1*e7be843bSPierre ProncheryDesign Problem: Abstract Record Layer 2*e7be843bSPierre Pronchery===================================== 3*e7be843bSPierre Pronchery 4*e7be843bSPierre ProncheryThis document covers the design of an abstract record layer for use in (D)TLS. 5*e7be843bSPierre ProncheryThe QUIC record layer is handled separately. 6*e7be843bSPierre Pronchery 7*e7be843bSPierre ProncheryA record within this document refers to a packet of data. It will typically 8*e7be843bSPierre Proncherycontain some header data and some payload data, and will often be 9*e7be843bSPierre Proncherycryptographically protected. A record may or may not have a one-to-one 10*e7be843bSPierre Proncherycorrespondence with network packets, depending on the implementation details of 11*e7be843bSPierre Proncheryan individual record layer. 12*e7be843bSPierre Pronchery 13*e7be843bSPierre ProncheryThe term record comes directly from the TLS and DTLS specifications. 14*e7be843bSPierre Pronchery 15*e7be843bSPierre ProncheryLibssl supports a number of different types of record layer, and record layer 16*e7be843bSPierre Proncheryvariants: 17*e7be843bSPierre Pronchery 18*e7be843bSPierre Pronchery- Standard TLS record layer 19*e7be843bSPierre Pronchery- Standard DTLS record layer 20*e7be843bSPierre Pronchery- Kernel TLS record layer 21*e7be843bSPierre Pronchery 22*e7be843bSPierre ProncheryWithin the TLS record layer there are options to handle "multiblock" and 23*e7be843bSPierre Pronchery"pipelining" which are different approaches for supporting the reading or 24*e7be843bSPierre Proncherywriting of multiple records at the same time. All record layer variants also 25*e7be843bSPierre Proncheryhave to be able to handle different protocol versions. 26*e7be843bSPierre Pronchery 27*e7be843bSPierre ProncheryThese different record layer implementations, variants and protocol versions 28*e7be843bSPierre Proncheryhave each been added at different times and over many years. The result is that 29*e7be843bSPierre Proncheryeach took slightly different approaches for achieving the goals that were 30*e7be843bSPierre Proncheryappropriate at the time and the integration points where they were added were 31*e7be843bSPierre Proncheryspread throughout the code. 32*e7be843bSPierre Pronchery 33*e7be843bSPierre ProncheryThe introduction of QUIC support will see the implementation of a new record 34*e7be843bSPierre Proncherylayer, i.e. the QUIC-TLS record layer. This refers to the "inner" TLS 35*e7be843bSPierre Proncheryimplementation used by QUIC. Records here will be in the form of QUIC CRYPTO 36*e7be843bSPierre Proncheryframes. 37*e7be843bSPierre Pronchery 38*e7be843bSPierre ProncheryRequirements 39*e7be843bSPierre Pronchery------------ 40*e7be843bSPierre Pronchery 41*e7be843bSPierre ProncheryThe technical requirements 42*e7be843bSPierre Pronchery[document](https://github.com/openssl/openssl/blob/master/doc/designs/quic-design/quic-requirements.md) 43*e7be843bSPierre Proncherylists these requirements that are relevant to the record layer: 44*e7be843bSPierre Pronchery 45*e7be843bSPierre Pronchery* The current libssl record layer includes support for TLS, DTLS and KTLS. QUIC 46*e7be843bSPierre Pronchery will introduce another variant and there may be more over time. The OMC 47*e7be843bSPierre Pronchery requires a pluggable record layer interface to be implemented to enable this 48*e7be843bSPierre Pronchery to be less intrusive, more maintainable, and to harmonize the existing record 49*e7be843bSPierre Pronchery layer interactions between TLS, DTLS, KTLS and the planned QUIC protocols. The 50*e7be843bSPierre Pronchery pluggable record layer interface will be internal only for MVP and be public 51*e7be843bSPierre Pronchery in a future release. 52*e7be843bSPierre Pronchery 53*e7be843bSPierre Pronchery* The minimum viable product (MVP) for the next release is a pluggable record 54*e7be843bSPierre Pronchery layer interface and a single stream QUIC client in the form of s_client that 55*e7be843bSPierre Pronchery does not require significant API changes. In the MVP, interoperability should 56*e7be843bSPierre Pronchery be prioritized over strict standards compliance. 57*e7be843bSPierre Pronchery 58*e7be843bSPierre Pronchery* Once we have a fully functional QUIC implementation (in a subsequent release), 59*e7be843bSPierre Pronchery it should be possible for external libraries to be able to use the pluggable 60*e7be843bSPierre Pronchery record layer interface and it should offer a stable ABI (via a provider). 61*e7be843bSPierre Pronchery 62*e7be843bSPierre ProncheryThe MVP requirements are: 63*e7be843bSPierre Pronchery 64*e7be843bSPierre Pronchery* a pluggable record layer (not public for MVP) 65*e7be843bSPierre Pronchery 66*e7be843bSPierre ProncheryCandidate Solutions that were considered 67*e7be843bSPierre Pronchery---------------------------------------- 68*e7be843bSPierre Pronchery 69*e7be843bSPierre ProncheryThis section outlines two different solution approaches that were considered for 70*e7be843bSPierre Proncherythe abstract record layer 71*e7be843bSPierre Pronchery 72*e7be843bSPierre Pronchery### Use a METHOD based approach 73*e7be843bSPierre Pronchery 74*e7be843bSPierre ProncheryA METHOD based approach is simply a structure containing function pointers. It 75*e7be843bSPierre Proncheryis a common pattern in the OpenSSL codebase. Different strategies for 76*e7be843bSPierre Proncheryimplementing a METHOD can be employed, but these differences are hidden from 77*e7be843bSPierre Proncherythe caller of the METHOD. 78*e7be843bSPierre Pronchery 79*e7be843bSPierre ProncheryIn this solution we would seek to implement a different METHOD for each of the 80*e7be843bSPierre Proncherytypes of record layer that we support, i.e. there would be one for the standard 81*e7be843bSPierre ProncheryTLS record layer, one for the standard DTLS record layer, one for kernel TLS and 82*e7be843bSPierre Proncheryone for QUIC-TLS. 83*e7be843bSPierre Pronchery 84*e7be843bSPierre ProncheryIn the MVP the METHOD approach would be private. However, once it has 85*e7be843bSPierre Proncherystabilised, it would be straight forward to supply public functions to enable 86*e7be843bSPierre Proncheryend user applications to construct their own METHODs. 87*e7be843bSPierre Pronchery 88*e7be843bSPierre ProncheryThis option is simpler to implement than the alternative of having a provider 89*e7be843bSPierre Proncherybased approach. However it could be used as a "stepping stone" for that, i.e. 90*e7be843bSPierre Proncherythe MVP could implement a METHOD based approach, and subsequent releases could 91*e7be843bSPierre Proncheryconvert the METHODs into fully fetchable algorithms. 92*e7be843bSPierre Pronchery 93*e7be843bSPierre ProncheryPros: 94*e7be843bSPierre Pronchery 95*e7be843bSPierre Pronchery* Simple approach that has been used historically in OpenSSL 96*e7be843bSPierre Pronchery* Could be used as the basis for the final public solution 97*e7be843bSPierre Pronchery* Could also be used as the basis for a fetchable solution in a subsequent 98*e7be843bSPierre Pronchery release 99*e7be843bSPierre Pronchery* If this option is later converted to a fetchable solution then much of the 100*e7be843bSPierre Pronchery effort involved in making the record layer fetchable can be deferred to a 101*e7be843bSPierre Pronchery later release 102*e7be843bSPierre Pronchery 103*e7be843bSPierre ProncheryCons: 104*e7be843bSPierre Pronchery 105*e7be843bSPierre Pronchery* Not consistent with the provider based approach we used for extensibility in 106*e7be843bSPierre Pronchery 3.0 107*e7be843bSPierre Pronchery* If this option is implemented and later converted to a fetchable solution then 108*e7be843bSPierre Pronchery some rework might be required 109*e7be843bSPierre Pronchery 110*e7be843bSPierre Pronchery### Use a provider based approach 111*e7be843bSPierre Pronchery 112*e7be843bSPierre ProncheryThis approach is very similar to the alternative METHOD based approach. The 113*e7be843bSPierre Proncherymain difference is that the record layer implementations would be held in 114*e7be843bSPierre Proncheryproviders and "fetched" in much the same way that cryptographic algorithms are 115*e7be843bSPierre Proncheryfetched in OpenSSL 3.0. 116*e7be843bSPierre Pronchery 117*e7be843bSPierre ProncheryThis approach is more consistent with the approach adopted for extensibility in 118*e7be843bSPierre Pronchery3.0. METHODS are being deprecated with providers being used extensively. 119*e7be843bSPierre Pronchery 120*e7be843bSPierre ProncheryComplex objects (e.g. an `SSL` object) cannot be passed across the 121*e7be843bSPierre Proncherylibssl/provider boundary. This imposes some restrictions on the design of the 122*e7be843bSPierre Proncheryfunctions that can be implemented. Additionally implementing the infrastructure 123*e7be843bSPierre Proncheryfor a new fetchable operation is more involved than a METHOD based approach. 124*e7be843bSPierre Pronchery 125*e7be843bSPierre ProncheryPros: 126*e7be843bSPierre Pronchery 127*e7be843bSPierre Pronchery* Consistent with the extensibility solution used in 3.0 128*e7be843bSPierre Pronchery* If this option is implemented immediately in the MVP then it would avoid later 129*e7be843bSPierre Pronchery rework if adopted in a subsequent release 130*e7be843bSPierre Pronchery 131*e7be843bSPierre ProncheryCons: 132*e7be843bSPierre Pronchery 133*e7be843bSPierre Pronchery* More complicated to implement than the simple METHOD based approach 134*e7be843bSPierre Pronchery* Cannot pass complex objects across the provider boundary 135*e7be843bSPierre Pronchery 136*e7be843bSPierre Pronchery### Selected solution 137*e7be843bSPierre Pronchery 138*e7be843bSPierre ProncheryThe METHOD based approach has been selected for MVP, with the expectation that 139*e7be843bSPierre Proncherysubsequent releases will convert it to a full provider based solution accessible 140*e7be843bSPierre Proncheryto third party applications. 141*e7be843bSPierre Pronchery 142*e7be843bSPierre ProncherySolution Description: The METHOD based approach 143*e7be843bSPierre Pronchery----------------------------------------------- 144*e7be843bSPierre Pronchery 145*e7be843bSPierre ProncheryThis section focuses on the selected approach of using METHODs and further 146*e7be843bSPierre Proncheryelaborates on how the design works. 147*e7be843bSPierre Pronchery 148*e7be843bSPierre ProncheryA proposed internal record method API is given in 149*e7be843bSPierre Pronchery[Appendix A](#appendix-a-the-internal-record-method-api). 150*e7be843bSPierre Pronchery 151*e7be843bSPierre ProncheryAn `OSSL_RECORD_METHOD` represents the implementation of a particular type of 152*e7be843bSPierre Proncheryrecord layer. It contains a set of function pointers to represent the various 153*e7be843bSPierre Proncheryactions that can be performed by a record layer. 154*e7be843bSPierre Pronchery 155*e7be843bSPierre ProncheryAn `OSSL_RECORD_LAYER` object represents a specific instantiation of a 156*e7be843bSPierre Proncheryparticular `OSSL_RECORD_METHOD`. It contains the state used by that 157*e7be843bSPierre Pronchery`OSSL_RECORD_METHOD` for a specific connection (i.e. `SSL` object). Any `SSL` 158*e7be843bSPierre Proncheryobject will have at least 2 `OSSL_RECORD_LAYER` objects associated with it - one 159*e7be843bSPierre Proncheryfor reading and one for writing. In some cases there may be more than 2 - for 160*e7be843bSPierre Proncheryexample in DTLS it may be necessary to retransmit records from a previous epoch. 161*e7be843bSPierre ProncheryThere will be different `OSSL_RECORD_LAYER` objects for different protection 162*e7be843bSPierre Proncherylevels or epochs. It may be that different `OSSL_RECORD_METHOD`s are used for 163*e7be843bSPierre Proncherydifferent protection levels. For example a connection might start using the 164*e7be843bSPierre Proncherystandard TLS record layer during the handshake, and later transition to using 165*e7be843bSPierre Proncherythe kernel TLS record layer once the handshake is complete. 166*e7be843bSPierre Pronchery 167*e7be843bSPierre ProncheryA new `OSSL_RECORD_LAYER` is created by calling the `new` function of the 168*e7be843bSPierre Proncheryassociated `OSSL_RECORD_METHOD`, and freed by calling the `free` function. The 169*e7be843bSPierre Proncheryparameters to the `new` function also supply all of the cryptographic state 170*e7be843bSPierre Pronchery(e.g. keys, ivs, symmetric encryption algorithms, hash algorithm etc) used by 171*e7be843bSPierre Proncherythe record layer. The internal structure details of an `OSSL_RECORD_LAYER` are 172*e7be843bSPierre Proncheryentirely hidden to the rest of libssl and can be specific to the given 173*e7be843bSPierre Pronchery`OSSL_RECORD_METHOD`. In practice the standard internal TLS, DTLS and KTLS 174*e7be843bSPierre Pronchery`OSSL_RECORD_METHOD`s all use a common `OSSL_RECORD_LAYER` structure. However 175*e7be843bSPierre Proncherythe QUIC-TLS implementation is likely to use a different structure layout. 176*e7be843bSPierre Pronchery 177*e7be843bSPierre ProncheryAll of the header and payload data for a single record will be represented by an 178*e7be843bSPierre Pronchery`OSSL_RECORD_TEMPLATE` structure when writing. Libssl will construct a set of 179*e7be843bSPierre Proncherytemplates for records to be written out and pass them to the "write" record 180*e7be843bSPierre Proncherylayer. In most cases only a single record is ever written out at one time, 181*e7be843bSPierre Proncheryhowever there are some cases (such as when using the "pipelining" or 182*e7be843bSPierre Pronchery"multibuffer" optimisations) that multiple records can be written in one go. 183*e7be843bSPierre Pronchery 184*e7be843bSPierre ProncheryIt is the record layer's responsibility to know whether it can support multiple 185*e7be843bSPierre Proncheryrecords in one go or not. It is libssl's responsibility to split the payload 186*e7be843bSPierre Proncherydata into `OSSL_RECORD_TEMPLATE` objects. Libssl will call the record layer's 187*e7be843bSPierre Pronchery`get_max_records()` function to determine how many records a given payload 188*e7be843bSPierre Proncheryshould be split into. If that value is more than one, then libssl will construct 189*e7be843bSPierre Pronchery(up to) that number of `OSSL_RECORD_TEMPLATE`s and pass the whole set to the 190*e7be843bSPierre Proncheryrecord layer's `write_records()` function. 191*e7be843bSPierre Pronchery 192*e7be843bSPierre ProncheryThe implementation of the `write_records` function must construct the 193*e7be843bSPierre Proncheryappropriate number of records, apply protection to them as required and then 194*e7be843bSPierre Proncherywrite them out to the underlying transport layer BIO. In the event that not 195*e7be843bSPierre Proncheryall the data can be transmitted at the current time (e.g. because the underlying 196*e7be843bSPierre Proncherytransport has indicated a retry), then the `write_records` function will return 197*e7be843bSPierre Proncherya "retry" response. It is permissible for the data to be partially sent, but 198*e7be843bSPierre Proncherythis is still considered a "retry" until all of the data is sent. 199*e7be843bSPierre Pronchery 200*e7be843bSPierre ProncheryOn a success or retry response libssl may free its buffers immediately. The 201*e7be843bSPierre Pronchery`OSSL_RECORD_LAYER` object will have to buffer any untransmitted data until it 202*e7be843bSPierre Proncheryis eventually sent. 203*e7be843bSPierre Pronchery 204*e7be843bSPierre ProncheryIf a "retry" occurs, then libssl will subsequently call `retry_write_records` 205*e7be843bSPierre Proncheryand continue to do so until a success return value is received. Libssl will 206*e7be843bSPierre Proncherynever call `write_records` a second time until a previous call to 207*e7be843bSPierre Pronchery`write_records` or `retry_write_records` has indicated success. 208*e7be843bSPierre Pronchery 209*e7be843bSPierre ProncheryLibssl will read records by calling the `read_record` function. The 210*e7be843bSPierre Pronchery`OSSL_RECORD_LAYER` may read multiple records in one go and buffer them, but the 211*e7be843bSPierre Pronchery`read_record` function only ever returns one record at a time. The 212*e7be843bSPierre Pronchery`OSSL_RECORD_LAYER` object owns the buffers for the record that has been read 213*e7be843bSPierre Proncheryand supplies a pointer into that buffer back to libssl for the payload data, as 214*e7be843bSPierre Proncherywell as other information about the record such as its length and the type of 215*e7be843bSPierre Proncherydata contained in it. Each record has an associated opaque handle `rechandle`. 216*e7be843bSPierre ProncheryThe record data must remain buffered by the `OSSL_RECORD_LAYER` until it has 217*e7be843bSPierre Proncherybeen released via a call to `release_record()`. 218*e7be843bSPierre Pronchery 219*e7be843bSPierre ProncheryA record layer implementation supplies various functions to enable libssl to 220*e7be843bSPierre Proncheryquery the current state. In particular: 221*e7be843bSPierre Pronchery 222*e7be843bSPierre Pronchery`unprocessed_read_pending()`: to query whether there is data buffered that has 223*e7be843bSPierre Proncheryalready been read from the underlying BIO, but not yet processed. 224*e7be843bSPierre Pronchery 225*e7be843bSPierre Pronchery`processed_read_pending()`: to query whether there is data buffered that has 226*e7be843bSPierre Proncherybeen read from the underlying BIO and has been processed. The data is not 227*e7be843bSPierre Proncherynecessarily application data. 228*e7be843bSPierre Pronchery 229*e7be843bSPierre Pronchery`app_data_pending()`: to query the amount of processed application data that is 230*e7be843bSPierre Proncherybuffered and available for immediate read. 231*e7be843bSPierre Pronchery 232*e7be843bSPierre Pronchery`get_alert_code()`: to query the alert code that should be used in the event 233*e7be843bSPierre Proncherythat a previous attempt to read or write records failed. 234*e7be843bSPierre Pronchery 235*e7be843bSPierre Pronchery`get_state()`: to obtain a printable string to describe the current state of the 236*e7be843bSPierre Proncheryrecord layer. 237*e7be843bSPierre Pronchery 238*e7be843bSPierre Pronchery`get_compression()`: to obtain information about the compression method 239*e7be843bSPierre Proncherycurrently being used by the record layer. 240*e7be843bSPierre Pronchery 241*e7be843bSPierre Pronchery`get_max_record_overhead()`: to obtain the maximum amount of bytes the record 242*e7be843bSPierre Proncherylayer will add to the payload bytes before transmission. This does not include 243*e7be843bSPierre Proncheryany expansion that might occur during compression. Currently this is only 244*e7be843bSPierre Proncheryimplemented for DTLS. 245*e7be843bSPierre Pronchery 246*e7be843bSPierre ProncheryIn addition, libssl will tell the record layer about various events that might 247*e7be843bSPierre Proncheryoccur that are relevant to the record layer's operation: 248*e7be843bSPierre Pronchery 249*e7be843bSPierre Pronchery`set1_bio()`: called if the underlying BIO being used by the record layer has 250*e7be843bSPierre Proncherybeen changed. 251*e7be843bSPierre Pronchery 252*e7be843bSPierre Pronchery`set_protocol_version()`: called during protocol version negotiation when a 253*e7be843bSPierre Proncheryspecific protocol version has been selected. 254*e7be843bSPierre Pronchery 255*e7be843bSPierre Pronchery`set_plain_alerts()`: to indicate that receiving unencrypted alerts is allowed 256*e7be843bSPierre Proncheryin the current context, even if normally we would expect to receive encrypted 257*e7be843bSPierre Proncherydata. This is only relevant for TLSv1.3. 258*e7be843bSPierre Pronchery 259*e7be843bSPierre Pronchery`set_first_handshake()`: called at the beginning and end of the first handshake 260*e7be843bSPierre Proncheryfor any given (D)TLS connection. 261*e7be843bSPierre Pronchery 262*e7be843bSPierre Pronchery`set_max_pipelines()`: called to configure the maximum number of pipelines of 263*e7be843bSPierre Proncherydata that the record layer should process in one go. By default this is 1. 264*e7be843bSPierre Pronchery 265*e7be843bSPierre Pronchery`set_in_init()`: called by libssl to tell the record layer whether we are 266*e7be843bSPierre Proncherycurrently `in_init` or not. Defaults to "true". 267*e7be843bSPierre Pronchery 268*e7be843bSPierre Pronchery`set_options()`: called by libssl in the event that the current set of options 269*e7be843bSPierre Proncheryto use has been updated. 270*e7be843bSPierre Pronchery 271*e7be843bSPierre Pronchery`set_max_frag_len()`: called by libssl to set the maximum allowed fragment 272*e7be843bSPierre Proncherylength that is in force at the moment. This might be the result of user 273*e7be843bSPierre Proncheryconfiguration, or it may be negotiated during the handshake. 274*e7be843bSPierre Pronchery 275*e7be843bSPierre Pronchery`increment_sequence_ctr()`: force the record layer to increment its sequence 276*e7be843bSPierre Proncherycounter. In most cases the record layer will entirely manage its own sequence 277*e7be843bSPierre Proncherycounters. However in the DTLSv1_listen() corner case, libssl needs to initialise 278*e7be843bSPierre Proncherythe record layer with an incremented sequence counter. 279*e7be843bSPierre Pronchery 280*e7be843bSPierre Pronchery`alloc_buffers()`: called by libssl to request that the record layer allocate 281*e7be843bSPierre Proncheryits buffers. This is a hint only and the record layer is expected to manage its 282*e7be843bSPierre Proncheryown buffer allocation and freeing. 283*e7be843bSPierre Pronchery 284*e7be843bSPierre Pronchery`free_buffers()`: called by libssl to request that the record layer free its 285*e7be843bSPierre Proncherybuffers. This is a hint only and the record layer is expected to manage its own 286*e7be843bSPierre Proncherybuffer allocation and freeing. 287*e7be843bSPierre Pronchery 288*e7be843bSPierre ProncheryAppendix A: The internal record method API 289*e7be843bSPierre Pronchery------------------------------------------ 290*e7be843bSPierre Pronchery 291*e7be843bSPierre ProncheryThe internal recordmethod.h header file for the record method API: 292*e7be843bSPierre Pronchery 293*e7be843bSPierre Pronchery```` C 294*e7be843bSPierre Pronchery/* 295*e7be843bSPierre Pronchery * We use the term "record" here to refer to a packet of data. Records are 296*e7be843bSPierre Pronchery * typically protected via a cipher and MAC, or an AEAD cipher (although not 297*e7be843bSPierre Pronchery * always). This usage of the term record is consistent with the TLS concept. 298*e7be843bSPierre Pronchery * In QUIC the term "record" is not used but it is analogous to the QUIC term 299*e7be843bSPierre Pronchery * "packet". The interface in this file applies to all protocols that protect 300*e7be843bSPierre Pronchery * records/packets of data, i.e. (D)TLS and QUIC. The term record is used to 301*e7be843bSPierre Pronchery * refer to both contexts. 302*e7be843bSPierre Pronchery */ 303*e7be843bSPierre Pronchery 304*e7be843bSPierre Pronchery/* 305*e7be843bSPierre Pronchery * An OSSL_RECORD_METHOD is a protocol specific method which provides the 306*e7be843bSPierre Pronchery * functions for reading and writing records for that protocol. Which 307*e7be843bSPierre Pronchery * OSSL_RECORD_METHOD to use for a given protocol is defined by the SSL_METHOD. 308*e7be843bSPierre Pronchery */ 309*e7be843bSPierre Proncherytypedef struct ossl_record_method_st OSSL_RECORD_METHOD; 310*e7be843bSPierre Pronchery 311*e7be843bSPierre Pronchery/* 312*e7be843bSPierre Pronchery * An OSSL_RECORD_LAYER is just an externally defined opaque pointer created by 313*e7be843bSPierre Pronchery * the method 314*e7be843bSPierre Pronchery */ 315*e7be843bSPierre Proncherytypedef struct ossl_record_layer_st OSSL_RECORD_LAYER; 316*e7be843bSPierre Pronchery 317*e7be843bSPierre Pronchery 318*e7be843bSPierre Pronchery# define OSSL_RECORD_ROLE_CLIENT 0 319*e7be843bSPierre Pronchery# define OSSL_RECORD_ROLE_SERVER 1 320*e7be843bSPierre Pronchery 321*e7be843bSPierre Pronchery# define OSSL_RECORD_DIRECTION_READ 0 322*e7be843bSPierre Pronchery# define OSSL_RECORD_DIRECTION_WRITE 1 323*e7be843bSPierre Pronchery 324*e7be843bSPierre Pronchery/* 325*e7be843bSPierre Pronchery * Protection level. For <= TLSv1.2 only "NONE" and "APPLICATION" are used. 326*e7be843bSPierre Pronchery */ 327*e7be843bSPierre Pronchery# define OSSL_RECORD_PROTECTION_LEVEL_NONE 0 328*e7be843bSPierre Pronchery# define OSSL_RECORD_PROTECTION_LEVEL_EARLY 1 329*e7be843bSPierre Pronchery# define OSSL_RECORD_PROTECTION_LEVEL_HANDSHAKE 2 330*e7be843bSPierre Pronchery# define OSSL_RECORD_PROTECTION_LEVEL_APPLICATION 3 331*e7be843bSPierre Pronchery 332*e7be843bSPierre Pronchery# define OSSL_RECORD_RETURN_SUCCESS 1 333*e7be843bSPierre Pronchery# define OSSL_RECORD_RETURN_RETRY 0 334*e7be843bSPierre Pronchery# define OSSL_RECORD_RETURN_NON_FATAL_ERR -1 335*e7be843bSPierre Pronchery# define OSSL_RECORD_RETURN_FATAL -2 336*e7be843bSPierre Pronchery# define OSSL_RECORD_RETURN_EOF -3 337*e7be843bSPierre Pronchery 338*e7be843bSPierre Pronchery/* 339*e7be843bSPierre Pronchery * Template for creating a record. A record consists of the |type| of data it 340*e7be843bSPierre Pronchery * will contain (e.g. alert, handshake, application data, etc) along with a 341*e7be843bSPierre Pronchery * buffer of payload data in |buf| of length |buflen|. 342*e7be843bSPierre Pronchery */ 343*e7be843bSPierre Proncherystruct ossl_record_template_st { 344*e7be843bSPierre Pronchery int type; 345*e7be843bSPierre Pronchery unsigned int version; 346*e7be843bSPierre Pronchery const unsigned char *buf; 347*e7be843bSPierre Pronchery size_t buflen; 348*e7be843bSPierre Pronchery}; 349*e7be843bSPierre Pronchery 350*e7be843bSPierre Proncherytypedef struct ossl_record_template_st OSSL_RECORD_TEMPLATE; 351*e7be843bSPierre Pronchery 352*e7be843bSPierre Pronchery/* 353*e7be843bSPierre Pronchery * Rather than a "method" approach, we could make this fetchable - Should we? 354*e7be843bSPierre Pronchery * There could be some complexity in finding suitable record layer implementations 355*e7be843bSPierre Pronchery * e.g. we need to find one that matches the negotiated protocol, cipher, 356*e7be843bSPierre Pronchery * extensions, etc. The selection_cb approach given above doesn't work so well 357*e7be843bSPierre Pronchery * if unknown third party providers with OSSL_RECORD_METHOD implementations are 358*e7be843bSPierre Pronchery * loaded. 359*e7be843bSPierre Pronchery */ 360*e7be843bSPierre Pronchery 361*e7be843bSPierre Pronchery/* 362*e7be843bSPierre Pronchery * If this becomes public API then we will need functions to create and 363*e7be843bSPierre Pronchery * free an OSSL_RECORD_METHOD, as well as functions to get/set the various 364*e7be843bSPierre Pronchery * function pointers....unless we make it fetchable. 365*e7be843bSPierre Pronchery */ 366*e7be843bSPierre Proncherystruct ossl_record_method_st { 367*e7be843bSPierre Pronchery /* 368*e7be843bSPierre Pronchery * Create a new OSSL_RECORD_LAYER object for handling the protocol version 369*e7be843bSPierre Pronchery * set by |vers|. |role| is 0 for client and 1 for server. |direction| 370*e7be843bSPierre Pronchery * indicates either read or write. |level| is the protection level as 371*e7be843bSPierre Pronchery * described above. |settings| are mandatory settings that will cause the 372*e7be843bSPierre Pronchery * new() call to fail if they are not understood (for example to require 373*e7be843bSPierre Pronchery * Encrypt-Then-Mac support). |options| are optional settings that will not 374*e7be843bSPierre Pronchery * cause the new() call to fail if they are not understood (for example 375*e7be843bSPierre Pronchery * whether to use "read ahead" or not). 376*e7be843bSPierre Pronchery * 377*e7be843bSPierre Pronchery * The BIO in |transport| is the BIO for the underlying transport layer. 378*e7be843bSPierre Pronchery * Where the direction is "read", then this BIO will only ever be used for 379*e7be843bSPierre Pronchery * reading data. Where the direction is "write", then this BIO will only 380*e7be843bSPierre Pronchery * every be used for writing data. 381*e7be843bSPierre Pronchery * 382*e7be843bSPierre Pronchery * An SSL object will always have at least 2 OSSL_RECORD_LAYER objects in 383*e7be843bSPierre Pronchery * force at any one time (one for reading and one for writing). In some 384*e7be843bSPierre Pronchery * protocols more than 2 might be used (e.g. in DTLS for retransmitting 385*e7be843bSPierre Pronchery * messages from an earlier epoch). 386*e7be843bSPierre Pronchery * 387*e7be843bSPierre Pronchery * The created OSSL_RECORD_LAYER object is stored in *ret on success (or 388*e7be843bSPierre Pronchery * NULL otherwise). The return value will be one of 389*e7be843bSPierre Pronchery * OSSL_RECORD_RETURN_SUCCESS, OSSL_RECORD_RETURN_FATAL or 390*e7be843bSPierre Pronchery * OSSL_RECORD_RETURN_NON_FATAL. A non-fatal return means that creation of 391*e7be843bSPierre Pronchery * the record layer has failed because it is unsuitable, but an alternative 392*e7be843bSPierre Pronchery * record layer can be tried instead. 393*e7be843bSPierre Pronchery */ 394*e7be843bSPierre Pronchery 395*e7be843bSPierre Pronchery /* 396*e7be843bSPierre Pronchery * If we eventually make this fetchable then we will need to use something 397*e7be843bSPierre Pronchery * other than EVP_CIPHER. Also mactype would not be a NID, but a string. For 398*e7be843bSPierre Pronchery * now though, this works. 399*e7be843bSPierre Pronchery */ 400*e7be843bSPierre Pronchery int (*new_record_layer)(OSSL_LIB_CTX *libctx, 401*e7be843bSPierre Pronchery const char *propq, int vers, 402*e7be843bSPierre Pronchery int role, int direction, 403*e7be843bSPierre Pronchery int level, 404*e7be843bSPierre Pronchery uint16_t epoch, 405*e7be843bSPierre Pronchery unsigned char *key, 406*e7be843bSPierre Pronchery size_t keylen, 407*e7be843bSPierre Pronchery unsigned char *iv, 408*e7be843bSPierre Pronchery size_t ivlen, 409*e7be843bSPierre Pronchery unsigned char *mackey, 410*e7be843bSPierre Pronchery size_t mackeylen, 411*e7be843bSPierre Pronchery const EVP_CIPHER *ciph, 412*e7be843bSPierre Pronchery size_t taglen, 413*e7be843bSPierre Pronchery int mactype, 414*e7be843bSPierre Pronchery const EVP_MD *md, 415*e7be843bSPierre Pronchery COMP_METHOD *comp, 416*e7be843bSPierre Pronchery BIO *prev, 417*e7be843bSPierre Pronchery BIO *transport, 418*e7be843bSPierre Pronchery BIO *next, 419*e7be843bSPierre Pronchery BIO_ADDR *local, 420*e7be843bSPierre Pronchery BIO_ADDR *peer, 421*e7be843bSPierre Pronchery const OSSL_PARAM *settings, 422*e7be843bSPierre Pronchery const OSSL_PARAM *options, 423*e7be843bSPierre Pronchery const OSSL_DISPATCH *fns, 424*e7be843bSPierre Pronchery void *cbarg, 425*e7be843bSPierre Pronchery OSSL_RECORD_LAYER **ret); 426*e7be843bSPierre Pronchery int (*free)(OSSL_RECORD_LAYER *rl); 427*e7be843bSPierre Pronchery 428*e7be843bSPierre Pronchery int (*reset)(OSSL_RECORD_LAYER *rl); /* Is this needed? */ 429*e7be843bSPierre Pronchery 430*e7be843bSPierre Pronchery /* Returns 1 if we have unprocessed data buffered or 0 otherwise */ 431*e7be843bSPierre Pronchery int (*unprocessed_read_pending)(OSSL_RECORD_LAYER *rl); 432*e7be843bSPierre Pronchery 433*e7be843bSPierre Pronchery /* 434*e7be843bSPierre Pronchery * Returns 1 if we have processed data buffered that can be read or 0 otherwise 435*e7be843bSPierre Pronchery * - not necessarily app data 436*e7be843bSPierre Pronchery */ 437*e7be843bSPierre Pronchery int (*processed_read_pending)(OSSL_RECORD_LAYER *rl); 438*e7be843bSPierre Pronchery 439*e7be843bSPierre Pronchery /* 440*e7be843bSPierre Pronchery * The amount of processed app data that is internally buffered and 441*e7be843bSPierre Pronchery * available to read 442*e7be843bSPierre Pronchery */ 443*e7be843bSPierre Pronchery size_t (*app_data_pending)(OSSL_RECORD_LAYER *rl); 444*e7be843bSPierre Pronchery 445*e7be843bSPierre Pronchery /* 446*e7be843bSPierre Pronchery * Find out the maximum number of records that the record layer is prepared 447*e7be843bSPierre Pronchery * to process in a single call to write_records. It is the caller's 448*e7be843bSPierre Pronchery * responsibility to ensure that no call to write_records exceeds this 449*e7be843bSPierre Pronchery * number of records. |type| is the type of the records that the caller 450*e7be843bSPierre Pronchery * wants to write, and |len| is the total amount of data that it wants 451*e7be843bSPierre Pronchery * to send. |maxfrag| is the maximum allowed fragment size based on user 452*e7be843bSPierre Pronchery * configuration, or TLS parameter negotiation. |*preffrag| contains on 453*e7be843bSPierre Pronchery * entry the default fragment size that will actually be used based on user 454*e7be843bSPierre Pronchery * configuration. This will always be less than or equal to |maxfrag|. On 455*e7be843bSPierre Pronchery * exit the record layer may update this to an alternative fragment size to 456*e7be843bSPierre Pronchery * be used. This must always be less than or equal to |maxfrag|. 457*e7be843bSPierre Pronchery */ 458*e7be843bSPierre Pronchery size_t (*get_max_records)(OSSL_RECORD_LAYER *rl, uint8_t type, size_t len, 459*e7be843bSPierre Pronchery size_t maxfrag, size_t *preffrag); 460*e7be843bSPierre Pronchery 461*e7be843bSPierre Pronchery /* 462*e7be843bSPierre Pronchery * Write |numtempl| records from the array of record templates pointed to 463*e7be843bSPierre Pronchery * by |templates|. Each record should be no longer than the value returned 464*e7be843bSPierre Pronchery * by get_max_record_len(), and there should be no more records than the 465*e7be843bSPierre Pronchery * value returned by get_max_records(). 466*e7be843bSPierre Pronchery * Where possible the caller will attempt to ensure that all records are the 467*e7be843bSPierre Pronchery * same length, except the last record. This may not always be possible so 468*e7be843bSPierre Pronchery * the record method implementation should not rely on this being the case. 469*e7be843bSPierre Pronchery * In the event of a retry the caller should call retry_write_records() 470*e7be843bSPierre Pronchery * to try again. No more calls to write_records() should be attempted until 471*e7be843bSPierre Pronchery * retry_write_records() returns success. 472*e7be843bSPierre Pronchery * Buffers allocated for the record templates can be freed immediately after 473*e7be843bSPierre Pronchery * write_records() returns - even in the case a retry. 474*e7be843bSPierre Pronchery * The record templates represent the plaintext payload. The encrypted 475*e7be843bSPierre Pronchery * output is written to the |transport| BIO. 476*e7be843bSPierre Pronchery * Returns: 477*e7be843bSPierre Pronchery * 1 on success 478*e7be843bSPierre Pronchery * 0 on retry 479*e7be843bSPierre Pronchery * -1 on failure 480*e7be843bSPierre Pronchery */ 481*e7be843bSPierre Pronchery int (*write_records)(OSSL_RECORD_LAYER *rl, OSSL_RECORD_TEMPLATE *templates, 482*e7be843bSPierre Pronchery size_t numtempl); 483*e7be843bSPierre Pronchery 484*e7be843bSPierre Pronchery /* 485*e7be843bSPierre Pronchery * Retry a previous call to write_records. The caller should continue to 486*e7be843bSPierre Pronchery * call this until the function returns with success or failure. After 487*e7be843bSPierre Pronchery * each retry more of the data may have been incrementally sent. 488*e7be843bSPierre Pronchery * Returns: 489*e7be843bSPierre Pronchery * 1 on success 490*e7be843bSPierre Pronchery * 0 on retry 491*e7be843bSPierre Pronchery * -1 on failure 492*e7be843bSPierre Pronchery */ 493*e7be843bSPierre Pronchery int (*retry_write_records)(OSSL_RECORD_LAYER *rl); 494*e7be843bSPierre Pronchery 495*e7be843bSPierre Pronchery /* 496*e7be843bSPierre Pronchery * Read a record and return the record layer version and record type in 497*e7be843bSPierre Pronchery * the |rversion| and |type| parameters. |*data| is set to point to a 498*e7be843bSPierre Pronchery * record layer buffer containing the record payload data and |*datalen| 499*e7be843bSPierre Pronchery * is filled in with the length of that data. The |epoch| and |seq_num| 500*e7be843bSPierre Pronchery * values are only used if DTLS has been negotiated. In that case they are 501*e7be843bSPierre Pronchery * filled in with the epoch and sequence number from the record. 502*e7be843bSPierre Pronchery * An opaque record layer handle for the record is returned in |*rechandle| 503*e7be843bSPierre Pronchery * which is used in a subsequent call to |release_record|. The buffer must 504*e7be843bSPierre Pronchery * remain available until release_record is called. 505*e7be843bSPierre Pronchery * 506*e7be843bSPierre Pronchery * Internally the OSSL_RECORD_METHOD the implementation may read/process 507*e7be843bSPierre Pronchery * multiple records in one go and buffer them. 508*e7be843bSPierre Pronchery */ 509*e7be843bSPierre Pronchery int (*read_record)(OSSL_RECORD_LAYER *rl, void **rechandle, int *rversion, 510*e7be843bSPierre Pronchery uint8_t *type, unsigned char **data, size_t *datalen, 511*e7be843bSPierre Pronchery uint16_t *epoch, unsigned char *seq_num); 512*e7be843bSPierre Pronchery /* 513*e7be843bSPierre Pronchery * Release a buffer associated with a record previously read with 514*e7be843bSPierre Pronchery * read_record. Records are guaranteed to be released in the order that they 515*e7be843bSPierre Pronchery * are read. 516*e7be843bSPierre Pronchery */ 517*e7be843bSPierre Pronchery int (*release_record)(OSSL_RECORD_LAYER *rl, void *rechandle); 518*e7be843bSPierre Pronchery 519*e7be843bSPierre Pronchery /* 520*e7be843bSPierre Pronchery * In the event that a fatal error is returned from the functions above then 521*e7be843bSPierre Pronchery * get_alert_code() can be called to obtain a more details identifier for 522*e7be843bSPierre Pronchery * the error. In (D)TLS this is the alert description code. 523*e7be843bSPierre Pronchery */ 524*e7be843bSPierre Pronchery int (*get_alert_code)(OSSL_RECORD_LAYER *rl); 525*e7be843bSPierre Pronchery 526*e7be843bSPierre Pronchery /* 527*e7be843bSPierre Pronchery * Update the transport BIO from the one originally set in the 528*e7be843bSPierre Pronchery * new_record_layer call 529*e7be843bSPierre Pronchery */ 530*e7be843bSPierre Pronchery int (*set1_bio)(OSSL_RECORD_LAYER *rl, BIO *bio); 531*e7be843bSPierre Pronchery 532*e7be843bSPierre Pronchery /* Called when protocol negotiation selects a protocol version to use */ 533*e7be843bSPierre Pronchery int (*set_protocol_version)(OSSL_RECORD_LAYER *rl, int version); 534*e7be843bSPierre Pronchery 535*e7be843bSPierre Pronchery /* 536*e7be843bSPierre Pronchery * Whether we are allowed to receive unencrypted alerts, even if we might 537*e7be843bSPierre Pronchery * otherwise expect encrypted records. Ignored by protocol versions where 538*e7be843bSPierre Pronchery * this isn't relevant 539*e7be843bSPierre Pronchery */ 540*e7be843bSPierre Pronchery void (*set_plain_alerts)(OSSL_RECORD_LAYER *rl, int allow); 541*e7be843bSPierre Pronchery 542*e7be843bSPierre Pronchery /* 543*e7be843bSPierre Pronchery * Called immediately after creation of the record layer if we are in a 544*e7be843bSPierre Pronchery * first handshake. Also called at the end of the first handshake 545*e7be843bSPierre Pronchery */ 546*e7be843bSPierre Pronchery void (*set_first_handshake)(OSSL_RECORD_LAYER *rl, int first); 547*e7be843bSPierre Pronchery 548*e7be843bSPierre Pronchery /* 549*e7be843bSPierre Pronchery * Set the maximum number of pipelines that the record layer should process. 550*e7be843bSPierre Pronchery * The default is 1. 551*e7be843bSPierre Pronchery */ 552*e7be843bSPierre Pronchery void (*set_max_pipelines)(OSSL_RECORD_LAYER *rl, size_t max_pipelines); 553*e7be843bSPierre Pronchery 554*e7be843bSPierre Pronchery /* 555*e7be843bSPierre Pronchery * Called to tell the record layer whether we are currently "in init" or 556*e7be843bSPierre Pronchery * not. Default at creation of the record layer is "yes". 557*e7be843bSPierre Pronchery */ 558*e7be843bSPierre Pronchery void (*set_in_init)(OSSL_RECORD_LAYER *rl, int in_init); 559*e7be843bSPierre Pronchery 560*e7be843bSPierre Pronchery /* 561*e7be843bSPierre Pronchery * Get a short or long human readable description of the record layer state 562*e7be843bSPierre Pronchery */ 563*e7be843bSPierre Pronchery void (*get_state)(OSSL_RECORD_LAYER *rl, const char **shortstr, 564*e7be843bSPierre Pronchery const char **longstr); 565*e7be843bSPierre Pronchery 566*e7be843bSPierre Pronchery /* 567*e7be843bSPierre Pronchery * Set new options or modify ones that were originally specified in the 568*e7be843bSPierre Pronchery * new_record_layer call. 569*e7be843bSPierre Pronchery */ 570*e7be843bSPierre Pronchery int (*set_options)(OSSL_RECORD_LAYER *rl, const OSSL_PARAM *options); 571*e7be843bSPierre Pronchery 572*e7be843bSPierre Pronchery const COMP_METHOD *(*get_compression)(OSSL_RECORD_LAYER *rl); 573*e7be843bSPierre Pronchery 574*e7be843bSPierre Pronchery /* 575*e7be843bSPierre Pronchery * Set the maximum fragment length to be used for the record layer. This 576*e7be843bSPierre Pronchery * will override any previous value supplied for the "max_frag_len" 577*e7be843bSPierre Pronchery * setting during construction of the record layer. 578*e7be843bSPierre Pronchery */ 579*e7be843bSPierre Pronchery void (*set_max_frag_len)(OSSL_RECORD_LAYER *rl, size_t max_frag_len); 580*e7be843bSPierre Pronchery 581*e7be843bSPierre Pronchery /* 582*e7be843bSPierre Pronchery * The maximum expansion in bytes that the record layer might add while 583*e7be843bSPierre Pronchery * writing a record 584*e7be843bSPierre Pronchery */ 585*e7be843bSPierre Pronchery size_t (*get_max_record_overhead)(OSSL_RECORD_LAYER *rl); 586*e7be843bSPierre Pronchery 587*e7be843bSPierre Pronchery /* 588*e7be843bSPierre Pronchery * Increment the record sequence number 589*e7be843bSPierre Pronchery */ 590*e7be843bSPierre Pronchery int (*increment_sequence_ctr)(OSSL_RECORD_LAYER *rl); 591*e7be843bSPierre Pronchery 592*e7be843bSPierre Pronchery /* 593*e7be843bSPierre Pronchery * Allocate read or write buffers. Does nothing if already allocated. 594*e7be843bSPierre Pronchery * Assumes default buffer length and 1 pipeline. 595*e7be843bSPierre Pronchery */ 596*e7be843bSPierre Pronchery int (*alloc_buffers)(OSSL_RECORD_LAYER *rl); 597*e7be843bSPierre Pronchery 598*e7be843bSPierre Pronchery /* 599*e7be843bSPierre Pronchery * Free read or write buffers. Fails if there is pending read or write 600*e7be843bSPierre Pronchery * data. Buffers are automatically reallocated on next read/write. 601*e7be843bSPierre Pronchery */ 602*e7be843bSPierre Pronchery int (*free_buffers)(OSSL_RECORD_LAYER *rl); 603*e7be843bSPierre Pronchery}; 604*e7be843bSPierre Pronchery```` 605