xref: /freebsd/crypto/openssl/doc/man3/BN_add.pod (revision a7148ab39c03abd4d1a84997c70bf96f15dd2a09)
1e71b7053SJung-uk Kim=pod
2e71b7053SJung-uk Kim
3e71b7053SJung-uk Kim=head1 NAME
4e71b7053SJung-uk Kim
5e71b7053SJung-uk KimBN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
6fdc418f1SGordon TetlowBN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp, BN_gcd -
7e71b7053SJung-uk Kimarithmetic operations on BIGNUMs
8e71b7053SJung-uk Kim
9e71b7053SJung-uk Kim=head1 SYNOPSIS
10e71b7053SJung-uk Kim
11e71b7053SJung-uk Kim #include <openssl/bn.h>
12e71b7053SJung-uk Kim
13e71b7053SJung-uk Kim int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
14e71b7053SJung-uk Kim
15e71b7053SJung-uk Kim int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
16e71b7053SJung-uk Kim
17*a7148ab3SEnji Cooper int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
18e71b7053SJung-uk Kim
19*a7148ab3SEnji Cooper int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
20e71b7053SJung-uk Kim
21e71b7053SJung-uk Kim int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
22e71b7053SJung-uk Kim            BN_CTX *ctx);
23e71b7053SJung-uk Kim
24e71b7053SJung-uk Kim int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
25e71b7053SJung-uk Kim
26e71b7053SJung-uk Kim int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
27e71b7053SJung-uk Kim
28*a7148ab3SEnji Cooper int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
29e71b7053SJung-uk Kim                BN_CTX *ctx);
30e71b7053SJung-uk Kim
31*a7148ab3SEnji Cooper int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
32e71b7053SJung-uk Kim                BN_CTX *ctx);
33e71b7053SJung-uk Kim
34*a7148ab3SEnji Cooper int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
35e71b7053SJung-uk Kim                BN_CTX *ctx);
36e71b7053SJung-uk Kim
37*a7148ab3SEnji Cooper int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
38e71b7053SJung-uk Kim
39*a7148ab3SEnji Cooper BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
40fdc418f1SGordon Tetlow
41*a7148ab3SEnji Cooper int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
42e71b7053SJung-uk Kim
43*a7148ab3SEnji Cooper int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
44e71b7053SJung-uk Kim                const BIGNUM *m, BN_CTX *ctx);
45e71b7053SJung-uk Kim
46*a7148ab3SEnji Cooper int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
47e71b7053SJung-uk Kim
48e71b7053SJung-uk Kim=head1 DESCRIPTION
49e71b7053SJung-uk Kim
50e71b7053SJung-uk KimBN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
51e71b7053SJung-uk KimI<r> may be the same B<BIGNUM> as I<a> or I<b>.
52e71b7053SJung-uk Kim
53e71b7053SJung-uk KimBN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
54e71b7053SJung-uk KimI<r> may be the same B<BIGNUM> as I<a> or I<b>.
55e71b7053SJung-uk Kim
56e71b7053SJung-uk KimBN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
57e71b7053SJung-uk KimI<r> may be the same B<BIGNUM> as I<a> or I<b>.
58e71b7053SJung-uk KimFor multiplication by powers of 2, use L<BN_lshift(3)>.
59e71b7053SJung-uk Kim
60e71b7053SJung-uk KimBN_sqr() takes the square of I<a> and places the result in I<r>
61e71b7053SJung-uk Kim(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
62e71b7053SJung-uk KimThis function is faster than BN_mul(r,a,a).
63e71b7053SJung-uk Kim
64e71b7053SJung-uk KimBN_div() divides I<a> by I<d> and places the result in I<dv> and the
65e71b7053SJung-uk Kimremainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
66e71b7053SJung-uk Kimbe B<NULL>, in which case the respective value is not returned.
67e71b7053SJung-uk KimThe result is rounded towards zero; thus if I<a> is negative, the
68e71b7053SJung-uk Kimremainder will be zero or negative.
69e71b7053SJung-uk KimFor division by powers of 2, use BN_rshift(3).
70e71b7053SJung-uk Kim
71e71b7053SJung-uk KimBN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
72e71b7053SJung-uk Kim
7358f35182SJung-uk KimBN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
74e71b7053SJung-uk Kimremainder in I<r>.
75e71b7053SJung-uk Kim
7658f35182SJung-uk KimBN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
77e71b7053SJung-uk Kimresult in I<r>.
78e71b7053SJung-uk Kim
79e71b7053SJung-uk KimBN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
8058f35182SJung-uk Kimnonnegative result in I<r>.
81e71b7053SJung-uk Kim
8258f35182SJung-uk KimBN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
83e71b7053SJung-uk Kimremainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
84e71b7053SJung-uk Kimthe same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
85e71b7053SJung-uk Kimrepeated computations using the same modulus, see
86e71b7053SJung-uk KimL<BN_mod_mul_montgomery(3)> and
87e71b7053SJung-uk KimL<BN_mod_mul_reciprocal(3)>.
88e71b7053SJung-uk Kim
89e71b7053SJung-uk KimBN_mod_sqr() takes the square of I<a> modulo B<m> and places the
90e71b7053SJung-uk Kimresult in I<r>.
91e71b7053SJung-uk Kim
92fdc418f1SGordon TetlowBN_mod_sqrt() returns the modular square root of I<a> such that
93fdc418f1SGordon TetlowC<in^2 = a (mod p)>. The modulus I<p> must be a
94fdc418f1SGordon Tetlowprime, otherwise an error or an incorrect "result" will be returned.
95fdc418f1SGordon TetlowThe result is stored into I<in> which can be NULL. The result will be
96fdc418f1SGordon Tetlownewly allocated in that case.
97fdc418f1SGordon Tetlow
98e71b7053SJung-uk KimBN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
99e71b7053SJung-uk Kim(C<r=a^p>). This function is faster than repeated applications of
100e71b7053SJung-uk KimBN_mul().
101e71b7053SJung-uk Kim
102e71b7053SJung-uk KimBN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
103e71b7053SJung-uk Kimm>). This function uses less time and space than BN_exp(). Do not call this
104e71b7053SJung-uk Kimfunction when B<m> is even and any of the parameters have the
105e71b7053SJung-uk KimB<BN_FLG_CONSTTIME> flag set.
106e71b7053SJung-uk Kim
107e71b7053SJung-uk KimBN_gcd() computes the greatest common divisor of I<a> and I<b> and
108e71b7053SJung-uk Kimplaces the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
109e71b7053SJung-uk KimI<b>.
110e71b7053SJung-uk Kim
111e71b7053SJung-uk KimFor all functions, I<ctx> is a previously allocated B<BN_CTX> used for
112e71b7053SJung-uk Kimtemporary variables; see L<BN_CTX_new(3)>.
113e71b7053SJung-uk Kim
114e71b7053SJung-uk KimUnless noted otherwise, the result B<BIGNUM> must be different from
115e71b7053SJung-uk Kimthe arguments.
116e71b7053SJung-uk Kim
117e0c4386eSCy Schubert=head1 NOTES
118e0c4386eSCy Schubert
119e0c4386eSCy SchubertFor modular operations such as BN_nnmod() or BN_mod_exp() it is an error
120e0c4386eSCy Schubertto use the same B<BIGNUM> object for the modulus as for the output.
121e0c4386eSCy Schubert
122e71b7053SJung-uk Kim=head1 RETURN VALUES
123e71b7053SJung-uk Kim
124fdc418f1SGordon TetlowThe BN_mod_sqrt() returns the result (possibly incorrect if I<p> is
125fdc418f1SGordon Tetlownot a prime), or NULL.
126fdc418f1SGordon Tetlow
127fdc418f1SGordon TetlowFor all remaining functions, 1 is returned for success, 0 on error. The return
128e71b7053SJung-uk Kimvalue should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
129e71b7053SJung-uk KimThe error codes can be obtained by L<ERR_get_error(3)>.
130e71b7053SJung-uk Kim
131e71b7053SJung-uk Kim=head1 SEE ALSO
132e71b7053SJung-uk Kim
133e71b7053SJung-uk KimL<ERR_get_error(3)>, L<BN_CTX_new(3)>,
134e71b7053SJung-uk KimL<BN_add_word(3)>, L<BN_set_bit(3)>
135e71b7053SJung-uk Kim
136e71b7053SJung-uk Kim=head1 COPYRIGHT
137e71b7053SJung-uk Kim
138*a7148ab3SEnji CooperCopyright 2000-2024 The OpenSSL Project Authors. All Rights Reserved.
139e71b7053SJung-uk Kim
140b077aed3SPierre ProncheryLicensed under the Apache License 2.0 (the "License").  You may not use
141e71b7053SJung-uk Kimthis file except in compliance with the License.  You can obtain a copy
142e71b7053SJung-uk Kimin the file LICENSE in the source distribution or at
143e71b7053SJung-uk KimL<https://www.openssl.org/source/license.html>.
144e71b7053SJung-uk Kim
145e71b7053SJung-uk Kim=cut
146