xref: /freebsd/crypto/openssl/doc/man3/BN_add.pod (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1=pod
2
3=head1 NAME
4
5BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
6BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd -
7arithmetic operations on BIGNUMs
8
9=head1 SYNOPSIS
10
11 #include <openssl/bn.h>
12
13 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
14
15 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
16
17 int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
18
19 int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
20
21 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
22            BN_CTX *ctx);
23
24 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
25
26 int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
27
28 int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
29                BN_CTX *ctx);
30
31 int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
32                BN_CTX *ctx);
33
34 int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
35                BN_CTX *ctx);
36
37 int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
38
39 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
40
41 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
42                const BIGNUM *m, BN_CTX *ctx);
43
44 int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
45
46=head1 DESCRIPTION
47
48BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
49I<r> may be the same B<BIGNUM> as I<a> or I<b>.
50
51BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
52I<r> may be the same B<BIGNUM> as I<a> or I<b>.
53
54BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
55I<r> may be the same B<BIGNUM> as I<a> or I<b>.
56For multiplication by powers of 2, use L<BN_lshift(3)>.
57
58BN_sqr() takes the square of I<a> and places the result in I<r>
59(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
60This function is faster than BN_mul(r,a,a).
61
62BN_div() divides I<a> by I<d> and places the result in I<dv> and the
63remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
64be B<NULL>, in which case the respective value is not returned.
65The result is rounded towards zero; thus if I<a> is negative, the
66remainder will be zero or negative.
67For division by powers of 2, use BN_rshift(3).
68
69BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
70
71BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
72remainder in I<r>.
73
74BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
75result in I<r>.
76
77BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
78nonnegative result in I<r>.
79
80BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
81remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
82the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
83repeated computations using the same modulus, see
84L<BN_mod_mul_montgomery(3)> and
85L<BN_mod_mul_reciprocal(3)>.
86
87BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
88result in I<r>.
89
90BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
91(C<r=a^p>). This function is faster than repeated applications of
92BN_mul().
93
94BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
95m>). This function uses less time and space than BN_exp(). Do not call this
96function when B<m> is even and any of the parameters have the
97B<BN_FLG_CONSTTIME> flag set.
98
99BN_gcd() computes the greatest common divisor of I<a> and I<b> and
100places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
101I<b>.
102
103For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
104temporary variables; see L<BN_CTX_new(3)>.
105
106Unless noted otherwise, the result B<BIGNUM> must be different from
107the arguments.
108
109=head1 RETURN VALUES
110
111For all functions, 1 is returned for success, 0 on error. The return
112value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
113The error codes can be obtained by L<ERR_get_error(3)>.
114
115=head1 SEE ALSO
116
117L<ERR_get_error(3)>, L<BN_CTX_new(3)>,
118L<BN_add_word(3)>, L<BN_set_bit(3)>
119
120=head1 COPYRIGHT
121
122Copyright 2000-2020 The OpenSSL Project Authors. All Rights Reserved.
123
124Licensed under the OpenSSL license (the "License").  You may not use
125this file except in compliance with the License.  You can obtain a copy
126in the file LICENSE in the source distribution or at
127L<https://www.openssl.org/source/license.html>.
128
129=cut
130