1 /* 2 * Copyright 2011-2021 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the Apache License 2.0 (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 /* Copyright 2011 Google Inc. 11 * 12 * Licensed under the Apache License, Version 2.0 (the "License"); 13 * 14 * you may not use this file except in compliance with the License. 15 * You may obtain a copy of the License at 16 * 17 * http://www.apache.org/licenses/LICENSE-2.0 18 * 19 * Unless required by applicable law or agreed to in writing, software 20 * distributed under the License is distributed on an "AS IS" BASIS, 21 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 22 * See the License for the specific language governing permissions and 23 * limitations under the License. 24 */ 25 26 /* 27 * ECDSA low level APIs are deprecated for public use, but still ok for 28 * internal use. 29 */ 30 #include "internal/deprecated.h" 31 32 /* 33 * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication 34 * 35 * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. 36 * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 37 * work which got its smarts from Daniel J. Bernstein's work on the same. 38 */ 39 40 #include <openssl/e_os2.h> 41 42 #include <string.h> 43 #include <openssl/err.h> 44 #include "ec_local.h" 45 46 #include "internal/numbers.h" 47 48 #ifndef INT128_MAX 49 # error "Your compiler doesn't appear to support 128-bit integer types" 50 #endif 51 52 typedef uint8_t u8; 53 typedef uint64_t u64; 54 55 /* 56 * The underlying field. P521 operates over GF(2^521-1). We can serialize an 57 * element of this field into 66 bytes where the most significant byte 58 * contains only a single bit. We call this an felem_bytearray. 59 */ 60 61 typedef u8 felem_bytearray[66]; 62 63 /* 64 * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5. 65 * These values are big-endian. 66 */ 67 static const felem_bytearray nistp521_curve_params[5] = { 68 {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */ 69 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 70 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 71 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 72 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 73 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 74 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 75 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 76 0xff, 0xff}, 77 {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */ 78 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 79 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 80 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 81 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 82 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 83 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 84 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 85 0xff, 0xfc}, 86 {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */ 87 0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, 88 0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3, 89 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 90 0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, 91 0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1, 92 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 93 0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, 94 0x3f, 0x00}, 95 {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */ 96 0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95, 97 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f, 98 0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 99 0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7, 100 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff, 101 0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 102 0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5, 103 0xbd, 0x66}, 104 {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */ 105 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 106 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 107 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 108 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 109 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 110 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 111 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 112 0x66, 0x50} 113 }; 114 115 /*- 116 * The representation of field elements. 117 * ------------------------------------ 118 * 119 * We represent field elements with nine values. These values are either 64 or 120 * 128 bits and the field element represented is: 121 * v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464 (mod p) 122 * Each of the nine values is called a 'limb'. Since the limbs are spaced only 123 * 58 bits apart, but are greater than 58 bits in length, the most significant 124 * bits of each limb overlap with the least significant bits of the next. 125 * 126 * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a 127 * 'largefelem' */ 128 129 #define NLIMBS 9 130 131 typedef uint64_t limb; 132 typedef limb limb_aX __attribute((__aligned__(1))); 133 typedef limb felem[NLIMBS]; 134 typedef uint128_t largefelem[NLIMBS]; 135 136 static const limb bottom57bits = 0x1ffffffffffffff; 137 static const limb bottom58bits = 0x3ffffffffffffff; 138 139 /* 140 * bin66_to_felem takes a little-endian byte array and converts it into felem 141 * form. This assumes that the CPU is little-endian. 142 */ 143 static void bin66_to_felem(felem out, const u8 in[66]) 144 { 145 out[0] = (*((limb *) & in[0])) & bottom58bits; 146 out[1] = (*((limb_aX *) & in[7]) >> 2) & bottom58bits; 147 out[2] = (*((limb_aX *) & in[14]) >> 4) & bottom58bits; 148 out[3] = (*((limb_aX *) & in[21]) >> 6) & bottom58bits; 149 out[4] = (*((limb_aX *) & in[29])) & bottom58bits; 150 out[5] = (*((limb_aX *) & in[36]) >> 2) & bottom58bits; 151 out[6] = (*((limb_aX *) & in[43]) >> 4) & bottom58bits; 152 out[7] = (*((limb_aX *) & in[50]) >> 6) & bottom58bits; 153 out[8] = (*((limb_aX *) & in[58])) & bottom57bits; 154 } 155 156 /* 157 * felem_to_bin66 takes an felem and serializes into a little endian, 66 byte 158 * array. This assumes that the CPU is little-endian. 159 */ 160 static void felem_to_bin66(u8 out[66], const felem in) 161 { 162 memset(out, 0, 66); 163 (*((limb *) & out[0])) = in[0]; 164 (*((limb_aX *) & out[7])) |= in[1] << 2; 165 (*((limb_aX *) & out[14])) |= in[2] << 4; 166 (*((limb_aX *) & out[21])) |= in[3] << 6; 167 (*((limb_aX *) & out[29])) = in[4]; 168 (*((limb_aX *) & out[36])) |= in[5] << 2; 169 (*((limb_aX *) & out[43])) |= in[6] << 4; 170 (*((limb_aX *) & out[50])) |= in[7] << 6; 171 (*((limb_aX *) & out[58])) = in[8]; 172 } 173 174 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ 175 static int BN_to_felem(felem out, const BIGNUM *bn) 176 { 177 felem_bytearray b_out; 178 int num_bytes; 179 180 if (BN_is_negative(bn)) { 181 ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); 182 return 0; 183 } 184 num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); 185 if (num_bytes < 0) { 186 ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE); 187 return 0; 188 } 189 bin66_to_felem(out, b_out); 190 return 1; 191 } 192 193 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ 194 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) 195 { 196 felem_bytearray b_out; 197 felem_to_bin66(b_out, in); 198 return BN_lebin2bn(b_out, sizeof(b_out), out); 199 } 200 201 /*- 202 * Field operations 203 * ---------------- 204 */ 205 206 static void felem_one(felem out) 207 { 208 out[0] = 1; 209 out[1] = 0; 210 out[2] = 0; 211 out[3] = 0; 212 out[4] = 0; 213 out[5] = 0; 214 out[6] = 0; 215 out[7] = 0; 216 out[8] = 0; 217 } 218 219 static void felem_assign(felem out, const felem in) 220 { 221 out[0] = in[0]; 222 out[1] = in[1]; 223 out[2] = in[2]; 224 out[3] = in[3]; 225 out[4] = in[4]; 226 out[5] = in[5]; 227 out[6] = in[6]; 228 out[7] = in[7]; 229 out[8] = in[8]; 230 } 231 232 /* felem_sum64 sets out = out + in. */ 233 static void felem_sum64(felem out, const felem in) 234 { 235 out[0] += in[0]; 236 out[1] += in[1]; 237 out[2] += in[2]; 238 out[3] += in[3]; 239 out[4] += in[4]; 240 out[5] += in[5]; 241 out[6] += in[6]; 242 out[7] += in[7]; 243 out[8] += in[8]; 244 } 245 246 /* felem_scalar sets out = in * scalar */ 247 static void felem_scalar(felem out, const felem in, limb scalar) 248 { 249 out[0] = in[0] * scalar; 250 out[1] = in[1] * scalar; 251 out[2] = in[2] * scalar; 252 out[3] = in[3] * scalar; 253 out[4] = in[4] * scalar; 254 out[5] = in[5] * scalar; 255 out[6] = in[6] * scalar; 256 out[7] = in[7] * scalar; 257 out[8] = in[8] * scalar; 258 } 259 260 /* felem_scalar64 sets out = out * scalar */ 261 static void felem_scalar64(felem out, limb scalar) 262 { 263 out[0] *= scalar; 264 out[1] *= scalar; 265 out[2] *= scalar; 266 out[3] *= scalar; 267 out[4] *= scalar; 268 out[5] *= scalar; 269 out[6] *= scalar; 270 out[7] *= scalar; 271 out[8] *= scalar; 272 } 273 274 /* felem_scalar128 sets out = out * scalar */ 275 static void felem_scalar128(largefelem out, limb scalar) 276 { 277 out[0] *= scalar; 278 out[1] *= scalar; 279 out[2] *= scalar; 280 out[3] *= scalar; 281 out[4] *= scalar; 282 out[5] *= scalar; 283 out[6] *= scalar; 284 out[7] *= scalar; 285 out[8] *= scalar; 286 } 287 288 /*- 289 * felem_neg sets |out| to |-in| 290 * On entry: 291 * in[i] < 2^59 + 2^14 292 * On exit: 293 * out[i] < 2^62 294 */ 295 static void felem_neg(felem out, const felem in) 296 { 297 /* In order to prevent underflow, we subtract from 0 mod p. */ 298 static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); 299 static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); 300 301 out[0] = two62m3 - in[0]; 302 out[1] = two62m2 - in[1]; 303 out[2] = two62m2 - in[2]; 304 out[3] = two62m2 - in[3]; 305 out[4] = two62m2 - in[4]; 306 out[5] = two62m2 - in[5]; 307 out[6] = two62m2 - in[6]; 308 out[7] = two62m2 - in[7]; 309 out[8] = two62m2 - in[8]; 310 } 311 312 /*- 313 * felem_diff64 subtracts |in| from |out| 314 * On entry: 315 * in[i] < 2^59 + 2^14 316 * On exit: 317 * out[i] < out[i] + 2^62 318 */ 319 static void felem_diff64(felem out, const felem in) 320 { 321 /* 322 * In order to prevent underflow, we add 0 mod p before subtracting. 323 */ 324 static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5); 325 static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4); 326 327 out[0] += two62m3 - in[0]; 328 out[1] += two62m2 - in[1]; 329 out[2] += two62m2 - in[2]; 330 out[3] += two62m2 - in[3]; 331 out[4] += two62m2 - in[4]; 332 out[5] += two62m2 - in[5]; 333 out[6] += two62m2 - in[6]; 334 out[7] += two62m2 - in[7]; 335 out[8] += two62m2 - in[8]; 336 } 337 338 /*- 339 * felem_diff_128_64 subtracts |in| from |out| 340 * On entry: 341 * in[i] < 2^62 + 2^17 342 * On exit: 343 * out[i] < out[i] + 2^63 344 */ 345 static void felem_diff_128_64(largefelem out, const felem in) 346 { 347 /* 348 * In order to prevent underflow, we add 64p mod p (which is equivalent 349 * to 0 mod p) before subtracting. p is 2^521 - 1, i.e. in binary a 521 350 * digit number with all bits set to 1. See "The representation of field 351 * elements" comment above for a description of how limbs are used to 352 * represent a number. 64p is represented with 8 limbs containing a number 353 * with 58 bits set and one limb with a number with 57 bits set. 354 */ 355 static const limb two63m6 = (((limb) 1) << 63) - (((limb) 1) << 6); 356 static const limb two63m5 = (((limb) 1) << 63) - (((limb) 1) << 5); 357 358 out[0] += two63m6 - in[0]; 359 out[1] += two63m5 - in[1]; 360 out[2] += two63m5 - in[2]; 361 out[3] += two63m5 - in[3]; 362 out[4] += two63m5 - in[4]; 363 out[5] += two63m5 - in[5]; 364 out[6] += two63m5 - in[6]; 365 out[7] += two63m5 - in[7]; 366 out[8] += two63m5 - in[8]; 367 } 368 369 /*- 370 * felem_diff_128_64 subtracts |in| from |out| 371 * On entry: 372 * in[i] < 2^126 373 * On exit: 374 * out[i] < out[i] + 2^127 - 2^69 375 */ 376 static void felem_diff128(largefelem out, const largefelem in) 377 { 378 /* 379 * In order to prevent underflow, we add 0 mod p before subtracting. 380 */ 381 static const uint128_t two127m70 = 382 (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70); 383 static const uint128_t two127m69 = 384 (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69); 385 386 out[0] += (two127m70 - in[0]); 387 out[1] += (two127m69 - in[1]); 388 out[2] += (two127m69 - in[2]); 389 out[3] += (two127m69 - in[3]); 390 out[4] += (two127m69 - in[4]); 391 out[5] += (two127m69 - in[5]); 392 out[6] += (two127m69 - in[6]); 393 out[7] += (two127m69 - in[7]); 394 out[8] += (two127m69 - in[8]); 395 } 396 397 /*- 398 * felem_square sets |out| = |in|^2 399 * On entry: 400 * in[i] < 2^62 401 * On exit: 402 * out[i] < 17 * max(in[i]) * max(in[i]) 403 */ 404 static void felem_square_ref(largefelem out, const felem in) 405 { 406 felem inx2, inx4; 407 felem_scalar(inx2, in, 2); 408 felem_scalar(inx4, in, 4); 409 410 /*- 411 * We have many cases were we want to do 412 * in[x] * in[y] + 413 * in[y] * in[x] 414 * This is obviously just 415 * 2 * in[x] * in[y] 416 * However, rather than do the doubling on the 128 bit result, we 417 * double one of the inputs to the multiplication by reading from 418 * |inx2| 419 */ 420 421 out[0] = ((uint128_t) in[0]) * in[0]; 422 out[1] = ((uint128_t) in[0]) * inx2[1]; 423 out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1]; 424 out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2]; 425 out[4] = ((uint128_t) in[0]) * inx2[4] + 426 ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2]; 427 out[5] = ((uint128_t) in[0]) * inx2[5] + 428 ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3]; 429 out[6] = ((uint128_t) in[0]) * inx2[6] + 430 ((uint128_t) in[1]) * inx2[5] + 431 ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3]; 432 out[7] = ((uint128_t) in[0]) * inx2[7] + 433 ((uint128_t) in[1]) * inx2[6] + 434 ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4]; 435 out[8] = ((uint128_t) in[0]) * inx2[8] + 436 ((uint128_t) in[1]) * inx2[7] + 437 ((uint128_t) in[2]) * inx2[6] + 438 ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4]; 439 440 /* 441 * The remaining limbs fall above 2^521, with the first falling at 2^522. 442 * They correspond to locations one bit up from the limbs produced above 443 * so we would have to multiply by two to align them. Again, rather than 444 * operate on the 128-bit result, we double one of the inputs to the 445 * multiplication. If we want to double for both this reason, and the 446 * reason above, then we end up multiplying by four. 447 */ 448 449 /* 9 */ 450 out[0] += ((uint128_t) in[1]) * inx4[8] + 451 ((uint128_t) in[2]) * inx4[7] + 452 ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5]; 453 454 /* 10 */ 455 out[1] += ((uint128_t) in[2]) * inx4[8] + 456 ((uint128_t) in[3]) * inx4[7] + 457 ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5]; 458 459 /* 11 */ 460 out[2] += ((uint128_t) in[3]) * inx4[8] + 461 ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6]; 462 463 /* 12 */ 464 out[3] += ((uint128_t) in[4]) * inx4[8] + 465 ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6]; 466 467 /* 13 */ 468 out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7]; 469 470 /* 14 */ 471 out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7]; 472 473 /* 15 */ 474 out[6] += ((uint128_t) in[7]) * inx4[8]; 475 476 /* 16 */ 477 out[7] += ((uint128_t) in[8]) * inx2[8]; 478 } 479 480 /*- 481 * felem_mul sets |out| = |in1| * |in2| 482 * On entry: 483 * in1[i] < 2^64 484 * in2[i] < 2^63 485 * On exit: 486 * out[i] < 17 * max(in1[i]) * max(in2[i]) 487 */ 488 static void felem_mul_ref(largefelem out, const felem in1, const felem in2) 489 { 490 felem in2x2; 491 felem_scalar(in2x2, in2, 2); 492 493 out[0] = ((uint128_t) in1[0]) * in2[0]; 494 495 out[1] = ((uint128_t) in1[0]) * in2[1] + 496 ((uint128_t) in1[1]) * in2[0]; 497 498 out[2] = ((uint128_t) in1[0]) * in2[2] + 499 ((uint128_t) in1[1]) * in2[1] + 500 ((uint128_t) in1[2]) * in2[0]; 501 502 out[3] = ((uint128_t) in1[0]) * in2[3] + 503 ((uint128_t) in1[1]) * in2[2] + 504 ((uint128_t) in1[2]) * in2[1] + 505 ((uint128_t) in1[3]) * in2[0]; 506 507 out[4] = ((uint128_t) in1[0]) * in2[4] + 508 ((uint128_t) in1[1]) * in2[3] + 509 ((uint128_t) in1[2]) * in2[2] + 510 ((uint128_t) in1[3]) * in2[1] + 511 ((uint128_t) in1[4]) * in2[0]; 512 513 out[5] = ((uint128_t) in1[0]) * in2[5] + 514 ((uint128_t) in1[1]) * in2[4] + 515 ((uint128_t) in1[2]) * in2[3] + 516 ((uint128_t) in1[3]) * in2[2] + 517 ((uint128_t) in1[4]) * in2[1] + 518 ((uint128_t) in1[5]) * in2[0]; 519 520 out[6] = ((uint128_t) in1[0]) * in2[6] + 521 ((uint128_t) in1[1]) * in2[5] + 522 ((uint128_t) in1[2]) * in2[4] + 523 ((uint128_t) in1[3]) * in2[3] + 524 ((uint128_t) in1[4]) * in2[2] + 525 ((uint128_t) in1[5]) * in2[1] + 526 ((uint128_t) in1[6]) * in2[0]; 527 528 out[7] = ((uint128_t) in1[0]) * in2[7] + 529 ((uint128_t) in1[1]) * in2[6] + 530 ((uint128_t) in1[2]) * in2[5] + 531 ((uint128_t) in1[3]) * in2[4] + 532 ((uint128_t) in1[4]) * in2[3] + 533 ((uint128_t) in1[5]) * in2[2] + 534 ((uint128_t) in1[6]) * in2[1] + 535 ((uint128_t) in1[7]) * in2[0]; 536 537 out[8] = ((uint128_t) in1[0]) * in2[8] + 538 ((uint128_t) in1[1]) * in2[7] + 539 ((uint128_t) in1[2]) * in2[6] + 540 ((uint128_t) in1[3]) * in2[5] + 541 ((uint128_t) in1[4]) * in2[4] + 542 ((uint128_t) in1[5]) * in2[3] + 543 ((uint128_t) in1[6]) * in2[2] + 544 ((uint128_t) in1[7]) * in2[1] + 545 ((uint128_t) in1[8]) * in2[0]; 546 547 /* See comment in felem_square about the use of in2x2 here */ 548 549 out[0] += ((uint128_t) in1[1]) * in2x2[8] + 550 ((uint128_t) in1[2]) * in2x2[7] + 551 ((uint128_t) in1[3]) * in2x2[6] + 552 ((uint128_t) in1[4]) * in2x2[5] + 553 ((uint128_t) in1[5]) * in2x2[4] + 554 ((uint128_t) in1[6]) * in2x2[3] + 555 ((uint128_t) in1[7]) * in2x2[2] + 556 ((uint128_t) in1[8]) * in2x2[1]; 557 558 out[1] += ((uint128_t) in1[2]) * in2x2[8] + 559 ((uint128_t) in1[3]) * in2x2[7] + 560 ((uint128_t) in1[4]) * in2x2[6] + 561 ((uint128_t) in1[5]) * in2x2[5] + 562 ((uint128_t) in1[6]) * in2x2[4] + 563 ((uint128_t) in1[7]) * in2x2[3] + 564 ((uint128_t) in1[8]) * in2x2[2]; 565 566 out[2] += ((uint128_t) in1[3]) * in2x2[8] + 567 ((uint128_t) in1[4]) * in2x2[7] + 568 ((uint128_t) in1[5]) * in2x2[6] + 569 ((uint128_t) in1[6]) * in2x2[5] + 570 ((uint128_t) in1[7]) * in2x2[4] + 571 ((uint128_t) in1[8]) * in2x2[3]; 572 573 out[3] += ((uint128_t) in1[4]) * in2x2[8] + 574 ((uint128_t) in1[5]) * in2x2[7] + 575 ((uint128_t) in1[6]) * in2x2[6] + 576 ((uint128_t) in1[7]) * in2x2[5] + 577 ((uint128_t) in1[8]) * in2x2[4]; 578 579 out[4] += ((uint128_t) in1[5]) * in2x2[8] + 580 ((uint128_t) in1[6]) * in2x2[7] + 581 ((uint128_t) in1[7]) * in2x2[6] + 582 ((uint128_t) in1[8]) * in2x2[5]; 583 584 out[5] += ((uint128_t) in1[6]) * in2x2[8] + 585 ((uint128_t) in1[7]) * in2x2[7] + 586 ((uint128_t) in1[8]) * in2x2[6]; 587 588 out[6] += ((uint128_t) in1[7]) * in2x2[8] + 589 ((uint128_t) in1[8]) * in2x2[7]; 590 591 out[7] += ((uint128_t) in1[8]) * in2x2[8]; 592 } 593 594 static const limb bottom52bits = 0xfffffffffffff; 595 596 /*- 597 * felem_reduce converts a largefelem to an felem. 598 * On entry: 599 * in[i] < 2^128 600 * On exit: 601 * out[i] < 2^59 + 2^14 602 */ 603 static void felem_reduce(felem out, const largefelem in) 604 { 605 u64 overflow1, overflow2; 606 607 out[0] = ((limb) in[0]) & bottom58bits; 608 out[1] = ((limb) in[1]) & bottom58bits; 609 out[2] = ((limb) in[2]) & bottom58bits; 610 out[3] = ((limb) in[3]) & bottom58bits; 611 out[4] = ((limb) in[4]) & bottom58bits; 612 out[5] = ((limb) in[5]) & bottom58bits; 613 out[6] = ((limb) in[6]) & bottom58bits; 614 out[7] = ((limb) in[7]) & bottom58bits; 615 out[8] = ((limb) in[8]) & bottom58bits; 616 617 /* out[i] < 2^58 */ 618 619 out[1] += ((limb) in[0]) >> 58; 620 out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6; 621 /*- 622 * out[1] < 2^58 + 2^6 + 2^58 623 * = 2^59 + 2^6 624 */ 625 out[2] += ((limb) (in[0] >> 64)) >> 52; 626 627 out[2] += ((limb) in[1]) >> 58; 628 out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6; 629 out[3] += ((limb) (in[1] >> 64)) >> 52; 630 631 out[3] += ((limb) in[2]) >> 58; 632 out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6; 633 out[4] += ((limb) (in[2] >> 64)) >> 52; 634 635 out[4] += ((limb) in[3]) >> 58; 636 out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6; 637 out[5] += ((limb) (in[3] >> 64)) >> 52; 638 639 out[5] += ((limb) in[4]) >> 58; 640 out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6; 641 out[6] += ((limb) (in[4] >> 64)) >> 52; 642 643 out[6] += ((limb) in[5]) >> 58; 644 out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6; 645 out[7] += ((limb) (in[5] >> 64)) >> 52; 646 647 out[7] += ((limb) in[6]) >> 58; 648 out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6; 649 out[8] += ((limb) (in[6] >> 64)) >> 52; 650 651 out[8] += ((limb) in[7]) >> 58; 652 out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6; 653 /*- 654 * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12 655 * < 2^59 + 2^13 656 */ 657 overflow1 = ((limb) (in[7] >> 64)) >> 52; 658 659 overflow1 += ((limb) in[8]) >> 58; 660 overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6; 661 overflow2 = ((limb) (in[8] >> 64)) >> 52; 662 663 overflow1 <<= 1; /* overflow1 < 2^13 + 2^7 + 2^59 */ 664 overflow2 <<= 1; /* overflow2 < 2^13 */ 665 666 out[0] += overflow1; /* out[0] < 2^60 */ 667 out[1] += overflow2; /* out[1] < 2^59 + 2^6 + 2^13 */ 668 669 out[1] += out[0] >> 58; 670 out[0] &= bottom58bits; 671 /*- 672 * out[0] < 2^58 673 * out[1] < 2^59 + 2^6 + 2^13 + 2^2 674 * < 2^59 + 2^14 675 */ 676 } 677 678 #if defined(ECP_NISTP521_ASM) 679 void felem_square_wrapper(largefelem out, const felem in); 680 void felem_mul_wrapper(largefelem out, const felem in1, const felem in2); 681 682 static void (*felem_square_p)(largefelem out, const felem in) = 683 felem_square_wrapper; 684 static void (*felem_mul_p)(largefelem out, const felem in1, const felem in2) = 685 felem_mul_wrapper; 686 687 void p521_felem_square(largefelem out, const felem in); 688 void p521_felem_mul(largefelem out, const felem in1, const felem in2); 689 690 # if defined(_ARCH_PPC64) 691 # include "crypto/ppc_arch.h" 692 # endif 693 694 void felem_select(void) 695 { 696 # if defined(_ARCH_PPC64) 697 if ((OPENSSL_ppccap_P & PPC_MADD300) && (OPENSSL_ppccap_P & PPC_ALTIVEC)) { 698 felem_square_p = p521_felem_square; 699 felem_mul_p = p521_felem_mul; 700 701 return; 702 } 703 # endif 704 705 /* Default */ 706 felem_square_p = felem_square_ref; 707 felem_mul_p = felem_mul_ref; 708 } 709 710 void felem_square_wrapper(largefelem out, const felem in) 711 { 712 felem_select(); 713 felem_square_p(out, in); 714 } 715 716 void felem_mul_wrapper(largefelem out, const felem in1, const felem in2) 717 { 718 felem_select(); 719 felem_mul_p(out, in1, in2); 720 } 721 722 # define felem_square felem_square_p 723 # define felem_mul felem_mul_p 724 #else 725 # define felem_square felem_square_ref 726 # define felem_mul felem_mul_ref 727 #endif 728 729 static void felem_square_reduce(felem out, const felem in) 730 { 731 largefelem tmp; 732 felem_square(tmp, in); 733 felem_reduce(out, tmp); 734 } 735 736 static void felem_mul_reduce(felem out, const felem in1, const felem in2) 737 { 738 largefelem tmp; 739 felem_mul(tmp, in1, in2); 740 felem_reduce(out, tmp); 741 } 742 743 /*- 744 * felem_inv calculates |out| = |in|^{-1} 745 * 746 * Based on Fermat's Little Theorem: 747 * a^p = a (mod p) 748 * a^{p-1} = 1 (mod p) 749 * a^{p-2} = a^{-1} (mod p) 750 */ 751 static void felem_inv(felem out, const felem in) 752 { 753 felem ftmp, ftmp2, ftmp3, ftmp4; 754 largefelem tmp; 755 unsigned i; 756 757 felem_square(tmp, in); 758 felem_reduce(ftmp, tmp); /* 2^1 */ 759 felem_mul(tmp, in, ftmp); 760 felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ 761 felem_assign(ftmp2, ftmp); 762 felem_square(tmp, ftmp); 763 felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ 764 felem_mul(tmp, in, ftmp); 765 felem_reduce(ftmp, tmp); /* 2^3 - 2^0 */ 766 felem_square(tmp, ftmp); 767 felem_reduce(ftmp, tmp); /* 2^4 - 2^1 */ 768 769 felem_square(tmp, ftmp2); 770 felem_reduce(ftmp3, tmp); /* 2^3 - 2^1 */ 771 felem_square(tmp, ftmp3); 772 felem_reduce(ftmp3, tmp); /* 2^4 - 2^2 */ 773 felem_mul(tmp, ftmp3, ftmp2); 774 felem_reduce(ftmp3, tmp); /* 2^4 - 2^0 */ 775 776 felem_assign(ftmp2, ftmp3); 777 felem_square(tmp, ftmp3); 778 felem_reduce(ftmp3, tmp); /* 2^5 - 2^1 */ 779 felem_square(tmp, ftmp3); 780 felem_reduce(ftmp3, tmp); /* 2^6 - 2^2 */ 781 felem_square(tmp, ftmp3); 782 felem_reduce(ftmp3, tmp); /* 2^7 - 2^3 */ 783 felem_square(tmp, ftmp3); 784 felem_reduce(ftmp3, tmp); /* 2^8 - 2^4 */ 785 felem_assign(ftmp4, ftmp3); 786 felem_mul(tmp, ftmp3, ftmp); 787 felem_reduce(ftmp4, tmp); /* 2^8 - 2^1 */ 788 felem_square(tmp, ftmp4); 789 felem_reduce(ftmp4, tmp); /* 2^9 - 2^2 */ 790 felem_mul(tmp, ftmp3, ftmp2); 791 felem_reduce(ftmp3, tmp); /* 2^8 - 2^0 */ 792 felem_assign(ftmp2, ftmp3); 793 794 for (i = 0; i < 8; i++) { 795 felem_square(tmp, ftmp3); 796 felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */ 797 } 798 felem_mul(tmp, ftmp3, ftmp2); 799 felem_reduce(ftmp3, tmp); /* 2^16 - 2^0 */ 800 felem_assign(ftmp2, ftmp3); 801 802 for (i = 0; i < 16; i++) { 803 felem_square(tmp, ftmp3); 804 felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */ 805 } 806 felem_mul(tmp, ftmp3, ftmp2); 807 felem_reduce(ftmp3, tmp); /* 2^32 - 2^0 */ 808 felem_assign(ftmp2, ftmp3); 809 810 for (i = 0; i < 32; i++) { 811 felem_square(tmp, ftmp3); 812 felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */ 813 } 814 felem_mul(tmp, ftmp3, ftmp2); 815 felem_reduce(ftmp3, tmp); /* 2^64 - 2^0 */ 816 felem_assign(ftmp2, ftmp3); 817 818 for (i = 0; i < 64; i++) { 819 felem_square(tmp, ftmp3); 820 felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */ 821 } 822 felem_mul(tmp, ftmp3, ftmp2); 823 felem_reduce(ftmp3, tmp); /* 2^128 - 2^0 */ 824 felem_assign(ftmp2, ftmp3); 825 826 for (i = 0; i < 128; i++) { 827 felem_square(tmp, ftmp3); 828 felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */ 829 } 830 felem_mul(tmp, ftmp3, ftmp2); 831 felem_reduce(ftmp3, tmp); /* 2^256 - 2^0 */ 832 felem_assign(ftmp2, ftmp3); 833 834 for (i = 0; i < 256; i++) { 835 felem_square(tmp, ftmp3); 836 felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */ 837 } 838 felem_mul(tmp, ftmp3, ftmp2); 839 felem_reduce(ftmp3, tmp); /* 2^512 - 2^0 */ 840 841 for (i = 0; i < 9; i++) { 842 felem_square(tmp, ftmp3); 843 felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */ 844 } 845 felem_mul(tmp, ftmp3, ftmp4); 846 felem_reduce(ftmp3, tmp); /* 2^512 - 2^2 */ 847 felem_mul(tmp, ftmp3, in); 848 felem_reduce(out, tmp); /* 2^512 - 3 */ 849 } 850 851 /* This is 2^521-1, expressed as an felem */ 852 static const felem kPrime = { 853 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 854 0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff, 855 0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff 856 }; 857 858 /*- 859 * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 860 * otherwise. 861 * On entry: 862 * in[i] < 2^59 + 2^14 863 */ 864 static limb felem_is_zero(const felem in) 865 { 866 felem ftmp; 867 limb is_zero, is_p; 868 felem_assign(ftmp, in); 869 870 ftmp[0] += ftmp[8] >> 57; 871 ftmp[8] &= bottom57bits; 872 /* ftmp[8] < 2^57 */ 873 ftmp[1] += ftmp[0] >> 58; 874 ftmp[0] &= bottom58bits; 875 ftmp[2] += ftmp[1] >> 58; 876 ftmp[1] &= bottom58bits; 877 ftmp[3] += ftmp[2] >> 58; 878 ftmp[2] &= bottom58bits; 879 ftmp[4] += ftmp[3] >> 58; 880 ftmp[3] &= bottom58bits; 881 ftmp[5] += ftmp[4] >> 58; 882 ftmp[4] &= bottom58bits; 883 ftmp[6] += ftmp[5] >> 58; 884 ftmp[5] &= bottom58bits; 885 ftmp[7] += ftmp[6] >> 58; 886 ftmp[6] &= bottom58bits; 887 ftmp[8] += ftmp[7] >> 58; 888 ftmp[7] &= bottom58bits; 889 /* ftmp[8] < 2^57 + 4 */ 890 891 /* 892 * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater 893 * than our bound for ftmp[8]. Therefore we only have to check if the 894 * zero is zero or 2^521-1. 895 */ 896 897 is_zero = 0; 898 is_zero |= ftmp[0]; 899 is_zero |= ftmp[1]; 900 is_zero |= ftmp[2]; 901 is_zero |= ftmp[3]; 902 is_zero |= ftmp[4]; 903 is_zero |= ftmp[5]; 904 is_zero |= ftmp[6]; 905 is_zero |= ftmp[7]; 906 is_zero |= ftmp[8]; 907 908 is_zero--; 909 /* 910 * We know that ftmp[i] < 2^63, therefore the only way that the top bit 911 * can be set is if is_zero was 0 before the decrement. 912 */ 913 is_zero = 0 - (is_zero >> 63); 914 915 is_p = ftmp[0] ^ kPrime[0]; 916 is_p |= ftmp[1] ^ kPrime[1]; 917 is_p |= ftmp[2] ^ kPrime[2]; 918 is_p |= ftmp[3] ^ kPrime[3]; 919 is_p |= ftmp[4] ^ kPrime[4]; 920 is_p |= ftmp[5] ^ kPrime[5]; 921 is_p |= ftmp[6] ^ kPrime[6]; 922 is_p |= ftmp[7] ^ kPrime[7]; 923 is_p |= ftmp[8] ^ kPrime[8]; 924 925 is_p--; 926 is_p = 0 - (is_p >> 63); 927 928 is_zero |= is_p; 929 return is_zero; 930 } 931 932 static int felem_is_zero_int(const void *in) 933 { 934 return (int)(felem_is_zero(in) & ((limb) 1)); 935 } 936 937 /*- 938 * felem_contract converts |in| to its unique, minimal representation. 939 * On entry: 940 * in[i] < 2^59 + 2^14 941 */ 942 static void felem_contract(felem out, const felem in) 943 { 944 limb is_p, is_greater, sign; 945 static const limb two58 = ((limb) 1) << 58; 946 947 felem_assign(out, in); 948 949 out[0] += out[8] >> 57; 950 out[8] &= bottom57bits; 951 /* out[8] < 2^57 */ 952 out[1] += out[0] >> 58; 953 out[0] &= bottom58bits; 954 out[2] += out[1] >> 58; 955 out[1] &= bottom58bits; 956 out[3] += out[2] >> 58; 957 out[2] &= bottom58bits; 958 out[4] += out[3] >> 58; 959 out[3] &= bottom58bits; 960 out[5] += out[4] >> 58; 961 out[4] &= bottom58bits; 962 out[6] += out[5] >> 58; 963 out[5] &= bottom58bits; 964 out[7] += out[6] >> 58; 965 out[6] &= bottom58bits; 966 out[8] += out[7] >> 58; 967 out[7] &= bottom58bits; 968 /* out[8] < 2^57 + 4 */ 969 970 /* 971 * If the value is greater than 2^521-1 then we have to subtract 2^521-1 972 * out. See the comments in felem_is_zero regarding why we don't test for 973 * other multiples of the prime. 974 */ 975 976 /* 977 * First, if |out| is equal to 2^521-1, we subtract it out to get zero. 978 */ 979 980 is_p = out[0] ^ kPrime[0]; 981 is_p |= out[1] ^ kPrime[1]; 982 is_p |= out[2] ^ kPrime[2]; 983 is_p |= out[3] ^ kPrime[3]; 984 is_p |= out[4] ^ kPrime[4]; 985 is_p |= out[5] ^ kPrime[5]; 986 is_p |= out[6] ^ kPrime[6]; 987 is_p |= out[7] ^ kPrime[7]; 988 is_p |= out[8] ^ kPrime[8]; 989 990 is_p--; 991 is_p &= is_p << 32; 992 is_p &= is_p << 16; 993 is_p &= is_p << 8; 994 is_p &= is_p << 4; 995 is_p &= is_p << 2; 996 is_p &= is_p << 1; 997 is_p = 0 - (is_p >> 63); 998 is_p = ~is_p; 999 1000 /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */ 1001 1002 out[0] &= is_p; 1003 out[1] &= is_p; 1004 out[2] &= is_p; 1005 out[3] &= is_p; 1006 out[4] &= is_p; 1007 out[5] &= is_p; 1008 out[6] &= is_p; 1009 out[7] &= is_p; 1010 out[8] &= is_p; 1011 1012 /* 1013 * In order to test that |out| >= 2^521-1 we need only test if out[8] >> 1014 * 57 is greater than zero as (2^521-1) + x >= 2^522 1015 */ 1016 is_greater = out[8] >> 57; 1017 is_greater |= is_greater << 32; 1018 is_greater |= is_greater << 16; 1019 is_greater |= is_greater << 8; 1020 is_greater |= is_greater << 4; 1021 is_greater |= is_greater << 2; 1022 is_greater |= is_greater << 1; 1023 is_greater = 0 - (is_greater >> 63); 1024 1025 out[0] -= kPrime[0] & is_greater; 1026 out[1] -= kPrime[1] & is_greater; 1027 out[2] -= kPrime[2] & is_greater; 1028 out[3] -= kPrime[3] & is_greater; 1029 out[4] -= kPrime[4] & is_greater; 1030 out[5] -= kPrime[5] & is_greater; 1031 out[6] -= kPrime[6] & is_greater; 1032 out[7] -= kPrime[7] & is_greater; 1033 out[8] -= kPrime[8] & is_greater; 1034 1035 /* Eliminate negative coefficients */ 1036 sign = -(out[0] >> 63); 1037 out[0] += (two58 & sign); 1038 out[1] -= (1 & sign); 1039 sign = -(out[1] >> 63); 1040 out[1] += (two58 & sign); 1041 out[2] -= (1 & sign); 1042 sign = -(out[2] >> 63); 1043 out[2] += (two58 & sign); 1044 out[3] -= (1 & sign); 1045 sign = -(out[3] >> 63); 1046 out[3] += (two58 & sign); 1047 out[4] -= (1 & sign); 1048 sign = -(out[4] >> 63); 1049 out[4] += (two58 & sign); 1050 out[5] -= (1 & sign); 1051 sign = -(out[0] >> 63); 1052 out[5] += (two58 & sign); 1053 out[6] -= (1 & sign); 1054 sign = -(out[6] >> 63); 1055 out[6] += (two58 & sign); 1056 out[7] -= (1 & sign); 1057 sign = -(out[7] >> 63); 1058 out[7] += (two58 & sign); 1059 out[8] -= (1 & sign); 1060 sign = -(out[5] >> 63); 1061 out[5] += (two58 & sign); 1062 out[6] -= (1 & sign); 1063 sign = -(out[6] >> 63); 1064 out[6] += (two58 & sign); 1065 out[7] -= (1 & sign); 1066 sign = -(out[7] >> 63); 1067 out[7] += (two58 & sign); 1068 out[8] -= (1 & sign); 1069 } 1070 1071 /*- 1072 * Group operations 1073 * ---------------- 1074 * 1075 * Building on top of the field operations we have the operations on the 1076 * elliptic curve group itself. Points on the curve are represented in Jacobian 1077 * coordinates */ 1078 1079 /*- 1080 * point_double calculates 2*(x_in, y_in, z_in) 1081 * 1082 * The method is taken from: 1083 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b 1084 * 1085 * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. 1086 * while x_out == y_in is not (maybe this works, but it's not tested). */ 1087 static void 1088 point_double(felem x_out, felem y_out, felem z_out, 1089 const felem x_in, const felem y_in, const felem z_in) 1090 { 1091 largefelem tmp, tmp2; 1092 felem delta, gamma, beta, alpha, ftmp, ftmp2; 1093 1094 felem_assign(ftmp, x_in); 1095 felem_assign(ftmp2, x_in); 1096 1097 /* delta = z^2 */ 1098 felem_square(tmp, z_in); 1099 felem_reduce(delta, tmp); /* delta[i] < 2^59 + 2^14 */ 1100 1101 /* gamma = y^2 */ 1102 felem_square(tmp, y_in); 1103 felem_reduce(gamma, tmp); /* gamma[i] < 2^59 + 2^14 */ 1104 1105 /* beta = x*gamma */ 1106 felem_mul(tmp, x_in, gamma); 1107 felem_reduce(beta, tmp); /* beta[i] < 2^59 + 2^14 */ 1108 1109 /* alpha = 3*(x-delta)*(x+delta) */ 1110 felem_diff64(ftmp, delta); 1111 /* ftmp[i] < 2^61 */ 1112 felem_sum64(ftmp2, delta); 1113 /* ftmp2[i] < 2^60 + 2^15 */ 1114 felem_scalar64(ftmp2, 3); 1115 /* ftmp2[i] < 3*2^60 + 3*2^15 */ 1116 felem_mul(tmp, ftmp, ftmp2); 1117 /*- 1118 * tmp[i] < 17(3*2^121 + 3*2^76) 1119 * = 61*2^121 + 61*2^76 1120 * < 64*2^121 + 64*2^76 1121 * = 2^127 + 2^82 1122 * < 2^128 1123 */ 1124 felem_reduce(alpha, tmp); 1125 1126 /* x' = alpha^2 - 8*beta */ 1127 felem_square(tmp, alpha); 1128 /* 1129 * tmp[i] < 17*2^120 < 2^125 1130 */ 1131 felem_assign(ftmp, beta); 1132 felem_scalar64(ftmp, 8); 1133 /* ftmp[i] < 2^62 + 2^17 */ 1134 felem_diff_128_64(tmp, ftmp); 1135 /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */ 1136 felem_reduce(x_out, tmp); 1137 1138 /* z' = (y + z)^2 - gamma - delta */ 1139 felem_sum64(delta, gamma); 1140 /* delta[i] < 2^60 + 2^15 */ 1141 felem_assign(ftmp, y_in); 1142 felem_sum64(ftmp, z_in); 1143 /* ftmp[i] < 2^60 + 2^15 */ 1144 felem_square(tmp, ftmp); 1145 /* 1146 * tmp[i] < 17(2^122) < 2^127 1147 */ 1148 felem_diff_128_64(tmp, delta); 1149 /* tmp[i] < 2^127 + 2^63 */ 1150 felem_reduce(z_out, tmp); 1151 1152 /* y' = alpha*(4*beta - x') - 8*gamma^2 */ 1153 felem_scalar64(beta, 4); 1154 /* beta[i] < 2^61 + 2^16 */ 1155 felem_diff64(beta, x_out); 1156 /* beta[i] < 2^61 + 2^60 + 2^16 */ 1157 felem_mul(tmp, alpha, beta); 1158 /*- 1159 * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16)) 1160 * = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30) 1161 * = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30) 1162 * < 2^128 1163 */ 1164 felem_square(tmp2, gamma); 1165 /*- 1166 * tmp2[i] < 17*(2^59 + 2^14)^2 1167 * = 17*(2^118 + 2^74 + 2^28) 1168 */ 1169 felem_scalar128(tmp2, 8); 1170 /*- 1171 * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28) 1172 * = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31 1173 * < 2^126 1174 */ 1175 felem_diff128(tmp, tmp2); 1176 /*- 1177 * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30) 1178 * = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 + 1179 * 2^74 + 2^69 + 2^34 + 2^30 1180 * < 2^128 1181 */ 1182 felem_reduce(y_out, tmp); 1183 } 1184 1185 /* copy_conditional copies in to out iff mask is all ones. */ 1186 static void copy_conditional(felem out, const felem in, limb mask) 1187 { 1188 unsigned i; 1189 for (i = 0; i < NLIMBS; ++i) { 1190 const limb tmp = mask & (in[i] ^ out[i]); 1191 out[i] ^= tmp; 1192 } 1193 } 1194 1195 /*- 1196 * point_add calculates (x1, y1, z1) + (x2, y2, z2) 1197 * 1198 * The method is taken from 1199 * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, 1200 * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). 1201 * 1202 * This function includes a branch for checking whether the two input points 1203 * are equal (while not equal to the point at infinity). See comment below 1204 * on constant-time. 1205 */ 1206 static void point_add(felem x3, felem y3, felem z3, 1207 const felem x1, const felem y1, const felem z1, 1208 const int mixed, const felem x2, const felem y2, 1209 const felem z2) 1210 { 1211 felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; 1212 largefelem tmp, tmp2; 1213 limb x_equal, y_equal, z1_is_zero, z2_is_zero; 1214 limb points_equal; 1215 1216 z1_is_zero = felem_is_zero(z1); 1217 z2_is_zero = felem_is_zero(z2); 1218 1219 /* ftmp = z1z1 = z1**2 */ 1220 felem_square(tmp, z1); 1221 felem_reduce(ftmp, tmp); 1222 1223 if (!mixed) { 1224 /* ftmp2 = z2z2 = z2**2 */ 1225 felem_square(tmp, z2); 1226 felem_reduce(ftmp2, tmp); 1227 1228 /* u1 = ftmp3 = x1*z2z2 */ 1229 felem_mul(tmp, x1, ftmp2); 1230 felem_reduce(ftmp3, tmp); 1231 1232 /* ftmp5 = z1 + z2 */ 1233 felem_assign(ftmp5, z1); 1234 felem_sum64(ftmp5, z2); 1235 /* ftmp5[i] < 2^61 */ 1236 1237 /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */ 1238 felem_square(tmp, ftmp5); 1239 /* tmp[i] < 17*2^122 */ 1240 felem_diff_128_64(tmp, ftmp); 1241 /* tmp[i] < 17*2^122 + 2^63 */ 1242 felem_diff_128_64(tmp, ftmp2); 1243 /* tmp[i] < 17*2^122 + 2^64 */ 1244 felem_reduce(ftmp5, tmp); 1245 1246 /* ftmp2 = z2 * z2z2 */ 1247 felem_mul(tmp, ftmp2, z2); 1248 felem_reduce(ftmp2, tmp); 1249 1250 /* s1 = ftmp6 = y1 * z2**3 */ 1251 felem_mul(tmp, y1, ftmp2); 1252 felem_reduce(ftmp6, tmp); 1253 } else { 1254 /* 1255 * We'll assume z2 = 1 (special case z2 = 0 is handled later) 1256 */ 1257 1258 /* u1 = ftmp3 = x1*z2z2 */ 1259 felem_assign(ftmp3, x1); 1260 1261 /* ftmp5 = 2*z1z2 */ 1262 felem_scalar(ftmp5, z1, 2); 1263 1264 /* s1 = ftmp6 = y1 * z2**3 */ 1265 felem_assign(ftmp6, y1); 1266 } 1267 1268 /* u2 = x2*z1z1 */ 1269 felem_mul(tmp, x2, ftmp); 1270 /* tmp[i] < 17*2^120 */ 1271 1272 /* h = ftmp4 = u2 - u1 */ 1273 felem_diff_128_64(tmp, ftmp3); 1274 /* tmp[i] < 17*2^120 + 2^63 */ 1275 felem_reduce(ftmp4, tmp); 1276 1277 x_equal = felem_is_zero(ftmp4); 1278 1279 /* z_out = ftmp5 * h */ 1280 felem_mul(tmp, ftmp5, ftmp4); 1281 felem_reduce(z_out, tmp); 1282 1283 /* ftmp = z1 * z1z1 */ 1284 felem_mul(tmp, ftmp, z1); 1285 felem_reduce(ftmp, tmp); 1286 1287 /* s2 = tmp = y2 * z1**3 */ 1288 felem_mul(tmp, y2, ftmp); 1289 /* tmp[i] < 17*2^120 */ 1290 1291 /* r = ftmp5 = (s2 - s1)*2 */ 1292 felem_diff_128_64(tmp, ftmp6); 1293 /* tmp[i] < 17*2^120 + 2^63 */ 1294 felem_reduce(ftmp5, tmp); 1295 y_equal = felem_is_zero(ftmp5); 1296 felem_scalar64(ftmp5, 2); 1297 /* ftmp5[i] < 2^61 */ 1298 1299 /* 1300 * The formulae are incorrect if the points are equal, in affine coordinates 1301 * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this 1302 * happens. 1303 * 1304 * We use bitwise operations to avoid potential side-channels introduced by 1305 * the short-circuiting behaviour of boolean operators. 1306 * 1307 * The special case of either point being the point at infinity (z1 and/or 1308 * z2 are zero), is handled separately later on in this function, so we 1309 * avoid jumping to point_double here in those special cases. 1310 * 1311 * Notice the comment below on the implications of this branching for timing 1312 * leaks and why it is considered practically irrelevant. 1313 */ 1314 points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); 1315 1316 if (points_equal) { 1317 /* 1318 * This is obviously not constant-time but it will almost-never happen 1319 * for ECDH / ECDSA. The case where it can happen is during scalar-mult 1320 * where the intermediate value gets very close to the group order. 1321 * Since |ossl_ec_GFp_nistp_recode_scalar_bits| produces signed digits 1322 * for the scalar, it's possible for the intermediate value to be a small 1323 * negative multiple of the base point, and for the final signed digit 1324 * to be the same value. We believe that this only occurs for the scalar 1325 * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 1326 * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb 1327 * 71e913863f7, in that case the penultimate intermediate is -9G and 1328 * the final digit is also -9G. Since this only happens for a single 1329 * scalar, the timing leak is irrelevant. (Any attacker who wanted to 1330 * check whether a secret scalar was that exact value, can already do 1331 * so.) 1332 */ 1333 point_double(x3, y3, z3, x1, y1, z1); 1334 return; 1335 } 1336 1337 /* I = ftmp = (2h)**2 */ 1338 felem_assign(ftmp, ftmp4); 1339 felem_scalar64(ftmp, 2); 1340 /* ftmp[i] < 2^61 */ 1341 felem_square(tmp, ftmp); 1342 /* tmp[i] < 17*2^122 */ 1343 felem_reduce(ftmp, tmp); 1344 1345 /* J = ftmp2 = h * I */ 1346 felem_mul(tmp, ftmp4, ftmp); 1347 felem_reduce(ftmp2, tmp); 1348 1349 /* V = ftmp4 = U1 * I */ 1350 felem_mul(tmp, ftmp3, ftmp); 1351 felem_reduce(ftmp4, tmp); 1352 1353 /* x_out = r**2 - J - 2V */ 1354 felem_square(tmp, ftmp5); 1355 /* tmp[i] < 17*2^122 */ 1356 felem_diff_128_64(tmp, ftmp2); 1357 /* tmp[i] < 17*2^122 + 2^63 */ 1358 felem_assign(ftmp3, ftmp4); 1359 felem_scalar64(ftmp4, 2); 1360 /* ftmp4[i] < 2^61 */ 1361 felem_diff_128_64(tmp, ftmp4); 1362 /* tmp[i] < 17*2^122 + 2^64 */ 1363 felem_reduce(x_out, tmp); 1364 1365 /* y_out = r(V-x_out) - 2 * s1 * J */ 1366 felem_diff64(ftmp3, x_out); 1367 /* 1368 * ftmp3[i] < 2^60 + 2^60 = 2^61 1369 */ 1370 felem_mul(tmp, ftmp5, ftmp3); 1371 /* tmp[i] < 17*2^122 */ 1372 felem_mul(tmp2, ftmp6, ftmp2); 1373 /* tmp2[i] < 17*2^120 */ 1374 felem_scalar128(tmp2, 2); 1375 /* tmp2[i] < 17*2^121 */ 1376 felem_diff128(tmp, tmp2); 1377 /*- 1378 * tmp[i] < 2^127 - 2^69 + 17*2^122 1379 * = 2^126 - 2^122 - 2^6 - 2^2 - 1 1380 * < 2^127 1381 */ 1382 felem_reduce(y_out, tmp); 1383 1384 copy_conditional(x_out, x2, z1_is_zero); 1385 copy_conditional(x_out, x1, z2_is_zero); 1386 copy_conditional(y_out, y2, z1_is_zero); 1387 copy_conditional(y_out, y1, z2_is_zero); 1388 copy_conditional(z_out, z2, z1_is_zero); 1389 copy_conditional(z_out, z1, z2_is_zero); 1390 felem_assign(x3, x_out); 1391 felem_assign(y3, y_out); 1392 felem_assign(z3, z_out); 1393 } 1394 1395 /*- 1396 * Base point pre computation 1397 * -------------------------- 1398 * 1399 * Two different sorts of precomputed tables are used in the following code. 1400 * Each contain various points on the curve, where each point is three field 1401 * elements (x, y, z). 1402 * 1403 * For the base point table, z is usually 1 (0 for the point at infinity). 1404 * This table has 16 elements: 1405 * index | bits | point 1406 * ------+---------+------------------------------ 1407 * 0 | 0 0 0 0 | 0G 1408 * 1 | 0 0 0 1 | 1G 1409 * 2 | 0 0 1 0 | 2^130G 1410 * 3 | 0 0 1 1 | (2^130 + 1)G 1411 * 4 | 0 1 0 0 | 2^260G 1412 * 5 | 0 1 0 1 | (2^260 + 1)G 1413 * 6 | 0 1 1 0 | (2^260 + 2^130)G 1414 * 7 | 0 1 1 1 | (2^260 + 2^130 + 1)G 1415 * 8 | 1 0 0 0 | 2^390G 1416 * 9 | 1 0 0 1 | (2^390 + 1)G 1417 * 10 | 1 0 1 0 | (2^390 + 2^130)G 1418 * 11 | 1 0 1 1 | (2^390 + 2^130 + 1)G 1419 * 12 | 1 1 0 0 | (2^390 + 2^260)G 1420 * 13 | 1 1 0 1 | (2^390 + 2^260 + 1)G 1421 * 14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G 1422 * 15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G 1423 * 1424 * The reason for this is so that we can clock bits into four different 1425 * locations when doing simple scalar multiplies against the base point. 1426 * 1427 * Tables for other points have table[i] = iG for i in 0 .. 16. */ 1428 1429 /* gmul is the table of precomputed base points */ 1430 static const felem gmul[16][3] = { 1431 {{0, 0, 0, 0, 0, 0, 0, 0, 0}, 1432 {0, 0, 0, 0, 0, 0, 0, 0, 0}, 1433 {0, 0, 0, 0, 0, 0, 0, 0, 0}}, 1434 {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334, 1435 0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8, 1436 0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404}, 1437 {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353, 1438 0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45, 1439 0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b}, 1440 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1441 {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad, 1442 0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e, 1443 0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5}, 1444 {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58, 1445 0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c, 1446 0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7}, 1447 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1448 {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873, 1449 0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c, 1450 0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9}, 1451 {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52, 1452 0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e, 1453 0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe}, 1454 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1455 {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2, 1456 0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561, 1457 0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065}, 1458 {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a, 1459 0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e, 1460 0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524}, 1461 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1462 {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6, 1463 0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51, 1464 0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe}, 1465 {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d, 1466 0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c, 1467 0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7}, 1468 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1469 {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27, 1470 0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f, 1471 0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256}, 1472 {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa, 1473 0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2, 1474 0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd}, 1475 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1476 {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890, 1477 0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74, 1478 0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23}, 1479 {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516, 1480 0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1, 1481 0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e}, 1482 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1483 {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce, 1484 0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7, 1485 0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5}, 1486 {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318, 1487 0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83, 1488 0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242}, 1489 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1490 {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae, 1491 0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef, 1492 0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203}, 1493 {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447, 1494 0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283, 1495 0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f}, 1496 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1497 {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5, 1498 0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c, 1499 0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a}, 1500 {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df, 1501 0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645, 1502 0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a}, 1503 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1504 {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292, 1505 0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422, 1506 0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b}, 1507 {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30, 1508 0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb, 1509 0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f}, 1510 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1511 {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767, 1512 0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3, 1513 0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf}, 1514 {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2, 1515 0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692, 1516 0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d}, 1517 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1518 {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3, 1519 0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade, 1520 0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684}, 1521 {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8, 1522 0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a, 1523 0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81}, 1524 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1525 {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608, 1526 0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610, 1527 0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d}, 1528 {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006, 1529 0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86, 1530 0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42}, 1531 {1, 0, 0, 0, 0, 0, 0, 0, 0}}, 1532 {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c, 1533 0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9, 1534 0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f}, 1535 {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7, 1536 0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c, 1537 0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055}, 1538 {1, 0, 0, 0, 0, 0, 0, 0, 0}} 1539 }; 1540 1541 /* 1542 * select_point selects the |idx|th point from a precomputation table and 1543 * copies it to out. 1544 */ 1545 /* pre_comp below is of the size provided in |size| */ 1546 static void select_point(const limb idx, unsigned int size, 1547 const felem pre_comp[][3], felem out[3]) 1548 { 1549 unsigned i, j; 1550 limb *outlimbs = &out[0][0]; 1551 1552 memset(out, 0, sizeof(*out) * 3); 1553 1554 for (i = 0; i < size; i++) { 1555 const limb *inlimbs = &pre_comp[i][0][0]; 1556 limb mask = i ^ idx; 1557 mask |= mask >> 4; 1558 mask |= mask >> 2; 1559 mask |= mask >> 1; 1560 mask &= 1; 1561 mask--; 1562 for (j = 0; j < NLIMBS * 3; j++) 1563 outlimbs[j] |= inlimbs[j] & mask; 1564 } 1565 } 1566 1567 /* get_bit returns the |i|th bit in |in| */ 1568 static char get_bit(const felem_bytearray in, int i) 1569 { 1570 if (i < 0) 1571 return 0; 1572 return (in[i >> 3] >> (i & 7)) & 1; 1573 } 1574 1575 /* 1576 * Interleaved point multiplication using precomputed point multiples: The 1577 * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars 1578 * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the 1579 * generator, using certain (large) precomputed multiples in g_pre_comp. 1580 * Output point (X, Y, Z) is stored in x_out, y_out, z_out 1581 */ 1582 static void batch_mul(felem x_out, felem y_out, felem z_out, 1583 const felem_bytearray scalars[], 1584 const unsigned num_points, const u8 *g_scalar, 1585 const int mixed, const felem pre_comp[][17][3], 1586 const felem g_pre_comp[16][3]) 1587 { 1588 int i, skip; 1589 unsigned num, gen_mul = (g_scalar != NULL); 1590 felem nq[3], tmp[4]; 1591 limb bits; 1592 u8 sign, digit; 1593 1594 /* set nq to the point at infinity */ 1595 memset(nq, 0, sizeof(nq)); 1596 1597 /* 1598 * Loop over all scalars msb-to-lsb, interleaving additions of multiples 1599 * of the generator (last quarter of rounds) and additions of other 1600 * points multiples (every 5th round). 1601 */ 1602 skip = 1; /* save two point operations in the first 1603 * round */ 1604 for (i = (num_points ? 520 : 130); i >= 0; --i) { 1605 /* double */ 1606 if (!skip) 1607 point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); 1608 1609 /* add multiples of the generator */ 1610 if (gen_mul && (i <= 130)) { 1611 bits = get_bit(g_scalar, i + 390) << 3; 1612 if (i < 130) { 1613 bits |= get_bit(g_scalar, i + 260) << 2; 1614 bits |= get_bit(g_scalar, i + 130) << 1; 1615 bits |= get_bit(g_scalar, i); 1616 } 1617 /* select the point to add, in constant time */ 1618 select_point(bits, 16, g_pre_comp, tmp); 1619 if (!skip) { 1620 /* The 1 argument below is for "mixed" */ 1621 point_add(nq[0], nq[1], nq[2], 1622 nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); 1623 } else { 1624 memcpy(nq, tmp, 3 * sizeof(felem)); 1625 skip = 0; 1626 } 1627 } 1628 1629 /* do other additions every 5 doublings */ 1630 if (num_points && (i % 5 == 0)) { 1631 /* loop over all scalars */ 1632 for (num = 0; num < num_points; ++num) { 1633 bits = get_bit(scalars[num], i + 4) << 5; 1634 bits |= get_bit(scalars[num], i + 3) << 4; 1635 bits |= get_bit(scalars[num], i + 2) << 3; 1636 bits |= get_bit(scalars[num], i + 1) << 2; 1637 bits |= get_bit(scalars[num], i) << 1; 1638 bits |= get_bit(scalars[num], i - 1); 1639 ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); 1640 1641 /* 1642 * select the point to add or subtract, in constant time 1643 */ 1644 select_point(digit, 17, pre_comp[num], tmp); 1645 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative 1646 * point */ 1647 copy_conditional(tmp[1], tmp[3], (-(limb) sign)); 1648 1649 if (!skip) { 1650 point_add(nq[0], nq[1], nq[2], 1651 nq[0], nq[1], nq[2], 1652 mixed, tmp[0], tmp[1], tmp[2]); 1653 } else { 1654 memcpy(nq, tmp, 3 * sizeof(felem)); 1655 skip = 0; 1656 } 1657 } 1658 } 1659 } 1660 felem_assign(x_out, nq[0]); 1661 felem_assign(y_out, nq[1]); 1662 felem_assign(z_out, nq[2]); 1663 } 1664 1665 /* Precomputation for the group generator. */ 1666 struct nistp521_pre_comp_st { 1667 felem g_pre_comp[16][3]; 1668 CRYPTO_REF_COUNT references; 1669 CRYPTO_RWLOCK *lock; 1670 }; 1671 1672 const EC_METHOD *EC_GFp_nistp521_method(void) 1673 { 1674 static const EC_METHOD ret = { 1675 EC_FLAGS_DEFAULT_OCT, 1676 NID_X9_62_prime_field, 1677 ossl_ec_GFp_nistp521_group_init, 1678 ossl_ec_GFp_simple_group_finish, 1679 ossl_ec_GFp_simple_group_clear_finish, 1680 ossl_ec_GFp_nist_group_copy, 1681 ossl_ec_GFp_nistp521_group_set_curve, 1682 ossl_ec_GFp_simple_group_get_curve, 1683 ossl_ec_GFp_simple_group_get_degree, 1684 ossl_ec_group_simple_order_bits, 1685 ossl_ec_GFp_simple_group_check_discriminant, 1686 ossl_ec_GFp_simple_point_init, 1687 ossl_ec_GFp_simple_point_finish, 1688 ossl_ec_GFp_simple_point_clear_finish, 1689 ossl_ec_GFp_simple_point_copy, 1690 ossl_ec_GFp_simple_point_set_to_infinity, 1691 ossl_ec_GFp_simple_point_set_affine_coordinates, 1692 ossl_ec_GFp_nistp521_point_get_affine_coordinates, 1693 0 /* point_set_compressed_coordinates */ , 1694 0 /* point2oct */ , 1695 0 /* oct2point */ , 1696 ossl_ec_GFp_simple_add, 1697 ossl_ec_GFp_simple_dbl, 1698 ossl_ec_GFp_simple_invert, 1699 ossl_ec_GFp_simple_is_at_infinity, 1700 ossl_ec_GFp_simple_is_on_curve, 1701 ossl_ec_GFp_simple_cmp, 1702 ossl_ec_GFp_simple_make_affine, 1703 ossl_ec_GFp_simple_points_make_affine, 1704 ossl_ec_GFp_nistp521_points_mul, 1705 ossl_ec_GFp_nistp521_precompute_mult, 1706 ossl_ec_GFp_nistp521_have_precompute_mult, 1707 ossl_ec_GFp_nist_field_mul, 1708 ossl_ec_GFp_nist_field_sqr, 1709 0 /* field_div */ , 1710 ossl_ec_GFp_simple_field_inv, 1711 0 /* field_encode */ , 1712 0 /* field_decode */ , 1713 0, /* field_set_to_one */ 1714 ossl_ec_key_simple_priv2oct, 1715 ossl_ec_key_simple_oct2priv, 1716 0, /* set private */ 1717 ossl_ec_key_simple_generate_key, 1718 ossl_ec_key_simple_check_key, 1719 ossl_ec_key_simple_generate_public_key, 1720 0, /* keycopy */ 1721 0, /* keyfinish */ 1722 ossl_ecdh_simple_compute_key, 1723 ossl_ecdsa_simple_sign_setup, 1724 ossl_ecdsa_simple_sign_sig, 1725 ossl_ecdsa_simple_verify_sig, 1726 0, /* field_inverse_mod_ord */ 1727 0, /* blind_coordinates */ 1728 0, /* ladder_pre */ 1729 0, /* ladder_step */ 1730 0 /* ladder_post */ 1731 }; 1732 1733 return &ret; 1734 } 1735 1736 /******************************************************************************/ 1737 /* 1738 * FUNCTIONS TO MANAGE PRECOMPUTATION 1739 */ 1740 1741 static NISTP521_PRE_COMP *nistp521_pre_comp_new(void) 1742 { 1743 NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); 1744 1745 if (ret == NULL) { 1746 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); 1747 return ret; 1748 } 1749 1750 ret->references = 1; 1751 1752 ret->lock = CRYPTO_THREAD_lock_new(); 1753 if (ret->lock == NULL) { 1754 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); 1755 OPENSSL_free(ret); 1756 return NULL; 1757 } 1758 return ret; 1759 } 1760 1761 NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p) 1762 { 1763 int i; 1764 if (p != NULL) 1765 CRYPTO_UP_REF(&p->references, &i, p->lock); 1766 return p; 1767 } 1768 1769 void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p) 1770 { 1771 int i; 1772 1773 if (p == NULL) 1774 return; 1775 1776 CRYPTO_DOWN_REF(&p->references, &i, p->lock); 1777 REF_PRINT_COUNT("EC_nistp521", p); 1778 if (i > 0) 1779 return; 1780 REF_ASSERT_ISNT(i < 0); 1781 1782 CRYPTO_THREAD_lock_free(p->lock); 1783 OPENSSL_free(p); 1784 } 1785 1786 /******************************************************************************/ 1787 /* 1788 * OPENSSL EC_METHOD FUNCTIONS 1789 */ 1790 1791 int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group) 1792 { 1793 int ret; 1794 ret = ossl_ec_GFp_simple_group_init(group); 1795 group->a_is_minus3 = 1; 1796 return ret; 1797 } 1798 1799 int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p, 1800 const BIGNUM *a, const BIGNUM *b, 1801 BN_CTX *ctx) 1802 { 1803 int ret = 0; 1804 BIGNUM *curve_p, *curve_a, *curve_b; 1805 #ifndef FIPS_MODULE 1806 BN_CTX *new_ctx = NULL; 1807 1808 if (ctx == NULL) 1809 ctx = new_ctx = BN_CTX_new(); 1810 #endif 1811 if (ctx == NULL) 1812 return 0; 1813 1814 BN_CTX_start(ctx); 1815 curve_p = BN_CTX_get(ctx); 1816 curve_a = BN_CTX_get(ctx); 1817 curve_b = BN_CTX_get(ctx); 1818 if (curve_b == NULL) 1819 goto err; 1820 BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p); 1821 BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a); 1822 BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b); 1823 if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { 1824 ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS); 1825 goto err; 1826 } 1827 group->field_mod_func = BN_nist_mod_521; 1828 ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx); 1829 err: 1830 BN_CTX_end(ctx); 1831 #ifndef FIPS_MODULE 1832 BN_CTX_free(new_ctx); 1833 #endif 1834 return ret; 1835 } 1836 1837 /* 1838 * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = 1839 * (X/Z^2, Y/Z^3) 1840 */ 1841 int ossl_ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group, 1842 const EC_POINT *point, 1843 BIGNUM *x, BIGNUM *y, 1844 BN_CTX *ctx) 1845 { 1846 felem z1, z2, x_in, y_in, x_out, y_out; 1847 largefelem tmp; 1848 1849 if (EC_POINT_is_at_infinity(group, point)) { 1850 ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY); 1851 return 0; 1852 } 1853 if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || 1854 (!BN_to_felem(z1, point->Z))) 1855 return 0; 1856 felem_inv(z2, z1); 1857 felem_square(tmp, z2); 1858 felem_reduce(z1, tmp); 1859 felem_mul(tmp, x_in, z1); 1860 felem_reduce(x_in, tmp); 1861 felem_contract(x_out, x_in); 1862 if (x != NULL) { 1863 if (!felem_to_BN(x, x_out)) { 1864 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1865 return 0; 1866 } 1867 } 1868 felem_mul(tmp, z1, z2); 1869 felem_reduce(z1, tmp); 1870 felem_mul(tmp, y_in, z1); 1871 felem_reduce(y_in, tmp); 1872 felem_contract(y_out, y_in); 1873 if (y != NULL) { 1874 if (!felem_to_BN(y, y_out)) { 1875 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1876 return 0; 1877 } 1878 } 1879 return 1; 1880 } 1881 1882 /* points below is of size |num|, and tmp_felems is of size |num+1/ */ 1883 static void make_points_affine(size_t num, felem points[][3], 1884 felem tmp_felems[]) 1885 { 1886 /* 1887 * Runs in constant time, unless an input is the point at infinity (which 1888 * normally shouldn't happen). 1889 */ 1890 ossl_ec_GFp_nistp_points_make_affine_internal(num, 1891 points, 1892 sizeof(felem), 1893 tmp_felems, 1894 (void (*)(void *))felem_one, 1895 felem_is_zero_int, 1896 (void (*)(void *, const void *)) 1897 felem_assign, 1898 (void (*)(void *, const void *)) 1899 felem_square_reduce, (void (*) 1900 (void *, 1901 const void 1902 *, 1903 const void 1904 *)) 1905 felem_mul_reduce, 1906 (void (*)(void *, const void *)) 1907 felem_inv, 1908 (void (*)(void *, const void *)) 1909 felem_contract); 1910 } 1911 1912 /* 1913 * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL 1914 * values Result is stored in r (r can equal one of the inputs). 1915 */ 1916 int ossl_ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r, 1917 const BIGNUM *scalar, size_t num, 1918 const EC_POINT *points[], 1919 const BIGNUM *scalars[], BN_CTX *ctx) 1920 { 1921 int ret = 0; 1922 int j; 1923 int mixed = 0; 1924 BIGNUM *x, *y, *z, *tmp_scalar; 1925 felem_bytearray g_secret; 1926 felem_bytearray *secrets = NULL; 1927 felem (*pre_comp)[17][3] = NULL; 1928 felem *tmp_felems = NULL; 1929 unsigned i; 1930 int num_bytes; 1931 int have_pre_comp = 0; 1932 size_t num_points = num; 1933 felem x_in, y_in, z_in, x_out, y_out, z_out; 1934 NISTP521_PRE_COMP *pre = NULL; 1935 felem(*g_pre_comp)[3] = NULL; 1936 EC_POINT *generator = NULL; 1937 const EC_POINT *p = NULL; 1938 const BIGNUM *p_scalar = NULL; 1939 1940 BN_CTX_start(ctx); 1941 x = BN_CTX_get(ctx); 1942 y = BN_CTX_get(ctx); 1943 z = BN_CTX_get(ctx); 1944 tmp_scalar = BN_CTX_get(ctx); 1945 if (tmp_scalar == NULL) 1946 goto err; 1947 1948 if (scalar != NULL) { 1949 pre = group->pre_comp.nistp521; 1950 if (pre) 1951 /* we have precomputation, try to use it */ 1952 g_pre_comp = &pre->g_pre_comp[0]; 1953 else 1954 /* try to use the standard precomputation */ 1955 g_pre_comp = (felem(*)[3]) gmul; 1956 generator = EC_POINT_new(group); 1957 if (generator == NULL) 1958 goto err; 1959 /* get the generator from precomputation */ 1960 if (!felem_to_BN(x, g_pre_comp[1][0]) || 1961 !felem_to_BN(y, g_pre_comp[1][1]) || 1962 !felem_to_BN(z, g_pre_comp[1][2])) { 1963 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 1964 goto err; 1965 } 1966 if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, 1967 generator, 1968 x, y, z, ctx)) 1969 goto err; 1970 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) 1971 /* precomputation matches generator */ 1972 have_pre_comp = 1; 1973 else 1974 /* 1975 * we don't have valid precomputation: treat the generator as a 1976 * random point 1977 */ 1978 num_points++; 1979 } 1980 1981 if (num_points > 0) { 1982 if (num_points >= 2) { 1983 /* 1984 * unless we precompute multiples for just one point, converting 1985 * those into affine form is time well spent 1986 */ 1987 mixed = 1; 1988 } 1989 secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points); 1990 pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points); 1991 if (mixed) 1992 tmp_felems = 1993 OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1)); 1994 if ((secrets == NULL) || (pre_comp == NULL) 1995 || (mixed && (tmp_felems == NULL))) { 1996 ERR_raise(ERR_LIB_EC, ERR_R_MALLOC_FAILURE); 1997 goto err; 1998 } 1999 2000 /* 2001 * we treat NULL scalars as 0, and NULL points as points at infinity, 2002 * i.e., they contribute nothing to the linear combination 2003 */ 2004 for (i = 0; i < num_points; ++i) { 2005 if (i == num) { 2006 /* 2007 * we didn't have a valid precomputation, so we pick the 2008 * generator 2009 */ 2010 p = EC_GROUP_get0_generator(group); 2011 p_scalar = scalar; 2012 } else { 2013 /* the i^th point */ 2014 p = points[i]; 2015 p_scalar = scalars[i]; 2016 } 2017 if ((p_scalar != NULL) && (p != NULL)) { 2018 /* reduce scalar to 0 <= scalar < 2^521 */ 2019 if ((BN_num_bits(p_scalar) > 521) 2020 || (BN_is_negative(p_scalar))) { 2021 /* 2022 * this is an unusual input, and we don't guarantee 2023 * constant-timeness 2024 */ 2025 if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { 2026 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 2027 goto err; 2028 } 2029 num_bytes = BN_bn2lebinpad(tmp_scalar, 2030 secrets[i], sizeof(secrets[i])); 2031 } else { 2032 num_bytes = BN_bn2lebinpad(p_scalar, 2033 secrets[i], sizeof(secrets[i])); 2034 } 2035 if (num_bytes < 0) { 2036 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 2037 goto err; 2038 } 2039 /* precompute multiples */ 2040 if ((!BN_to_felem(x_out, p->X)) || 2041 (!BN_to_felem(y_out, p->Y)) || 2042 (!BN_to_felem(z_out, p->Z))) 2043 goto err; 2044 memcpy(pre_comp[i][1][0], x_out, sizeof(felem)); 2045 memcpy(pre_comp[i][1][1], y_out, sizeof(felem)); 2046 memcpy(pre_comp[i][1][2], z_out, sizeof(felem)); 2047 for (j = 2; j <= 16; ++j) { 2048 if (j & 1) { 2049 point_add(pre_comp[i][j][0], pre_comp[i][j][1], 2050 pre_comp[i][j][2], pre_comp[i][1][0], 2051 pre_comp[i][1][1], pre_comp[i][1][2], 0, 2052 pre_comp[i][j - 1][0], 2053 pre_comp[i][j - 1][1], 2054 pre_comp[i][j - 1][2]); 2055 } else { 2056 point_double(pre_comp[i][j][0], pre_comp[i][j][1], 2057 pre_comp[i][j][2], pre_comp[i][j / 2][0], 2058 pre_comp[i][j / 2][1], 2059 pre_comp[i][j / 2][2]); 2060 } 2061 } 2062 } 2063 } 2064 if (mixed) 2065 make_points_affine(num_points * 17, pre_comp[0], tmp_felems); 2066 } 2067 2068 /* the scalar for the generator */ 2069 if ((scalar != NULL) && (have_pre_comp)) { 2070 memset(g_secret, 0, sizeof(g_secret)); 2071 /* reduce scalar to 0 <= scalar < 2^521 */ 2072 if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) { 2073 /* 2074 * this is an unusual input, and we don't guarantee 2075 * constant-timeness 2076 */ 2077 if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { 2078 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 2079 goto err; 2080 } 2081 num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); 2082 } else { 2083 num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); 2084 } 2085 /* do the multiplication with generator precomputation */ 2086 batch_mul(x_out, y_out, z_out, 2087 (const felem_bytearray(*))secrets, num_points, 2088 g_secret, 2089 mixed, (const felem(*)[17][3])pre_comp, 2090 (const felem(*)[3])g_pre_comp); 2091 } else { 2092 /* do the multiplication without generator precomputation */ 2093 batch_mul(x_out, y_out, z_out, 2094 (const felem_bytearray(*))secrets, num_points, 2095 NULL, mixed, (const felem(*)[17][3])pre_comp, NULL); 2096 } 2097 /* reduce the output to its unique minimal representation */ 2098 felem_contract(x_in, x_out); 2099 felem_contract(y_in, y_out); 2100 felem_contract(z_in, z_out); 2101 if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) || 2102 (!felem_to_BN(z, z_in))) { 2103 ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB); 2104 goto err; 2105 } 2106 ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z, 2107 ctx); 2108 2109 err: 2110 BN_CTX_end(ctx); 2111 EC_POINT_free(generator); 2112 OPENSSL_free(secrets); 2113 OPENSSL_free(pre_comp); 2114 OPENSSL_free(tmp_felems); 2115 return ret; 2116 } 2117 2118 int ossl_ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx) 2119 { 2120 int ret = 0; 2121 NISTP521_PRE_COMP *pre = NULL; 2122 int i, j; 2123 BIGNUM *x, *y; 2124 EC_POINT *generator = NULL; 2125 felem tmp_felems[16]; 2126 #ifndef FIPS_MODULE 2127 BN_CTX *new_ctx = NULL; 2128 #endif 2129 2130 /* throw away old precomputation */ 2131 EC_pre_comp_free(group); 2132 2133 #ifndef FIPS_MODULE 2134 if (ctx == NULL) 2135 ctx = new_ctx = BN_CTX_new(); 2136 #endif 2137 if (ctx == NULL) 2138 return 0; 2139 2140 BN_CTX_start(ctx); 2141 x = BN_CTX_get(ctx); 2142 y = BN_CTX_get(ctx); 2143 if (y == NULL) 2144 goto err; 2145 /* get the generator */ 2146 if (group->generator == NULL) 2147 goto err; 2148 generator = EC_POINT_new(group); 2149 if (generator == NULL) 2150 goto err; 2151 BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x); 2152 BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y); 2153 if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) 2154 goto err; 2155 if ((pre = nistp521_pre_comp_new()) == NULL) 2156 goto err; 2157 /* 2158 * if the generator is the standard one, use built-in precomputation 2159 */ 2160 if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { 2161 memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); 2162 goto done; 2163 } 2164 if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) || 2165 (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) || 2166 (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z))) 2167 goto err; 2168 /* compute 2^130*G, 2^260*G, 2^390*G */ 2169 for (i = 1; i <= 4; i <<= 1) { 2170 point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], 2171 pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0], 2172 pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]); 2173 for (j = 0; j < 129; ++j) { 2174 point_double(pre->g_pre_comp[2 * i][0], 2175 pre->g_pre_comp[2 * i][1], 2176 pre->g_pre_comp[2 * i][2], 2177 pre->g_pre_comp[2 * i][0], 2178 pre->g_pre_comp[2 * i][1], 2179 pre->g_pre_comp[2 * i][2]); 2180 } 2181 } 2182 /* g_pre_comp[0] is the point at infinity */ 2183 memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0])); 2184 /* the remaining multiples */ 2185 /* 2^130*G + 2^260*G */ 2186 point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], 2187 pre->g_pre_comp[6][2], pre->g_pre_comp[4][0], 2188 pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], 2189 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], 2190 pre->g_pre_comp[2][2]); 2191 /* 2^130*G + 2^390*G */ 2192 point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], 2193 pre->g_pre_comp[10][2], pre->g_pre_comp[8][0], 2194 pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 2195 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], 2196 pre->g_pre_comp[2][2]); 2197 /* 2^260*G + 2^390*G */ 2198 point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], 2199 pre->g_pre_comp[12][2], pre->g_pre_comp[8][0], 2200 pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 2201 0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], 2202 pre->g_pre_comp[4][2]); 2203 /* 2^130*G + 2^260*G + 2^390*G */ 2204 point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], 2205 pre->g_pre_comp[14][2], pre->g_pre_comp[12][0], 2206 pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 2207 0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], 2208 pre->g_pre_comp[2][2]); 2209 for (i = 1; i < 8; ++i) { 2210 /* odd multiples: add G */ 2211 point_add(pre->g_pre_comp[2 * i + 1][0], 2212 pre->g_pre_comp[2 * i + 1][1], 2213 pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0], 2214 pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0, 2215 pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], 2216 pre->g_pre_comp[1][2]); 2217 } 2218 make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems); 2219 2220 done: 2221 SETPRECOMP(group, nistp521, pre); 2222 ret = 1; 2223 pre = NULL; 2224 err: 2225 BN_CTX_end(ctx); 2226 EC_POINT_free(generator); 2227 #ifndef FIPS_MODULE 2228 BN_CTX_free(new_ctx); 2229 #endif 2230 EC_nistp521_pre_comp_free(pre); 2231 return ret; 2232 } 2233 2234 int ossl_ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group) 2235 { 2236 return HAVEPRECOMP(group, nistp521); 2237 } 2238