xref: /freebsd/crypto/openssl/crypto/sha/sha256.c (revision 2e1417489338b971e5fd599ff48b5f65df9e8d3b)
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9 
10 #include <stdlib.h>
11 #include <string.h>
12 
13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #ifdef OPENSSL_FIPS
16 #include <openssl/fips.h>
17 #endif
18 
19 #include <openssl/opensslv.h>
20 
21 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
22 
23 int SHA224_Init (SHA256_CTX *c)
24 	{
25 #ifdef OPENSSL_FIPS
26 	FIPS_selftest_check();
27 #endif
28 	c->h[0]=0xc1059ed8UL;	c->h[1]=0x367cd507UL;
29 	c->h[2]=0x3070dd17UL;	c->h[3]=0xf70e5939UL;
30 	c->h[4]=0xffc00b31UL;	c->h[5]=0x68581511UL;
31 	c->h[6]=0x64f98fa7UL;	c->h[7]=0xbefa4fa4UL;
32 	c->Nl=0;	c->Nh=0;
33 	c->num=0;	c->md_len=SHA224_DIGEST_LENGTH;
34 	return 1;
35 	}
36 
37 int SHA256_Init (SHA256_CTX *c)
38 	{
39 #ifdef OPENSSL_FIPS
40 	FIPS_selftest_check();
41 #endif
42 	c->h[0]=0x6a09e667UL;	c->h[1]=0xbb67ae85UL;
43 	c->h[2]=0x3c6ef372UL;	c->h[3]=0xa54ff53aUL;
44 	c->h[4]=0x510e527fUL;	c->h[5]=0x9b05688cUL;
45 	c->h[6]=0x1f83d9abUL;	c->h[7]=0x5be0cd19UL;
46 	c->Nl=0;	c->Nh=0;
47 	c->num=0;	c->md_len=SHA256_DIGEST_LENGTH;
48 	return 1;
49 	}
50 
51 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
52 	{
53 	SHA256_CTX c;
54 	static unsigned char m[SHA224_DIGEST_LENGTH];
55 
56 	if (md == NULL) md=m;
57 	SHA224_Init(&c);
58 	SHA256_Update(&c,d,n);
59 	SHA256_Final(md,&c);
60 	OPENSSL_cleanse(&c,sizeof(c));
61 	return(md);
62 	}
63 
64 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
65 	{
66 	SHA256_CTX c;
67 	static unsigned char m[SHA256_DIGEST_LENGTH];
68 
69 	if (md == NULL) md=m;
70 	SHA256_Init(&c);
71 	SHA256_Update(&c,d,n);
72 	SHA256_Final(md,&c);
73 	OPENSSL_cleanse(&c,sizeof(c));
74 	return(md);
75 	}
76 
77 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
78 {   return SHA256_Update (c,data,len);   }
79 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
80 {   return SHA256_Final (md,c);   }
81 
82 #define	DATA_ORDER_IS_BIG_ENDIAN
83 
84 #define	HASH_LONG		SHA_LONG
85 #define	HASH_CTX		SHA256_CTX
86 #define	HASH_CBLOCK		SHA_CBLOCK
87 /*
88  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
89  * default: case below covers for it. It's not clear however if it's
90  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
91  * but if it is, then default: case shall be extended. For reference.
92  * Idea behind separate cases for pre-defined lenghts is to let the
93  * compiler decide if it's appropriate to unroll small loops.
94  */
95 #define	HASH_MAKE_STRING(c,s)	do {	\
96 	unsigned long ll;		\
97 	unsigned int  xn;		\
98 	switch ((c)->md_len)		\
99 	{   case SHA224_DIGEST_LENGTH:	\
100 		for (xn=0;xn<SHA224_DIGEST_LENGTH/4;xn++)	\
101 		{   ll=(c)->h[xn]; HOST_l2c(ll,(s));   }	\
102 		break;			\
103 	    case SHA256_DIGEST_LENGTH:	\
104 		for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++)	\
105 		{   ll=(c)->h[xn]; HOST_l2c(ll,(s));   }	\
106 		break;			\
107 	    default:			\
108 		if ((c)->md_len > SHA256_DIGEST_LENGTH)	\
109 		    return 0;				\
110 		for (xn=0;xn<(c)->md_len/4;xn++)		\
111 		{   ll=(c)->h[xn]; HOST_l2c(ll,(s));   }	\
112 		break;			\
113 	}				\
114 	} while (0)
115 
116 #define	HASH_UPDATE		SHA256_Update
117 #define	HASH_TRANSFORM		SHA256_Transform
118 #define	HASH_FINAL		SHA256_Final
119 #define	HASH_BLOCK_DATA_ORDER	sha256_block_data_order
120 #ifndef SHA256_ASM
121 static
122 #endif
123 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
124 
125 #include "md32_common.h"
126 
127 #ifndef SHA256_ASM
128 static const SHA_LONG K256[64] = {
129 	0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
130 	0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
131 	0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
132 	0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
133 	0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
134 	0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
135 	0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
136 	0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
137 	0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
138 	0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
139 	0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
140 	0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
141 	0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
142 	0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
143 	0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
144 	0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
145 
146 /*
147  * FIPS specification refers to right rotations, while our ROTATE macro
148  * is left one. This is why you might notice that rotation coefficients
149  * differ from those observed in FIPS document by 32-N...
150  */
151 #define Sigma0(x)	(ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
152 #define Sigma1(x)	(ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
153 #define sigma0(x)	(ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
154 #define sigma1(x)	(ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
155 
156 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
157 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
158 
159 #ifdef OPENSSL_SMALL_FOOTPRINT
160 
161 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
162 	{
163 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
164 	SHA_LONG	X[16],l;
165 	int i;
166 	const unsigned char *data=in;
167 
168 			while (num--) {
169 
170 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
171 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
172 
173 	for (i=0;i<16;i++)
174 		{
175 		HOST_c2l(data,l); T1 = X[i] = l;
176 		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
177 		T2 = Sigma0(a) + Maj(a,b,c);
178 		h = g;	g = f;	f = e;	e = d + T1;
179 		d = c;	c = b;	b = a;	a = T1 + T2;
180 		}
181 
182 	for (;i<64;i++)
183 		{
184 		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
185 		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);
186 
187 		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
188 		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
189 		T2 = Sigma0(a) + Maj(a,b,c);
190 		h = g;	g = f;	f = e;	e = d + T1;
191 		d = c;	c = b;	b = a;	a = T1 + T2;
192 		}
193 
194 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
195 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
196 
197 			}
198 }
199 
200 #else
201 
202 #define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
203 	T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];	\
204 	h = Sigma0(a) + Maj(a,b,c);			\
205 	d += T1;	h += T1;		} while (0)
206 
207 #define	ROUND_16_63(i,a,b,c,d,e,f,g,h,X)	do {	\
208 	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
209 	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
210 	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
211 	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)
212 
213 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
214 	{
215 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
216 	SHA_LONG	X[16];
217 	int i;
218 	const unsigned char *data=in;
219 	const union { long one; char little; } is_endian = {1};
220 
221 			while (num--) {
222 
223 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
224 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
225 
226 	if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
227 		{
228 		const SHA_LONG *W=(const SHA_LONG *)data;
229 
230 		T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
231 		T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
232 		T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
233 		T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
234 		T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
235 		T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
236 		T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
237 		T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
238 		T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
239 		T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
240 		T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
241 		T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
242 		T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
243 		T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
244 		T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
245 		T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
246 
247 		data += SHA256_CBLOCK;
248 		}
249 	else
250 		{
251 		SHA_LONG l;
252 
253 		HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
254 		HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
255 		HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
256 		HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
257 		HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
258 		HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
259 		HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
260 		HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
261 		HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
262 		HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
263 		HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
264 		HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
265 		HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
266 		HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
267 		HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
268 		HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
269 		}
270 
271 	for (i=16;i<64;i+=8)
272 		{
273 		ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
274 		ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
275 		ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
276 		ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
277 		ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
278 		ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
279 		ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
280 		ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
281 		}
282 
283 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
284 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
285 
286 			}
287 	}
288 
289 #endif
290 #endif /* SHA256_ASM */
291 
292 #endif /* OPENSSL_NO_SHA256 */
293