1 /* crypto/sha/sha256.c */ 2 /* ==================================================================== 3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved 4 * according to the OpenSSL license [found in ../../LICENSE]. 5 * ==================================================================== 6 */ 7 #include <openssl/opensslconf.h> 8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256) 9 10 #include <stdlib.h> 11 #include <string.h> 12 13 #include <openssl/crypto.h> 14 #include <openssl/sha.h> 15 #ifdef OPENSSL_FIPS 16 #include <openssl/fips.h> 17 #endif 18 19 #include <openssl/opensslv.h> 20 21 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT; 22 23 int SHA224_Init (SHA256_CTX *c) 24 { 25 #ifdef OPENSSL_FIPS 26 FIPS_selftest_check(); 27 #endif 28 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL; 29 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL; 30 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL; 31 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL; 32 c->Nl=0; c->Nh=0; 33 c->num=0; c->md_len=SHA224_DIGEST_LENGTH; 34 return 1; 35 } 36 37 int SHA256_Init (SHA256_CTX *c) 38 { 39 #ifdef OPENSSL_FIPS 40 FIPS_selftest_check(); 41 #endif 42 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL; 43 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL; 44 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL; 45 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL; 46 c->Nl=0; c->Nh=0; 47 c->num=0; c->md_len=SHA256_DIGEST_LENGTH; 48 return 1; 49 } 50 51 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) 52 { 53 SHA256_CTX c; 54 static unsigned char m[SHA224_DIGEST_LENGTH]; 55 56 if (md == NULL) md=m; 57 SHA224_Init(&c); 58 SHA256_Update(&c,d,n); 59 SHA256_Final(md,&c); 60 OPENSSL_cleanse(&c,sizeof(c)); 61 return(md); 62 } 63 64 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) 65 { 66 SHA256_CTX c; 67 static unsigned char m[SHA256_DIGEST_LENGTH]; 68 69 if (md == NULL) md=m; 70 SHA256_Init(&c); 71 SHA256_Update(&c,d,n); 72 SHA256_Final(md,&c); 73 OPENSSL_cleanse(&c,sizeof(c)); 74 return(md); 75 } 76 77 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) 78 { return SHA256_Update (c,data,len); } 79 int SHA224_Final (unsigned char *md, SHA256_CTX *c) 80 { return SHA256_Final (md,c); } 81 82 #define DATA_ORDER_IS_BIG_ENDIAN 83 84 #define HASH_LONG SHA_LONG 85 #define HASH_CTX SHA256_CTX 86 #define HASH_CBLOCK SHA_CBLOCK 87 /* 88 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." 89 * default: case below covers for it. It's not clear however if it's 90 * permitted to truncate to amount of bytes not divisible by 4. I bet not, 91 * but if it is, then default: case shall be extended. For reference. 92 * Idea behind separate cases for pre-defined lenghts is to let the 93 * compiler decide if it's appropriate to unroll small loops. 94 */ 95 #define HASH_MAKE_STRING(c,s) do { \ 96 unsigned long ll; \ 97 unsigned int xn; \ 98 switch ((c)->md_len) \ 99 { case SHA224_DIGEST_LENGTH: \ 100 for (xn=0;xn<SHA224_DIGEST_LENGTH/4;xn++) \ 101 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \ 102 break; \ 103 case SHA256_DIGEST_LENGTH: \ 104 for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++) \ 105 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \ 106 break; \ 107 default: \ 108 if ((c)->md_len > SHA256_DIGEST_LENGTH) \ 109 return 0; \ 110 for (xn=0;xn<(c)->md_len/4;xn++) \ 111 { ll=(c)->h[xn]; HOST_l2c(ll,(s)); } \ 112 break; \ 113 } \ 114 } while (0) 115 116 #define HASH_UPDATE SHA256_Update 117 #define HASH_TRANSFORM SHA256_Transform 118 #define HASH_FINAL SHA256_Final 119 #define HASH_BLOCK_DATA_ORDER sha256_block_data_order 120 #ifndef SHA256_ASM 121 static 122 #endif 123 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num); 124 125 #include "md32_common.h" 126 127 #ifndef SHA256_ASM 128 static const SHA_LONG K256[64] = { 129 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL, 130 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL, 131 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL, 132 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL, 133 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL, 134 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL, 135 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL, 136 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL, 137 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL, 138 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL, 139 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL, 140 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL, 141 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL, 142 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL, 143 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL, 144 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL }; 145 146 /* 147 * FIPS specification refers to right rotations, while our ROTATE macro 148 * is left one. This is why you might notice that rotation coefficients 149 * differ from those observed in FIPS document by 32-N... 150 */ 151 #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) 152 #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) 153 #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) 154 #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) 155 156 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 157 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 158 159 #ifdef OPENSSL_SMALL_FOOTPRINT 160 161 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 162 { 163 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2; 164 SHA_LONG X[16],l; 165 int i; 166 const unsigned char *data=in; 167 168 while (num--) { 169 170 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 171 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 172 173 for (i=0;i<16;i++) 174 { 175 HOST_c2l(data,l); T1 = X[i] = l; 176 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 177 T2 = Sigma0(a) + Maj(a,b,c); 178 h = g; g = f; f = e; e = d + T1; 179 d = c; c = b; b = a; a = T1 + T2; 180 } 181 182 for (;i<64;i++) 183 { 184 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); 185 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); 186 187 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; 188 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 189 T2 = Sigma0(a) + Maj(a,b,c); 190 h = g; g = f; f = e; e = d + T1; 191 d = c; c = b; b = a; a = T1 + T2; 192 } 193 194 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 195 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 196 197 } 198 } 199 200 #else 201 202 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ 203 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ 204 h = Sigma0(a) + Maj(a,b,c); \ 205 d += T1; h += T1; } while (0) 206 207 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ 208 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ 209 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ 210 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ 211 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) 212 213 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 214 { 215 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1; 216 SHA_LONG X[16]; 217 int i; 218 const unsigned char *data=in; 219 const union { long one; char little; } is_endian = {1}; 220 221 while (num--) { 222 223 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 224 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 225 226 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0) 227 { 228 const SHA_LONG *W=(const SHA_LONG *)data; 229 230 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h); 231 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g); 232 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f); 233 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e); 234 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d); 235 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c); 236 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b); 237 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a); 238 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h); 239 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g); 240 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); 241 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); 242 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); 243 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); 244 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); 245 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); 246 247 data += SHA256_CBLOCK; 248 } 249 else 250 { 251 SHA_LONG l; 252 253 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h); 254 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g); 255 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f); 256 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e); 257 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d); 258 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c); 259 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b); 260 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a); 261 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h); 262 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g); 263 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f); 264 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e); 265 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d); 266 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c); 267 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b); 268 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a); 269 } 270 271 for (i=16;i<64;i+=8) 272 { 273 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X); 274 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X); 275 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X); 276 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X); 277 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X); 278 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X); 279 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X); 280 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X); 281 } 282 283 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 284 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 285 286 } 287 } 288 289 #endif 290 #endif /* SHA256_ASM */ 291 292 #endif /* OPENSSL_NO_SHA256 */ 293