung-uk Kim 276*e71b7053SJung-uk Kim=head1 NOTES 277*e71b7053SJung-uk Kim 278*e71b7053SJung-uk KimThe B<des> library was written to be source code compatible with 279*e71b7053SJung-uk Kimthe MIT Kerberos library. 280*e71b7053SJung-uk Kim 281*e71b7053SJung-uk KimApplications should use the higher level functions 282*e71b7053SJung-uk KimL<EVP_EncryptInit(3)> etc. instead of calling these 283*e71b7053SJung-uk Kimfunctions directly. 284*e71b7053SJung-uk Kim 285*e71b7053SJung-uk KimSingle-key DES is insecure due to its short key size. ECB mode is 286*e71b7053SJung-uk Kimnot suitable for most applications; see L<des_modes(7)>. 287*e71b7053SJung-uk Kim 288*e71b7053SJung-uk Kim=head1 RETURN VALUES 289*e71b7053SJung-uk Kim 290*e71b7053SJung-uk KimDES_set_key(), DES_key_sched(), DES_set_key_checked() and DES_is_weak_key() 291*e71b7053SJung-uk Kimreturn 0 on success or negative values on error. 292*e71b7053SJung-uk Kim 293*e71b7053SJung-uk KimDES_cbc_cksum() and DES_quad_cksum() return 4-byte integer representing the 294*e71b7053SJung-uk Kimlast 4 bytes of the checksum of the input. 295*e71b7053SJung-uk Kim 296*e71b7053SJung-uk KimDES_fcrypt() returns a pointer to the caller-provided buffer and DES_crypt() - 297*e71b7053SJung-uk Kimto a static buffer on success; otherwise they return NULL. 298*e71b7053SJung-uk Kim 299*e71b7053SJung-uk Kim=head1 HISTORY 300*e71b7053SJung-uk Kim 301*e71b7053SJung-uk KimThe requirement that the B<salt> parameter to DES_crypt() and DES_fcrypt() 302*e71b7053SJung-uk Kimbe two ASCII characters was first enforced in 303*e71b7053SJung-uk KimOpenSSL 1.1.0. Previous versions tried to use the letter uppercase B<A> 304*e71b7053SJung-uk Kimif both character were not present, and could crash when given non-ASCII 305*e71b7053SJung-uk Kimon some platforms. 306*e71b7053SJung-uk Kim 307*e71b7053SJung-uk Kim=head1 SEE ALSO 308*e71b7053SJung-uk Kim 309*e71b7053SJung-uk KimL<des_modes(7)>, 310*e71b7053SJung-uk KimL<EVP_EncryptInit(3)> 311*e71b7053SJung-uk Kim 312*e71b7053SJung-uk Kim=head1 COPYRIGHT 313*e71b7053SJung-uk Kim 314*e71b7053SJung-uk KimCopyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved. 315*e71b7053SJung-uk Kim 316*e71b7053SJung-uk KimLicensed under the OpenSSL license (the "License"). You may not use 317*e71b7053SJung-uk Kimthis file except in compliance with the License. You can obtain a copy 318*e71b7053SJung-uk Kimin the file LICENSE in the source distribution or at 319*e71b7053SJung-uk KimL<https://www.openssl.org/source/license.html>. 320*e71b7053SJung-uk Kim 321*e71b7053SJung-uk Kim=cut 322