xref: /freebsd/crypto/openssl/crypto/modes/siv128.c (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 /*
2  * Copyright 2018-2021 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <string.h>
11 #include <stdlib.h>
12 #include <openssl/crypto.h>
13 #include <openssl/evp.h>
14 #include <openssl/core_names.h>
15 #include <openssl/params.h>
16 #include "internal/endian.h"
17 #include "crypto/modes.h"
18 #include "crypto/siv.h"
19 
20 #ifndef OPENSSL_NO_SIV
21 
22 __owur static ossl_inline uint32_t rotl8(uint32_t x)
23 {
24     return (x << 8) | (x >> 24);
25 }
26 
27 __owur static ossl_inline uint32_t rotr8(uint32_t x)
28 {
29     return (x >> 8) | (x << 24);
30 }
31 
32 __owur static ossl_inline uint64_t byteswap8(uint64_t x)
33 {
34     uint32_t high = (uint32_t)(x >> 32);
35     uint32_t low = (uint32_t)x;
36 
37     high = (rotl8(high) & 0x00ff00ff) | (rotr8(high) & 0xff00ff00);
38     low = (rotl8(low) & 0x00ff00ff) | (rotr8(low) & 0xff00ff00);
39     return ((uint64_t)low) << 32 | (uint64_t)high;
40 }
41 
42 __owur static ossl_inline uint64_t siv128_getword(SIV_BLOCK const *b, size_t i)
43 {
44     DECLARE_IS_ENDIAN;
45 
46     if (IS_LITTLE_ENDIAN)
47         return byteswap8(b->word[i]);
48     return b->word[i];
49 }
50 
51 static ossl_inline void siv128_putword(SIV_BLOCK *b, size_t i, uint64_t x)
52 {
53     DECLARE_IS_ENDIAN;
54 
55     if (IS_LITTLE_ENDIAN)
56         b->word[i] = byteswap8(x);
57     else
58         b->word[i] = x;
59 }
60 
61 static ossl_inline void siv128_xorblock(SIV_BLOCK *x,
62                                         SIV_BLOCK const *y)
63 {
64     x->word[0] ^= y->word[0];
65     x->word[1] ^= y->word[1];
66 }
67 
68 /*
69  * Doubles |b|, which is 16 bytes representing an element
70  * of GF(2**128) modulo the irreducible polynomial
71  * x**128 + x**7 + x**2 + x + 1.
72  * Assumes two's-complement arithmetic
73  */
74 static ossl_inline void siv128_dbl(SIV_BLOCK *b)
75 {
76     uint64_t high = siv128_getword(b, 0);
77     uint64_t low = siv128_getword(b, 1);
78     uint64_t high_carry = high & (((uint64_t)1) << 63);
79     uint64_t low_carry = low & (((uint64_t)1) << 63);
80     int64_t low_mask = -((int64_t)(high_carry >> 63)) & 0x87;
81     uint64_t high_mask = low_carry >> 63;
82 
83     high = (high << 1) | high_mask;
84     low = (low << 1) ^ (uint64_t)low_mask;
85     siv128_putword(b, 0, high);
86     siv128_putword(b, 1, low);
87 }
88 
89 __owur static ossl_inline int siv128_do_s2v_p(SIV128_CONTEXT *ctx, SIV_BLOCK *out,
90                                               unsigned char const* in, size_t len)
91 {
92     SIV_BLOCK t;
93     size_t out_len = sizeof(out->byte);
94     EVP_MAC_CTX *mac_ctx;
95     int ret = 0;
96 
97     mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init);
98     if (mac_ctx == NULL)
99         return 0;
100 
101     if (len >= SIV_LEN) {
102         if (!EVP_MAC_update(mac_ctx, in, len - SIV_LEN))
103             goto err;
104         memcpy(&t, in + (len-SIV_LEN), SIV_LEN);
105         siv128_xorblock(&t, &ctx->d);
106         if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
107             goto err;
108     } else {
109         memset(&t, 0, sizeof(t));
110         memcpy(&t, in, len);
111         t.byte[len] = 0x80;
112         siv128_dbl(&ctx->d);
113         siv128_xorblock(&t, &ctx->d);
114         if (!EVP_MAC_update(mac_ctx, t.byte, SIV_LEN))
115             goto err;
116     }
117     if (!EVP_MAC_final(mac_ctx, out->byte, &out_len, sizeof(out->byte))
118         || out_len != SIV_LEN)
119         goto err;
120 
121     ret = 1;
122 
123 err:
124     EVP_MAC_CTX_free(mac_ctx);
125     return ret;
126 }
127 
128 
129 __owur static ossl_inline int siv128_do_encrypt(EVP_CIPHER_CTX *ctx, unsigned char *out,
130                                              unsigned char const *in, size_t len,
131                                              SIV_BLOCK *icv)
132 {
133     int out_len = (int)len;
134 
135     if (!EVP_CipherInit_ex(ctx, NULL, NULL, NULL, icv->byte, 1))
136         return 0;
137     return EVP_EncryptUpdate(ctx, out, &out_len, in, out_len);
138 }
139 
140 /*
141  * Create a new SIV128_CONTEXT
142  */
143 SIV128_CONTEXT *ossl_siv128_new(const unsigned char *key, int klen,
144                                   EVP_CIPHER *cbc, EVP_CIPHER *ctr,
145                                   OSSL_LIB_CTX *libctx, const char *propq)
146 {
147     SIV128_CONTEXT *ctx;
148     int ret;
149 
150     if ((ctx = OPENSSL_malloc(sizeof(*ctx))) != NULL) {
151         ret = ossl_siv128_init(ctx, key, klen, cbc, ctr, libctx, propq);
152         if (ret)
153             return ctx;
154         OPENSSL_free(ctx);
155     }
156 
157     return NULL;
158 }
159 
160 /*
161  * Initialise an existing SIV128_CONTEXT
162  */
163 int ossl_siv128_init(SIV128_CONTEXT *ctx, const unsigned char *key, int klen,
164                        const EVP_CIPHER *cbc, const EVP_CIPHER *ctr,
165                        OSSL_LIB_CTX *libctx, const char *propq)
166 {
167     static const unsigned char zero[SIV_LEN] = { 0 };
168     size_t out_len = SIV_LEN;
169     EVP_MAC_CTX *mac_ctx = NULL;
170     OSSL_PARAM params[3];
171     const char *cbc_name;
172 
173     if (ctx == NULL)
174         return 0;
175 
176     memset(&ctx->d, 0, sizeof(ctx->d));
177     EVP_CIPHER_CTX_free(ctx->cipher_ctx);
178     EVP_MAC_CTX_free(ctx->mac_ctx_init);
179     EVP_MAC_free(ctx->mac);
180     ctx->mac = NULL;
181     ctx->cipher_ctx = NULL;
182     ctx->mac_ctx_init = NULL;
183 
184     if (key == NULL || cbc == NULL || ctr == NULL)
185         return 0;
186 
187     cbc_name = EVP_CIPHER_get0_name(cbc);
188     params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER,
189                                                  (char *)cbc_name, 0);
190     params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
191                                                   (void *)key, klen);
192     params[2] = OSSL_PARAM_construct_end();
193 
194     if ((ctx->cipher_ctx = EVP_CIPHER_CTX_new()) == NULL
195             || (ctx->mac =
196                 EVP_MAC_fetch(libctx, OSSL_MAC_NAME_CMAC, propq)) == NULL
197             || (ctx->mac_ctx_init = EVP_MAC_CTX_new(ctx->mac)) == NULL
198             || !EVP_MAC_CTX_set_params(ctx->mac_ctx_init, params)
199             || !EVP_EncryptInit_ex(ctx->cipher_ctx, ctr, NULL, key + klen, NULL)
200             || (mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL
201             || !EVP_MAC_update(mac_ctx, zero, sizeof(zero))
202             || !EVP_MAC_final(mac_ctx, ctx->d.byte, &out_len,
203                               sizeof(ctx->d.byte))) {
204         EVP_CIPHER_CTX_free(ctx->cipher_ctx);
205         EVP_MAC_CTX_free(ctx->mac_ctx_init);
206         EVP_MAC_CTX_free(mac_ctx);
207         EVP_MAC_free(ctx->mac);
208         return 0;
209     }
210     EVP_MAC_CTX_free(mac_ctx);
211 
212     ctx->final_ret = -1;
213     ctx->crypto_ok = 1;
214 
215     return 1;
216 }
217 
218 /*
219  * Copy an SIV128_CONTEXT object
220  */
221 int ossl_siv128_copy_ctx(SIV128_CONTEXT *dest, SIV128_CONTEXT *src)
222 {
223     memcpy(&dest->d, &src->d, sizeof(src->d));
224     if (dest->cipher_ctx == NULL) {
225         dest->cipher_ctx = EVP_CIPHER_CTX_new();
226         if (dest->cipher_ctx == NULL)
227             return 0;
228     }
229     if (!EVP_CIPHER_CTX_copy(dest->cipher_ctx, src->cipher_ctx))
230         return 0;
231     EVP_MAC_CTX_free(dest->mac_ctx_init);
232     dest->mac_ctx_init = EVP_MAC_CTX_dup(src->mac_ctx_init);
233     if (dest->mac_ctx_init == NULL)
234         return 0;
235     dest->mac = src->mac;
236     if (dest->mac != NULL)
237         EVP_MAC_up_ref(dest->mac);
238     return 1;
239 }
240 
241 /*
242  * Provide any AAD. This can be called multiple times.
243  * Per RFC5297, the last piece of associated data
244  * is the nonce, but it's not treated special
245  */
246 int ossl_siv128_aad(SIV128_CONTEXT *ctx, const unsigned char *aad,
247                       size_t len)
248 {
249     SIV_BLOCK mac_out;
250     size_t out_len = SIV_LEN;
251     EVP_MAC_CTX *mac_ctx;
252 
253     siv128_dbl(&ctx->d);
254 
255     if ((mac_ctx = EVP_MAC_CTX_dup(ctx->mac_ctx_init)) == NULL
256         || !EVP_MAC_update(mac_ctx, aad, len)
257         || !EVP_MAC_final(mac_ctx, mac_out.byte, &out_len,
258                           sizeof(mac_out.byte))
259         || out_len != SIV_LEN) {
260         EVP_MAC_CTX_free(mac_ctx);
261         return 0;
262     }
263     EVP_MAC_CTX_free(mac_ctx);
264 
265     siv128_xorblock(&ctx->d, &mac_out);
266 
267     return 1;
268 }
269 
270 /*
271  * Provide any data to be encrypted. This can be called once.
272  */
273 int ossl_siv128_encrypt(SIV128_CONTEXT *ctx,
274                           const unsigned char *in, unsigned char *out,
275                           size_t len)
276 {
277     SIV_BLOCK q;
278 
279     /* can only do one crypto operation */
280     if (ctx->crypto_ok == 0)
281         return 0;
282     ctx->crypto_ok--;
283 
284     if (!siv128_do_s2v_p(ctx, &q, in, len))
285         return 0;
286 
287     memcpy(ctx->tag.byte, &q, SIV_LEN);
288     q.byte[8] &= 0x7f;
289     q.byte[12] &= 0x7f;
290 
291     if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q))
292         return 0;
293     ctx->final_ret = 0;
294     return len;
295 }
296 
297 /*
298  * Provide any data to be decrypted. This can be called once.
299  */
300 int ossl_siv128_decrypt(SIV128_CONTEXT *ctx,
301                           const unsigned char *in, unsigned char *out,
302                           size_t len)
303 {
304     unsigned char* p;
305     SIV_BLOCK t, q;
306     int i;
307 
308     /* can only do one crypto operation */
309     if (ctx->crypto_ok == 0)
310         return 0;
311     ctx->crypto_ok--;
312 
313     memcpy(&q, ctx->tag.byte, SIV_LEN);
314     q.byte[8] &= 0x7f;
315     q.byte[12] &= 0x7f;
316 
317     if (!siv128_do_encrypt(ctx->cipher_ctx, out, in, len, &q)
318         || !siv128_do_s2v_p(ctx, &t, out, len))
319         return 0;
320 
321     p = ctx->tag.byte;
322     for (i = 0; i < SIV_LEN; i++)
323         t.byte[i] ^= p[i];
324 
325     if ((t.word[0] | t.word[1]) != 0) {
326         OPENSSL_cleanse(out, len);
327         return 0;
328     }
329     ctx->final_ret = 0;
330     return len;
331 }
332 
333 /*
334  * Return the already calculated final result.
335  */
336 int ossl_siv128_finish(SIV128_CONTEXT *ctx)
337 {
338     return ctx->final_ret;
339 }
340 
341 /*
342  * Set the tag
343  */
344 int ossl_siv128_set_tag(SIV128_CONTEXT *ctx, const unsigned char *tag, size_t len)
345 {
346     if (len != SIV_LEN)
347         return 0;
348 
349     /* Copy the tag from the supplied buffer */
350     memcpy(ctx->tag.byte, tag, len);
351     return 1;
352 }
353 
354 /*
355  * Retrieve the calculated tag
356  */
357 int ossl_siv128_get_tag(SIV128_CONTEXT *ctx, unsigned char *tag, size_t len)
358 {
359     if (len != SIV_LEN)
360         return 0;
361 
362     /* Copy the tag into the supplied buffer */
363     memcpy(tag, ctx->tag.byte, len);
364     return 1;
365 }
366 
367 /*
368  * Release all resources
369  */
370 int ossl_siv128_cleanup(SIV128_CONTEXT *ctx)
371 {
372     if (ctx != NULL) {
373         EVP_CIPHER_CTX_free(ctx->cipher_ctx);
374         ctx->cipher_ctx = NULL;
375         EVP_MAC_CTX_free(ctx->mac_ctx_init);
376         ctx->mac_ctx_init = NULL;
377         EVP_MAC_free(ctx->mac);
378         ctx->mac = NULL;
379         OPENSSL_cleanse(&ctx->d, sizeof(ctx->d));
380         OPENSSL_cleanse(&ctx->tag, sizeof(ctx->tag));
381         ctx->final_ret = -1;
382         ctx->crypto_ok = 1;
383     }
384     return 1;
385 }
386 
387 int ossl_siv128_speed(SIV128_CONTEXT *ctx, int arg)
388 {
389     ctx->crypto_ok = (arg == 1) ? -1 : 1;
390     return 1;
391 }
392 
393 #endif                          /* OPENSSL_NO_SIV */
394