xref: /freebsd/crypto/openssl/crypto/ec/ecp_nistp521.c (revision 037479ff5ee18977b1c48e1e59770aad2f200a5a)
1 /*
2  * Copyright 2011-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 /* Copyright 2011 Google Inc.
11  *
12  * Licensed under the Apache License, Version 2.0 (the "License");
13  *
14  * you may not use this file except in compliance with the License.
15  * You may obtain a copy of the License at
16  *
17  *     http://www.apache.org/licenses/LICENSE-2.0
18  *
19  *  Unless required by applicable law or agreed to in writing, software
20  *  distributed under the License is distributed on an "AS IS" BASIS,
21  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22  *  See the License for the specific language governing permissions and
23  *  limitations under the License.
24  */
25 
26 /*
27  * A 64-bit implementation of the NIST P-521 elliptic curve point multiplication
28  *
29  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
30  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
31  * work which got its smarts from Daniel J. Bernstein's work on the same.
32  */
33 
34 #include <openssl/e_os2.h>
35 #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
36 NON_EMPTY_TRANSLATION_UNIT
37 #else
38 
39 # include <string.h>
40 # include <openssl/err.h>
41 # include "ec_lcl.h"
42 
43 # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
44   /* even with gcc, the typedef won't work for 32-bit platforms */
45 typedef __uint128_t uint128_t;  /* nonstandard; implemented by gcc on 64-bit
46                                  * platforms */
47 # else
48 #  error "Your compiler doesn't appear to support 128-bit integer types"
49 # endif
50 
51 typedef uint8_t u8;
52 typedef uint64_t u64;
53 
54 /*
55  * The underlying field. P521 operates over GF(2^521-1). We can serialise an
56  * element of this field into 66 bytes where the most significant byte
57  * contains only a single bit. We call this an felem_bytearray.
58  */
59 
60 typedef u8 felem_bytearray[66];
61 
62 /*
63  * These are the parameters of P521, taken from FIPS 186-3, section D.1.2.5.
64  * These values are big-endian.
65  */
66 static const felem_bytearray nistp521_curve_params[5] = {
67     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* p */
68      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
69      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
70      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
71      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
72      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
73      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
74      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
75      0xff, 0xff},
76     {0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* a = -3 */
77      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
78      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
79      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
83      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
84      0xff, 0xfc},
85     {0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, /* b */
86      0x9a, 0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85,
87      0x40, 0xee, 0xa2, 0xda, 0x72, 0x5b, 0x99, 0xb3,
88      0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1,
89      0x09, 0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e,
90      0x93, 0x7b, 0x16, 0x52, 0xc0, 0xbd, 0x3b, 0xb1,
91      0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c,
92      0x34, 0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50,
93      0x3f, 0x00},
94     {0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, /* x */
95      0xe9, 0xcd, 0x9e, 0x3e, 0xcb, 0x66, 0x23, 0x95,
96      0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
97      0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d,
98      0x3d, 0xba, 0xa1, 0x4b, 0x5e, 0x77, 0xef, 0xe7,
99      0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
100      0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a,
101      0x42, 0x9b, 0xf9, 0x7e, 0x7e, 0x31, 0xc2, 0xe5,
102      0xbd, 0x66},
103     {0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, /* y */
104      0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d,
105      0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
106      0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e,
107      0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4,
108      0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
109      0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72,
110      0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1,
111      0x66, 0x50}
112 };
113 
114 /*-
115  * The representation of field elements.
116  * ------------------------------------
117  *
118  * We represent field elements with nine values. These values are either 64 or
119  * 128 bits and the field element represented is:
120  *   v[0]*2^0 + v[1]*2^58 + v[2]*2^116 + ... + v[8]*2^464  (mod p)
121  * Each of the nine values is called a 'limb'. Since the limbs are spaced only
122  * 58 bits apart, but are greater than 58 bits in length, the most significant
123  * bits of each limb overlap with the least significant bits of the next.
124  *
125  * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
126  * 'largefelem' */
127 
128 # define NLIMBS 9
129 
130 typedef uint64_t limb;
131 typedef limb felem[NLIMBS];
132 typedef uint128_t largefelem[NLIMBS];
133 
134 static const limb bottom57bits = 0x1ffffffffffffff;
135 static const limb bottom58bits = 0x3ffffffffffffff;
136 
137 /*
138  * bin66_to_felem takes a little-endian byte array and converts it into felem
139  * form. This assumes that the CPU is little-endian.
140  */
141 static void bin66_to_felem(felem out, const u8 in[66])
142 {
143     out[0] = (*((limb *) & in[0])) & bottom58bits;
144     out[1] = (*((limb *) & in[7]) >> 2) & bottom58bits;
145     out[2] = (*((limb *) & in[14]) >> 4) & bottom58bits;
146     out[3] = (*((limb *) & in[21]) >> 6) & bottom58bits;
147     out[4] = (*((limb *) & in[29])) & bottom58bits;
148     out[5] = (*((limb *) & in[36]) >> 2) & bottom58bits;
149     out[6] = (*((limb *) & in[43]) >> 4) & bottom58bits;
150     out[7] = (*((limb *) & in[50]) >> 6) & bottom58bits;
151     out[8] = (*((limb *) & in[58])) & bottom57bits;
152 }
153 
154 /*
155  * felem_to_bin66 takes an felem and serialises into a little endian, 66 byte
156  * array. This assumes that the CPU is little-endian.
157  */
158 static void felem_to_bin66(u8 out[66], const felem in)
159 {
160     memset(out, 0, 66);
161     (*((limb *) & out[0])) = in[0];
162     (*((limb *) & out[7])) |= in[1] << 2;
163     (*((limb *) & out[14])) |= in[2] << 4;
164     (*((limb *) & out[21])) |= in[3] << 6;
165     (*((limb *) & out[29])) = in[4];
166     (*((limb *) & out[36])) |= in[5] << 2;
167     (*((limb *) & out[43])) |= in[6] << 4;
168     (*((limb *) & out[50])) |= in[7] << 6;
169     (*((limb *) & out[58])) = in[8];
170 }
171 
172 /* To preserve endianness when using BN_bn2bin and BN_bin2bn */
173 static void flip_endian(u8 *out, const u8 *in, unsigned len)
174 {
175     unsigned i;
176     for (i = 0; i < len; ++i)
177         out[i] = in[len - 1 - i];
178 }
179 
180 /* BN_to_felem converts an OpenSSL BIGNUM into an felem */
181 static int BN_to_felem(felem out, const BIGNUM *bn)
182 {
183     felem_bytearray b_in;
184     felem_bytearray b_out;
185     unsigned num_bytes;
186 
187     /* BN_bn2bin eats leading zeroes */
188     memset(b_out, 0, sizeof(b_out));
189     num_bytes = BN_num_bytes(bn);
190     if (num_bytes > sizeof(b_out)) {
191         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
192         return 0;
193     }
194     if (BN_is_negative(bn)) {
195         ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE);
196         return 0;
197     }
198     num_bytes = BN_bn2bin(bn, b_in);
199     flip_endian(b_out, b_in, num_bytes);
200     bin66_to_felem(out, b_out);
201     return 1;
202 }
203 
204 /* felem_to_BN converts an felem into an OpenSSL BIGNUM */
205 static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
206 {
207     felem_bytearray b_in, b_out;
208     felem_to_bin66(b_in, in);
209     flip_endian(b_out, b_in, sizeof(b_out));
210     return BN_bin2bn(b_out, sizeof(b_out), out);
211 }
212 
213 /*-
214  * Field operations
215  * ----------------
216  */
217 
218 static void felem_one(felem out)
219 {
220     out[0] = 1;
221     out[1] = 0;
222     out[2] = 0;
223     out[3] = 0;
224     out[4] = 0;
225     out[5] = 0;
226     out[6] = 0;
227     out[7] = 0;
228     out[8] = 0;
229 }
230 
231 static void felem_assign(felem out, const felem in)
232 {
233     out[0] = in[0];
234     out[1] = in[1];
235     out[2] = in[2];
236     out[3] = in[3];
237     out[4] = in[4];
238     out[5] = in[5];
239     out[6] = in[6];
240     out[7] = in[7];
241     out[8] = in[8];
242 }
243 
244 /* felem_sum64 sets out = out + in. */
245 static void felem_sum64(felem out, const felem in)
246 {
247     out[0] += in[0];
248     out[1] += in[1];
249     out[2] += in[2];
250     out[3] += in[3];
251     out[4] += in[4];
252     out[5] += in[5];
253     out[6] += in[6];
254     out[7] += in[7];
255     out[8] += in[8];
256 }
257 
258 /* felem_scalar sets out = in * scalar */
259 static void felem_scalar(felem out, const felem in, limb scalar)
260 {
261     out[0] = in[0] * scalar;
262     out[1] = in[1] * scalar;
263     out[2] = in[2] * scalar;
264     out[3] = in[3] * scalar;
265     out[4] = in[4] * scalar;
266     out[5] = in[5] * scalar;
267     out[6] = in[6] * scalar;
268     out[7] = in[7] * scalar;
269     out[8] = in[8] * scalar;
270 }
271 
272 /* felem_scalar64 sets out = out * scalar */
273 static void felem_scalar64(felem out, limb scalar)
274 {
275     out[0] *= scalar;
276     out[1] *= scalar;
277     out[2] *= scalar;
278     out[3] *= scalar;
279     out[4] *= scalar;
280     out[5] *= scalar;
281     out[6] *= scalar;
282     out[7] *= scalar;
283     out[8] *= scalar;
284 }
285 
286 /* felem_scalar128 sets out = out * scalar */
287 static void felem_scalar128(largefelem out, limb scalar)
288 {
289     out[0] *= scalar;
290     out[1] *= scalar;
291     out[2] *= scalar;
292     out[3] *= scalar;
293     out[4] *= scalar;
294     out[5] *= scalar;
295     out[6] *= scalar;
296     out[7] *= scalar;
297     out[8] *= scalar;
298 }
299 
300 /*-
301  * felem_neg sets |out| to |-in|
302  * On entry:
303  *   in[i] < 2^59 + 2^14
304  * On exit:
305  *   out[i] < 2^62
306  */
307 static void felem_neg(felem out, const felem in)
308 {
309     /* In order to prevent underflow, we subtract from 0 mod p. */
310     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
311     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
312 
313     out[0] = two62m3 - in[0];
314     out[1] = two62m2 - in[1];
315     out[2] = two62m2 - in[2];
316     out[3] = two62m2 - in[3];
317     out[4] = two62m2 - in[4];
318     out[5] = two62m2 - in[5];
319     out[6] = two62m2 - in[6];
320     out[7] = two62m2 - in[7];
321     out[8] = two62m2 - in[8];
322 }
323 
324 /*-
325  * felem_diff64 subtracts |in| from |out|
326  * On entry:
327  *   in[i] < 2^59 + 2^14
328  * On exit:
329  *   out[i] < out[i] + 2^62
330  */
331 static void felem_diff64(felem out, const felem in)
332 {
333     /*
334      * In order to prevent underflow, we add 0 mod p before subtracting.
335      */
336     static const limb two62m3 = (((limb) 1) << 62) - (((limb) 1) << 5);
337     static const limb two62m2 = (((limb) 1) << 62) - (((limb) 1) << 4);
338 
339     out[0] += two62m3 - in[0];
340     out[1] += two62m2 - in[1];
341     out[2] += two62m2 - in[2];
342     out[3] += two62m2 - in[3];
343     out[4] += two62m2 - in[4];
344     out[5] += two62m2 - in[5];
345     out[6] += two62m2 - in[6];
346     out[7] += two62m2 - in[7];
347     out[8] += two62m2 - in[8];
348 }
349 
350 /*-
351  * felem_diff_128_64 subtracts |in| from |out|
352  * On entry:
353  *   in[i] < 2^62 + 2^17
354  * On exit:
355  *   out[i] < out[i] + 2^63
356  */
357 static void felem_diff_128_64(largefelem out, const felem in)
358 {
359     /*
360      * In order to prevent underflow, we add 0 mod p before subtracting.
361      */
362     static const limb two63m6 = (((limb) 1) << 62) - (((limb) 1) << 5);
363     static const limb two63m5 = (((limb) 1) << 62) - (((limb) 1) << 4);
364 
365     out[0] += two63m6 - in[0];
366     out[1] += two63m5 - in[1];
367     out[2] += two63m5 - in[2];
368     out[3] += two63m5 - in[3];
369     out[4] += two63m5 - in[4];
370     out[5] += two63m5 - in[5];
371     out[6] += two63m5 - in[6];
372     out[7] += two63m5 - in[7];
373     out[8] += two63m5 - in[8];
374 }
375 
376 /*-
377  * felem_diff_128_64 subtracts |in| from |out|
378  * On entry:
379  *   in[i] < 2^126
380  * On exit:
381  *   out[i] < out[i] + 2^127 - 2^69
382  */
383 static void felem_diff128(largefelem out, const largefelem in)
384 {
385     /*
386      * In order to prevent underflow, we add 0 mod p before subtracting.
387      */
388     static const uint128_t two127m70 =
389         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 70);
390     static const uint128_t two127m69 =
391         (((uint128_t) 1) << 127) - (((uint128_t) 1) << 69);
392 
393     out[0] += (two127m70 - in[0]);
394     out[1] += (two127m69 - in[1]);
395     out[2] += (two127m69 - in[2]);
396     out[3] += (two127m69 - in[3]);
397     out[4] += (two127m69 - in[4]);
398     out[5] += (two127m69 - in[5]);
399     out[6] += (two127m69 - in[6]);
400     out[7] += (two127m69 - in[7]);
401     out[8] += (two127m69 - in[8]);
402 }
403 
404 /*-
405  * felem_square sets |out| = |in|^2
406  * On entry:
407  *   in[i] < 2^62
408  * On exit:
409  *   out[i] < 17 * max(in[i]) * max(in[i])
410  */
411 static void felem_square(largefelem out, const felem in)
412 {
413     felem inx2, inx4;
414     felem_scalar(inx2, in, 2);
415     felem_scalar(inx4, in, 4);
416 
417     /*-
418      * We have many cases were we want to do
419      *   in[x] * in[y] +
420      *   in[y] * in[x]
421      * This is obviously just
422      *   2 * in[x] * in[y]
423      * However, rather than do the doubling on the 128 bit result, we
424      * double one of the inputs to the multiplication by reading from
425      * |inx2|
426      */
427 
428     out[0] = ((uint128_t) in[0]) * in[0];
429     out[1] = ((uint128_t) in[0]) * inx2[1];
430     out[2] = ((uint128_t) in[0]) * inx2[2] + ((uint128_t) in[1]) * in[1];
431     out[3] = ((uint128_t) in[0]) * inx2[3] + ((uint128_t) in[1]) * inx2[2];
432     out[4] = ((uint128_t) in[0]) * inx2[4] +
433              ((uint128_t) in[1]) * inx2[3] + ((uint128_t) in[2]) * in[2];
434     out[5] = ((uint128_t) in[0]) * inx2[5] +
435              ((uint128_t) in[1]) * inx2[4] + ((uint128_t) in[2]) * inx2[3];
436     out[6] = ((uint128_t) in[0]) * inx2[6] +
437              ((uint128_t) in[1]) * inx2[5] +
438              ((uint128_t) in[2]) * inx2[4] + ((uint128_t) in[3]) * in[3];
439     out[7] = ((uint128_t) in[0]) * inx2[7] +
440              ((uint128_t) in[1]) * inx2[6] +
441              ((uint128_t) in[2]) * inx2[5] + ((uint128_t) in[3]) * inx2[4];
442     out[8] = ((uint128_t) in[0]) * inx2[8] +
443              ((uint128_t) in[1]) * inx2[7] +
444              ((uint128_t) in[2]) * inx2[6] +
445              ((uint128_t) in[3]) * inx2[5] + ((uint128_t) in[4]) * in[4];
446 
447     /*
448      * The remaining limbs fall above 2^521, with the first falling at 2^522.
449      * They correspond to locations one bit up from the limbs produced above
450      * so we would have to multiply by two to align them. Again, rather than
451      * operate on the 128-bit result, we double one of the inputs to the
452      * multiplication. If we want to double for both this reason, and the
453      * reason above, then we end up multiplying by four.
454      */
455 
456     /* 9 */
457     out[0] += ((uint128_t) in[1]) * inx4[8] +
458               ((uint128_t) in[2]) * inx4[7] +
459               ((uint128_t) in[3]) * inx4[6] + ((uint128_t) in[4]) * inx4[5];
460 
461     /* 10 */
462     out[1] += ((uint128_t) in[2]) * inx4[8] +
463               ((uint128_t) in[3]) * inx4[7] +
464               ((uint128_t) in[4]) * inx4[6] + ((uint128_t) in[5]) * inx2[5];
465 
466     /* 11 */
467     out[2] += ((uint128_t) in[3]) * inx4[8] +
468               ((uint128_t) in[4]) * inx4[7] + ((uint128_t) in[5]) * inx4[6];
469 
470     /* 12 */
471     out[3] += ((uint128_t) in[4]) * inx4[8] +
472               ((uint128_t) in[5]) * inx4[7] + ((uint128_t) in[6]) * inx2[6];
473 
474     /* 13 */
475     out[4] += ((uint128_t) in[5]) * inx4[8] + ((uint128_t) in[6]) * inx4[7];
476 
477     /* 14 */
478     out[5] += ((uint128_t) in[6]) * inx4[8] + ((uint128_t) in[7]) * inx2[7];
479 
480     /* 15 */
481     out[6] += ((uint128_t) in[7]) * inx4[8];
482 
483     /* 16 */
484     out[7] += ((uint128_t) in[8]) * inx2[8];
485 }
486 
487 /*-
488  * felem_mul sets |out| = |in1| * |in2|
489  * On entry:
490  *   in1[i] < 2^64
491  *   in2[i] < 2^63
492  * On exit:
493  *   out[i] < 17 * max(in1[i]) * max(in2[i])
494  */
495 static void felem_mul(largefelem out, const felem in1, const felem in2)
496 {
497     felem in2x2;
498     felem_scalar(in2x2, in2, 2);
499 
500     out[0] = ((uint128_t) in1[0]) * in2[0];
501 
502     out[1] = ((uint128_t) in1[0]) * in2[1] +
503              ((uint128_t) in1[1]) * in2[0];
504 
505     out[2] = ((uint128_t) in1[0]) * in2[2] +
506              ((uint128_t) in1[1]) * in2[1] +
507              ((uint128_t) in1[2]) * in2[0];
508 
509     out[3] = ((uint128_t) in1[0]) * in2[3] +
510              ((uint128_t) in1[1]) * in2[2] +
511              ((uint128_t) in1[2]) * in2[1] +
512              ((uint128_t) in1[3]) * in2[0];
513 
514     out[4] = ((uint128_t) in1[0]) * in2[4] +
515              ((uint128_t) in1[1]) * in2[3] +
516              ((uint128_t) in1[2]) * in2[2] +
517              ((uint128_t) in1[3]) * in2[1] +
518              ((uint128_t) in1[4]) * in2[0];
519 
520     out[5] = ((uint128_t) in1[0]) * in2[5] +
521              ((uint128_t) in1[1]) * in2[4] +
522              ((uint128_t) in1[2]) * in2[3] +
523              ((uint128_t) in1[3]) * in2[2] +
524              ((uint128_t) in1[4]) * in2[1] +
525              ((uint128_t) in1[5]) * in2[0];
526 
527     out[6] = ((uint128_t) in1[0]) * in2[6] +
528              ((uint128_t) in1[1]) * in2[5] +
529              ((uint128_t) in1[2]) * in2[4] +
530              ((uint128_t) in1[3]) * in2[3] +
531              ((uint128_t) in1[4]) * in2[2] +
532              ((uint128_t) in1[5]) * in2[1] +
533              ((uint128_t) in1[6]) * in2[0];
534 
535     out[7] = ((uint128_t) in1[0]) * in2[7] +
536              ((uint128_t) in1[1]) * in2[6] +
537              ((uint128_t) in1[2]) * in2[5] +
538              ((uint128_t) in1[3]) * in2[4] +
539              ((uint128_t) in1[4]) * in2[3] +
540              ((uint128_t) in1[5]) * in2[2] +
541              ((uint128_t) in1[6]) * in2[1] +
542              ((uint128_t) in1[7]) * in2[0];
543 
544     out[8] = ((uint128_t) in1[0]) * in2[8] +
545              ((uint128_t) in1[1]) * in2[7] +
546              ((uint128_t) in1[2]) * in2[6] +
547              ((uint128_t) in1[3]) * in2[5] +
548              ((uint128_t) in1[4]) * in2[4] +
549              ((uint128_t) in1[5]) * in2[3] +
550              ((uint128_t) in1[6]) * in2[2] +
551              ((uint128_t) in1[7]) * in2[1] +
552              ((uint128_t) in1[8]) * in2[0];
553 
554     /* See comment in felem_square about the use of in2x2 here */
555 
556     out[0] += ((uint128_t) in1[1]) * in2x2[8] +
557               ((uint128_t) in1[2]) * in2x2[7] +
558               ((uint128_t) in1[3]) * in2x2[6] +
559               ((uint128_t) in1[4]) * in2x2[5] +
560               ((uint128_t) in1[5]) * in2x2[4] +
561               ((uint128_t) in1[6]) * in2x2[3] +
562               ((uint128_t) in1[7]) * in2x2[2] +
563               ((uint128_t) in1[8]) * in2x2[1];
564 
565     out[1] += ((uint128_t) in1[2]) * in2x2[8] +
566               ((uint128_t) in1[3]) * in2x2[7] +
567               ((uint128_t) in1[4]) * in2x2[6] +
568               ((uint128_t) in1[5]) * in2x2[5] +
569               ((uint128_t) in1[6]) * in2x2[4] +
570               ((uint128_t) in1[7]) * in2x2[3] +
571               ((uint128_t) in1[8]) * in2x2[2];
572 
573     out[2] += ((uint128_t) in1[3]) * in2x2[8] +
574               ((uint128_t) in1[4]) * in2x2[7] +
575               ((uint128_t) in1[5]) * in2x2[6] +
576               ((uint128_t) in1[6]) * in2x2[5] +
577               ((uint128_t) in1[7]) * in2x2[4] +
578               ((uint128_t) in1[8]) * in2x2[3];
579 
580     out[3] += ((uint128_t) in1[4]) * in2x2[8] +
581               ((uint128_t) in1[5]) * in2x2[7] +
582               ((uint128_t) in1[6]) * in2x2[6] +
583               ((uint128_t) in1[7]) * in2x2[5] +
584               ((uint128_t) in1[8]) * in2x2[4];
585 
586     out[4] += ((uint128_t) in1[5]) * in2x2[8] +
587               ((uint128_t) in1[6]) * in2x2[7] +
588               ((uint128_t) in1[7]) * in2x2[6] +
589               ((uint128_t) in1[8]) * in2x2[5];
590 
591     out[5] += ((uint128_t) in1[6]) * in2x2[8] +
592               ((uint128_t) in1[7]) * in2x2[7] +
593               ((uint128_t) in1[8]) * in2x2[6];
594 
595     out[6] += ((uint128_t) in1[7]) * in2x2[8] +
596               ((uint128_t) in1[8]) * in2x2[7];
597 
598     out[7] += ((uint128_t) in1[8]) * in2x2[8];
599 }
600 
601 static const limb bottom52bits = 0xfffffffffffff;
602 
603 /*-
604  * felem_reduce converts a largefelem to an felem.
605  * On entry:
606  *   in[i] < 2^128
607  * On exit:
608  *   out[i] < 2^59 + 2^14
609  */
610 static void felem_reduce(felem out, const largefelem in)
611 {
612     u64 overflow1, overflow2;
613 
614     out[0] = ((limb) in[0]) & bottom58bits;
615     out[1] = ((limb) in[1]) & bottom58bits;
616     out[2] = ((limb) in[2]) & bottom58bits;
617     out[3] = ((limb) in[3]) & bottom58bits;
618     out[4] = ((limb) in[4]) & bottom58bits;
619     out[5] = ((limb) in[5]) & bottom58bits;
620     out[6] = ((limb) in[6]) & bottom58bits;
621     out[7] = ((limb) in[7]) & bottom58bits;
622     out[8] = ((limb) in[8]) & bottom58bits;
623 
624     /* out[i] < 2^58 */
625 
626     out[1] += ((limb) in[0]) >> 58;
627     out[1] += (((limb) (in[0] >> 64)) & bottom52bits) << 6;
628     /*-
629      * out[1] < 2^58 + 2^6 + 2^58
630      *        = 2^59 + 2^6
631      */
632     out[2] += ((limb) (in[0] >> 64)) >> 52;
633 
634     out[2] += ((limb) in[1]) >> 58;
635     out[2] += (((limb) (in[1] >> 64)) & bottom52bits) << 6;
636     out[3] += ((limb) (in[1] >> 64)) >> 52;
637 
638     out[3] += ((limb) in[2]) >> 58;
639     out[3] += (((limb) (in[2] >> 64)) & bottom52bits) << 6;
640     out[4] += ((limb) (in[2] >> 64)) >> 52;
641 
642     out[4] += ((limb) in[3]) >> 58;
643     out[4] += (((limb) (in[3] >> 64)) & bottom52bits) << 6;
644     out[5] += ((limb) (in[3] >> 64)) >> 52;
645 
646     out[5] += ((limb) in[4]) >> 58;
647     out[5] += (((limb) (in[4] >> 64)) & bottom52bits) << 6;
648     out[6] += ((limb) (in[4] >> 64)) >> 52;
649 
650     out[6] += ((limb) in[5]) >> 58;
651     out[6] += (((limb) (in[5] >> 64)) & bottom52bits) << 6;
652     out[7] += ((limb) (in[5] >> 64)) >> 52;
653 
654     out[7] += ((limb) in[6]) >> 58;
655     out[7] += (((limb) (in[6] >> 64)) & bottom52bits) << 6;
656     out[8] += ((limb) (in[6] >> 64)) >> 52;
657 
658     out[8] += ((limb) in[7]) >> 58;
659     out[8] += (((limb) (in[7] >> 64)) & bottom52bits) << 6;
660     /*-
661      * out[x > 1] < 2^58 + 2^6 + 2^58 + 2^12
662      *            < 2^59 + 2^13
663      */
664     overflow1 = ((limb) (in[7] >> 64)) >> 52;
665 
666     overflow1 += ((limb) in[8]) >> 58;
667     overflow1 += (((limb) (in[8] >> 64)) & bottom52bits) << 6;
668     overflow2 = ((limb) (in[8] >> 64)) >> 52;
669 
670     overflow1 <<= 1;            /* overflow1 < 2^13 + 2^7 + 2^59 */
671     overflow2 <<= 1;            /* overflow2 < 2^13 */
672 
673     out[0] += overflow1;        /* out[0] < 2^60 */
674     out[1] += overflow2;        /* out[1] < 2^59 + 2^6 + 2^13 */
675 
676     out[1] += out[0] >> 58;
677     out[0] &= bottom58bits;
678     /*-
679      * out[0] < 2^58
680      * out[1] < 2^59 + 2^6 + 2^13 + 2^2
681      *        < 2^59 + 2^14
682      */
683 }
684 
685 static void felem_square_reduce(felem out, const felem in)
686 {
687     largefelem tmp;
688     felem_square(tmp, in);
689     felem_reduce(out, tmp);
690 }
691 
692 static void felem_mul_reduce(felem out, const felem in1, const felem in2)
693 {
694     largefelem tmp;
695     felem_mul(tmp, in1, in2);
696     felem_reduce(out, tmp);
697 }
698 
699 /*-
700  * felem_inv calculates |out| = |in|^{-1}
701  *
702  * Based on Fermat's Little Theorem:
703  *   a^p = a (mod p)
704  *   a^{p-1} = 1 (mod p)
705  *   a^{p-2} = a^{-1} (mod p)
706  */
707 static void felem_inv(felem out, const felem in)
708 {
709     felem ftmp, ftmp2, ftmp3, ftmp4;
710     largefelem tmp;
711     unsigned i;
712 
713     felem_square(tmp, in);
714     felem_reduce(ftmp, tmp);    /* 2^1 */
715     felem_mul(tmp, in, ftmp);
716     felem_reduce(ftmp, tmp);    /* 2^2 - 2^0 */
717     felem_assign(ftmp2, ftmp);
718     felem_square(tmp, ftmp);
719     felem_reduce(ftmp, tmp);    /* 2^3 - 2^1 */
720     felem_mul(tmp, in, ftmp);
721     felem_reduce(ftmp, tmp);    /* 2^3 - 2^0 */
722     felem_square(tmp, ftmp);
723     felem_reduce(ftmp, tmp);    /* 2^4 - 2^1 */
724 
725     felem_square(tmp, ftmp2);
726     felem_reduce(ftmp3, tmp);   /* 2^3 - 2^1 */
727     felem_square(tmp, ftmp3);
728     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^2 */
729     felem_mul(tmp, ftmp3, ftmp2);
730     felem_reduce(ftmp3, tmp);   /* 2^4 - 2^0 */
731 
732     felem_assign(ftmp2, ftmp3);
733     felem_square(tmp, ftmp3);
734     felem_reduce(ftmp3, tmp);   /* 2^5 - 2^1 */
735     felem_square(tmp, ftmp3);
736     felem_reduce(ftmp3, tmp);   /* 2^6 - 2^2 */
737     felem_square(tmp, ftmp3);
738     felem_reduce(ftmp3, tmp);   /* 2^7 - 2^3 */
739     felem_square(tmp, ftmp3);
740     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^4 */
741     felem_assign(ftmp4, ftmp3);
742     felem_mul(tmp, ftmp3, ftmp);
743     felem_reduce(ftmp4, tmp);   /* 2^8 - 2^1 */
744     felem_square(tmp, ftmp4);
745     felem_reduce(ftmp4, tmp);   /* 2^9 - 2^2 */
746     felem_mul(tmp, ftmp3, ftmp2);
747     felem_reduce(ftmp3, tmp);   /* 2^8 - 2^0 */
748     felem_assign(ftmp2, ftmp3);
749 
750     for (i = 0; i < 8; i++) {
751         felem_square(tmp, ftmp3);
752         felem_reduce(ftmp3, tmp); /* 2^16 - 2^8 */
753     }
754     felem_mul(tmp, ftmp3, ftmp2);
755     felem_reduce(ftmp3, tmp);   /* 2^16 - 2^0 */
756     felem_assign(ftmp2, ftmp3);
757 
758     for (i = 0; i < 16; i++) {
759         felem_square(tmp, ftmp3);
760         felem_reduce(ftmp3, tmp); /* 2^32 - 2^16 */
761     }
762     felem_mul(tmp, ftmp3, ftmp2);
763     felem_reduce(ftmp3, tmp);   /* 2^32 - 2^0 */
764     felem_assign(ftmp2, ftmp3);
765 
766     for (i = 0; i < 32; i++) {
767         felem_square(tmp, ftmp3);
768         felem_reduce(ftmp3, tmp); /* 2^64 - 2^32 */
769     }
770     felem_mul(tmp, ftmp3, ftmp2);
771     felem_reduce(ftmp3, tmp);   /* 2^64 - 2^0 */
772     felem_assign(ftmp2, ftmp3);
773 
774     for (i = 0; i < 64; i++) {
775         felem_square(tmp, ftmp3);
776         felem_reduce(ftmp3, tmp); /* 2^128 - 2^64 */
777     }
778     felem_mul(tmp, ftmp3, ftmp2);
779     felem_reduce(ftmp3, tmp);   /* 2^128 - 2^0 */
780     felem_assign(ftmp2, ftmp3);
781 
782     for (i = 0; i < 128; i++) {
783         felem_square(tmp, ftmp3);
784         felem_reduce(ftmp3, tmp); /* 2^256 - 2^128 */
785     }
786     felem_mul(tmp, ftmp3, ftmp2);
787     felem_reduce(ftmp3, tmp);   /* 2^256 - 2^0 */
788     felem_assign(ftmp2, ftmp3);
789 
790     for (i = 0; i < 256; i++) {
791         felem_square(tmp, ftmp3);
792         felem_reduce(ftmp3, tmp); /* 2^512 - 2^256 */
793     }
794     felem_mul(tmp, ftmp3, ftmp2);
795     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^0 */
796 
797     for (i = 0; i < 9; i++) {
798         felem_square(tmp, ftmp3);
799         felem_reduce(ftmp3, tmp); /* 2^521 - 2^9 */
800     }
801     felem_mul(tmp, ftmp3, ftmp4);
802     felem_reduce(ftmp3, tmp);   /* 2^512 - 2^2 */
803     felem_mul(tmp, ftmp3, in);
804     felem_reduce(out, tmp);     /* 2^512 - 3 */
805 }
806 
807 /* This is 2^521-1, expressed as an felem */
808 static const felem kPrime = {
809     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
810     0x03ffffffffffffff, 0x03ffffffffffffff, 0x03ffffffffffffff,
811     0x03ffffffffffffff, 0x03ffffffffffffff, 0x01ffffffffffffff
812 };
813 
814 /*-
815  * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
816  * otherwise.
817  * On entry:
818  *   in[i] < 2^59 + 2^14
819  */
820 static limb felem_is_zero(const felem in)
821 {
822     felem ftmp;
823     limb is_zero, is_p;
824     felem_assign(ftmp, in);
825 
826     ftmp[0] += ftmp[8] >> 57;
827     ftmp[8] &= bottom57bits;
828     /* ftmp[8] < 2^57 */
829     ftmp[1] += ftmp[0] >> 58;
830     ftmp[0] &= bottom58bits;
831     ftmp[2] += ftmp[1] >> 58;
832     ftmp[1] &= bottom58bits;
833     ftmp[3] += ftmp[2] >> 58;
834     ftmp[2] &= bottom58bits;
835     ftmp[4] += ftmp[3] >> 58;
836     ftmp[3] &= bottom58bits;
837     ftmp[5] += ftmp[4] >> 58;
838     ftmp[4] &= bottom58bits;
839     ftmp[6] += ftmp[5] >> 58;
840     ftmp[5] &= bottom58bits;
841     ftmp[7] += ftmp[6] >> 58;
842     ftmp[6] &= bottom58bits;
843     ftmp[8] += ftmp[7] >> 58;
844     ftmp[7] &= bottom58bits;
845     /* ftmp[8] < 2^57 + 4 */
846 
847     /*
848      * The ninth limb of 2*(2^521-1) is 0x03ffffffffffffff, which is greater
849      * than our bound for ftmp[8]. Therefore we only have to check if the
850      * zero is zero or 2^521-1.
851      */
852 
853     is_zero = 0;
854     is_zero |= ftmp[0];
855     is_zero |= ftmp[1];
856     is_zero |= ftmp[2];
857     is_zero |= ftmp[3];
858     is_zero |= ftmp[4];
859     is_zero |= ftmp[5];
860     is_zero |= ftmp[6];
861     is_zero |= ftmp[7];
862     is_zero |= ftmp[8];
863 
864     is_zero--;
865     /*
866      * We know that ftmp[i] < 2^63, therefore the only way that the top bit
867      * can be set is if is_zero was 0 before the decrement.
868      */
869     is_zero = 0 - (is_zero >> 63);
870 
871     is_p = ftmp[0] ^ kPrime[0];
872     is_p |= ftmp[1] ^ kPrime[1];
873     is_p |= ftmp[2] ^ kPrime[2];
874     is_p |= ftmp[3] ^ kPrime[3];
875     is_p |= ftmp[4] ^ kPrime[4];
876     is_p |= ftmp[5] ^ kPrime[5];
877     is_p |= ftmp[6] ^ kPrime[6];
878     is_p |= ftmp[7] ^ kPrime[7];
879     is_p |= ftmp[8] ^ kPrime[8];
880 
881     is_p--;
882     is_p = 0 - (is_p >> 63);
883 
884     is_zero |= is_p;
885     return is_zero;
886 }
887 
888 static int felem_is_zero_int(const void *in)
889 {
890     return (int)(felem_is_zero(in) & ((limb) 1));
891 }
892 
893 /*-
894  * felem_contract converts |in| to its unique, minimal representation.
895  * On entry:
896  *   in[i] < 2^59 + 2^14
897  */
898 static void felem_contract(felem out, const felem in)
899 {
900     limb is_p, is_greater, sign;
901     static const limb two58 = ((limb) 1) << 58;
902 
903     felem_assign(out, in);
904 
905     out[0] += out[8] >> 57;
906     out[8] &= bottom57bits;
907     /* out[8] < 2^57 */
908     out[1] += out[0] >> 58;
909     out[0] &= bottom58bits;
910     out[2] += out[1] >> 58;
911     out[1] &= bottom58bits;
912     out[3] += out[2] >> 58;
913     out[2] &= bottom58bits;
914     out[4] += out[3] >> 58;
915     out[3] &= bottom58bits;
916     out[5] += out[4] >> 58;
917     out[4] &= bottom58bits;
918     out[6] += out[5] >> 58;
919     out[5] &= bottom58bits;
920     out[7] += out[6] >> 58;
921     out[6] &= bottom58bits;
922     out[8] += out[7] >> 58;
923     out[7] &= bottom58bits;
924     /* out[8] < 2^57 + 4 */
925 
926     /*
927      * If the value is greater than 2^521-1 then we have to subtract 2^521-1
928      * out. See the comments in felem_is_zero regarding why we don't test for
929      * other multiples of the prime.
930      */
931 
932     /*
933      * First, if |out| is equal to 2^521-1, we subtract it out to get zero.
934      */
935 
936     is_p = out[0] ^ kPrime[0];
937     is_p |= out[1] ^ kPrime[1];
938     is_p |= out[2] ^ kPrime[2];
939     is_p |= out[3] ^ kPrime[3];
940     is_p |= out[4] ^ kPrime[4];
941     is_p |= out[5] ^ kPrime[5];
942     is_p |= out[6] ^ kPrime[6];
943     is_p |= out[7] ^ kPrime[7];
944     is_p |= out[8] ^ kPrime[8];
945 
946     is_p--;
947     is_p &= is_p << 32;
948     is_p &= is_p << 16;
949     is_p &= is_p << 8;
950     is_p &= is_p << 4;
951     is_p &= is_p << 2;
952     is_p &= is_p << 1;
953     is_p = 0 - (is_p >> 63);
954     is_p = ~is_p;
955 
956     /* is_p is 0 iff |out| == 2^521-1 and all ones otherwise */
957 
958     out[0] &= is_p;
959     out[1] &= is_p;
960     out[2] &= is_p;
961     out[3] &= is_p;
962     out[4] &= is_p;
963     out[5] &= is_p;
964     out[6] &= is_p;
965     out[7] &= is_p;
966     out[8] &= is_p;
967 
968     /*
969      * In order to test that |out| >= 2^521-1 we need only test if out[8] >>
970      * 57 is greater than zero as (2^521-1) + x >= 2^522
971      */
972     is_greater = out[8] >> 57;
973     is_greater |= is_greater << 32;
974     is_greater |= is_greater << 16;
975     is_greater |= is_greater << 8;
976     is_greater |= is_greater << 4;
977     is_greater |= is_greater << 2;
978     is_greater |= is_greater << 1;
979     is_greater = 0 - (is_greater >> 63);
980 
981     out[0] -= kPrime[0] & is_greater;
982     out[1] -= kPrime[1] & is_greater;
983     out[2] -= kPrime[2] & is_greater;
984     out[3] -= kPrime[3] & is_greater;
985     out[4] -= kPrime[4] & is_greater;
986     out[5] -= kPrime[5] & is_greater;
987     out[6] -= kPrime[6] & is_greater;
988     out[7] -= kPrime[7] & is_greater;
989     out[8] -= kPrime[8] & is_greater;
990 
991     /* Eliminate negative coefficients */
992     sign = -(out[0] >> 63);
993     out[0] += (two58 & sign);
994     out[1] -= (1 & sign);
995     sign = -(out[1] >> 63);
996     out[1] += (two58 & sign);
997     out[2] -= (1 & sign);
998     sign = -(out[2] >> 63);
999     out[2] += (two58 & sign);
1000     out[3] -= (1 & sign);
1001     sign = -(out[3] >> 63);
1002     out[3] += (two58 & sign);
1003     out[4] -= (1 & sign);
1004     sign = -(out[4] >> 63);
1005     out[4] += (two58 & sign);
1006     out[5] -= (1 & sign);
1007     sign = -(out[0] >> 63);
1008     out[5] += (two58 & sign);
1009     out[6] -= (1 & sign);
1010     sign = -(out[6] >> 63);
1011     out[6] += (two58 & sign);
1012     out[7] -= (1 & sign);
1013     sign = -(out[7] >> 63);
1014     out[7] += (two58 & sign);
1015     out[8] -= (1 & sign);
1016     sign = -(out[5] >> 63);
1017     out[5] += (two58 & sign);
1018     out[6] -= (1 & sign);
1019     sign = -(out[6] >> 63);
1020     out[6] += (two58 & sign);
1021     out[7] -= (1 & sign);
1022     sign = -(out[7] >> 63);
1023     out[7] += (two58 & sign);
1024     out[8] -= (1 & sign);
1025 }
1026 
1027 /*-
1028  * Group operations
1029  * ----------------
1030  *
1031  * Building on top of the field operations we have the operations on the
1032  * elliptic curve group itself. Points on the curve are represented in Jacobian
1033  * coordinates */
1034 
1035 /*-
1036  * point_double calculates 2*(x_in, y_in, z_in)
1037  *
1038  * The method is taken from:
1039  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
1040  *
1041  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
1042  * while x_out == y_in is not (maybe this works, but it's not tested). */
1043 static void
1044 point_double(felem x_out, felem y_out, felem z_out,
1045              const felem x_in, const felem y_in, const felem z_in)
1046 {
1047     largefelem tmp, tmp2;
1048     felem delta, gamma, beta, alpha, ftmp, ftmp2;
1049 
1050     felem_assign(ftmp, x_in);
1051     felem_assign(ftmp2, x_in);
1052 
1053     /* delta = z^2 */
1054     felem_square(tmp, z_in);
1055     felem_reduce(delta, tmp);   /* delta[i] < 2^59 + 2^14 */
1056 
1057     /* gamma = y^2 */
1058     felem_square(tmp, y_in);
1059     felem_reduce(gamma, tmp);   /* gamma[i] < 2^59 + 2^14 */
1060 
1061     /* beta = x*gamma */
1062     felem_mul(tmp, x_in, gamma);
1063     felem_reduce(beta, tmp);    /* beta[i] < 2^59 + 2^14 */
1064 
1065     /* alpha = 3*(x-delta)*(x+delta) */
1066     felem_diff64(ftmp, delta);
1067     /* ftmp[i] < 2^61 */
1068     felem_sum64(ftmp2, delta);
1069     /* ftmp2[i] < 2^60 + 2^15 */
1070     felem_scalar64(ftmp2, 3);
1071     /* ftmp2[i] < 3*2^60 + 3*2^15 */
1072     felem_mul(tmp, ftmp, ftmp2);
1073     /*-
1074      * tmp[i] < 17(3*2^121 + 3*2^76)
1075      *        = 61*2^121 + 61*2^76
1076      *        < 64*2^121 + 64*2^76
1077      *        = 2^127 + 2^82
1078      *        < 2^128
1079      */
1080     felem_reduce(alpha, tmp);
1081 
1082     /* x' = alpha^2 - 8*beta */
1083     felem_square(tmp, alpha);
1084     /*
1085      * tmp[i] < 17*2^120 < 2^125
1086      */
1087     felem_assign(ftmp, beta);
1088     felem_scalar64(ftmp, 8);
1089     /* ftmp[i] < 2^62 + 2^17 */
1090     felem_diff_128_64(tmp, ftmp);
1091     /* tmp[i] < 2^125 + 2^63 + 2^62 + 2^17 */
1092     felem_reduce(x_out, tmp);
1093 
1094     /* z' = (y + z)^2 - gamma - delta */
1095     felem_sum64(delta, gamma);
1096     /* delta[i] < 2^60 + 2^15 */
1097     felem_assign(ftmp, y_in);
1098     felem_sum64(ftmp, z_in);
1099     /* ftmp[i] < 2^60 + 2^15 */
1100     felem_square(tmp, ftmp);
1101     /*
1102      * tmp[i] < 17(2^122) < 2^127
1103      */
1104     felem_diff_128_64(tmp, delta);
1105     /* tmp[i] < 2^127 + 2^63 */
1106     felem_reduce(z_out, tmp);
1107 
1108     /* y' = alpha*(4*beta - x') - 8*gamma^2 */
1109     felem_scalar64(beta, 4);
1110     /* beta[i] < 2^61 + 2^16 */
1111     felem_diff64(beta, x_out);
1112     /* beta[i] < 2^61 + 2^60 + 2^16 */
1113     felem_mul(tmp, alpha, beta);
1114     /*-
1115      * tmp[i] < 17*((2^59 + 2^14)(2^61 + 2^60 + 2^16))
1116      *        = 17*(2^120 + 2^75 + 2^119 + 2^74 + 2^75 + 2^30)
1117      *        = 17*(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1118      *        < 2^128
1119      */
1120     felem_square(tmp2, gamma);
1121     /*-
1122      * tmp2[i] < 17*(2^59 + 2^14)^2
1123      *         = 17*(2^118 + 2^74 + 2^28)
1124      */
1125     felem_scalar128(tmp2, 8);
1126     /*-
1127      * tmp2[i] < 8*17*(2^118 + 2^74 + 2^28)
1128      *         = 2^125 + 2^121 + 2^81 + 2^77 + 2^35 + 2^31
1129      *         < 2^126
1130      */
1131     felem_diff128(tmp, tmp2);
1132     /*-
1133      * tmp[i] < 2^127 - 2^69 + 17(2^120 + 2^119 + 2^76 + 2^74 + 2^30)
1134      *        = 2^127 + 2^124 + 2^122 + 2^120 + 2^118 + 2^80 + 2^78 + 2^76 +
1135      *          2^74 + 2^69 + 2^34 + 2^30
1136      *        < 2^128
1137      */
1138     felem_reduce(y_out, tmp);
1139 }
1140 
1141 /* copy_conditional copies in to out iff mask is all ones. */
1142 static void copy_conditional(felem out, const felem in, limb mask)
1143 {
1144     unsigned i;
1145     for (i = 0; i < NLIMBS; ++i) {
1146         const limb tmp = mask & (in[i] ^ out[i]);
1147         out[i] ^= tmp;
1148     }
1149 }
1150 
1151 /*-
1152  * point_add calculates (x1, y1, z1) + (x2, y2, z2)
1153  *
1154  * The method is taken from
1155  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
1156  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
1157  *
1158  * This function includes a branch for checking whether the two input points
1159  * are equal (while not equal to the point at infinity). See comment below
1160  * on constant-time.
1161  */
1162 static void point_add(felem x3, felem y3, felem z3,
1163                       const felem x1, const felem y1, const felem z1,
1164                       const int mixed, const felem x2, const felem y2,
1165                       const felem z2)
1166 {
1167     felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
1168     largefelem tmp, tmp2;
1169     limb x_equal, y_equal, z1_is_zero, z2_is_zero;
1170 
1171     z1_is_zero = felem_is_zero(z1);
1172     z2_is_zero = felem_is_zero(z2);
1173 
1174     /* ftmp = z1z1 = z1**2 */
1175     felem_square(tmp, z1);
1176     felem_reduce(ftmp, tmp);
1177 
1178     if (!mixed) {
1179         /* ftmp2 = z2z2 = z2**2 */
1180         felem_square(tmp, z2);
1181         felem_reduce(ftmp2, tmp);
1182 
1183         /* u1 = ftmp3 = x1*z2z2 */
1184         felem_mul(tmp, x1, ftmp2);
1185         felem_reduce(ftmp3, tmp);
1186 
1187         /* ftmp5 = z1 + z2 */
1188         felem_assign(ftmp5, z1);
1189         felem_sum64(ftmp5, z2);
1190         /* ftmp5[i] < 2^61 */
1191 
1192         /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
1193         felem_square(tmp, ftmp5);
1194         /* tmp[i] < 17*2^122 */
1195         felem_diff_128_64(tmp, ftmp);
1196         /* tmp[i] < 17*2^122 + 2^63 */
1197         felem_diff_128_64(tmp, ftmp2);
1198         /* tmp[i] < 17*2^122 + 2^64 */
1199         felem_reduce(ftmp5, tmp);
1200 
1201         /* ftmp2 = z2 * z2z2 */
1202         felem_mul(tmp, ftmp2, z2);
1203         felem_reduce(ftmp2, tmp);
1204 
1205         /* s1 = ftmp6 = y1 * z2**3 */
1206         felem_mul(tmp, y1, ftmp2);
1207         felem_reduce(ftmp6, tmp);
1208     } else {
1209         /*
1210          * We'll assume z2 = 1 (special case z2 = 0 is handled later)
1211          */
1212 
1213         /* u1 = ftmp3 = x1*z2z2 */
1214         felem_assign(ftmp3, x1);
1215 
1216         /* ftmp5 = 2*z1z2 */
1217         felem_scalar(ftmp5, z1, 2);
1218 
1219         /* s1 = ftmp6 = y1 * z2**3 */
1220         felem_assign(ftmp6, y1);
1221     }
1222 
1223     /* u2 = x2*z1z1 */
1224     felem_mul(tmp, x2, ftmp);
1225     /* tmp[i] < 17*2^120 */
1226 
1227     /* h = ftmp4 = u2 - u1 */
1228     felem_diff_128_64(tmp, ftmp3);
1229     /* tmp[i] < 17*2^120 + 2^63 */
1230     felem_reduce(ftmp4, tmp);
1231 
1232     x_equal = felem_is_zero(ftmp4);
1233 
1234     /* z_out = ftmp5 * h */
1235     felem_mul(tmp, ftmp5, ftmp4);
1236     felem_reduce(z_out, tmp);
1237 
1238     /* ftmp = z1 * z1z1 */
1239     felem_mul(tmp, ftmp, z1);
1240     felem_reduce(ftmp, tmp);
1241 
1242     /* s2 = tmp = y2 * z1**3 */
1243     felem_mul(tmp, y2, ftmp);
1244     /* tmp[i] < 17*2^120 */
1245 
1246     /* r = ftmp5 = (s2 - s1)*2 */
1247     felem_diff_128_64(tmp, ftmp6);
1248     /* tmp[i] < 17*2^120 + 2^63 */
1249     felem_reduce(ftmp5, tmp);
1250     y_equal = felem_is_zero(ftmp5);
1251     felem_scalar64(ftmp5, 2);
1252     /* ftmp5[i] < 2^61 */
1253 
1254     if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
1255         /*
1256          * This is obviously not constant-time but it will almost-never happen
1257          * for ECDH / ECDSA. The case where it can happen is during scalar-mult
1258          * where the intermediate value gets very close to the group order.
1259          * Since |ec_GFp_nistp_recode_scalar_bits| produces signed digits for
1260          * the scalar, it's possible for the intermediate value to be a small
1261          * negative multiple of the base point, and for the final signed digit
1262          * to be the same value. We believe that this only occurs for the scalar
1263          * 1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1264          * ffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb
1265          * 71e913863f7, in that case the penultimate intermediate is -9G and
1266          * the final digit is also -9G. Since this only happens for a single
1267          * scalar, the timing leak is irrelevent. (Any attacker who wanted to
1268          * check whether a secret scalar was that exact value, can already do
1269          * so.)
1270          */
1271         point_double(x3, y3, z3, x1, y1, z1);
1272         return;
1273     }
1274 
1275     /* I = ftmp = (2h)**2 */
1276     felem_assign(ftmp, ftmp4);
1277     felem_scalar64(ftmp, 2);
1278     /* ftmp[i] < 2^61 */
1279     felem_square(tmp, ftmp);
1280     /* tmp[i] < 17*2^122 */
1281     felem_reduce(ftmp, tmp);
1282 
1283     /* J = ftmp2 = h * I */
1284     felem_mul(tmp, ftmp4, ftmp);
1285     felem_reduce(ftmp2, tmp);
1286 
1287     /* V = ftmp4 = U1 * I */
1288     felem_mul(tmp, ftmp3, ftmp);
1289     felem_reduce(ftmp4, tmp);
1290 
1291     /* x_out = r**2 - J - 2V */
1292     felem_square(tmp, ftmp5);
1293     /* tmp[i] < 17*2^122 */
1294     felem_diff_128_64(tmp, ftmp2);
1295     /* tmp[i] < 17*2^122 + 2^63 */
1296     felem_assign(ftmp3, ftmp4);
1297     felem_scalar64(ftmp4, 2);
1298     /* ftmp4[i] < 2^61 */
1299     felem_diff_128_64(tmp, ftmp4);
1300     /* tmp[i] < 17*2^122 + 2^64 */
1301     felem_reduce(x_out, tmp);
1302 
1303     /* y_out = r(V-x_out) - 2 * s1 * J */
1304     felem_diff64(ftmp3, x_out);
1305     /*
1306      * ftmp3[i] < 2^60 + 2^60 = 2^61
1307      */
1308     felem_mul(tmp, ftmp5, ftmp3);
1309     /* tmp[i] < 17*2^122 */
1310     felem_mul(tmp2, ftmp6, ftmp2);
1311     /* tmp2[i] < 17*2^120 */
1312     felem_scalar128(tmp2, 2);
1313     /* tmp2[i] < 17*2^121 */
1314     felem_diff128(tmp, tmp2);
1315         /*-
1316          * tmp[i] < 2^127 - 2^69 + 17*2^122
1317          *        = 2^126 - 2^122 - 2^6 - 2^2 - 1
1318          *        < 2^127
1319          */
1320     felem_reduce(y_out, tmp);
1321 
1322     copy_conditional(x_out, x2, z1_is_zero);
1323     copy_conditional(x_out, x1, z2_is_zero);
1324     copy_conditional(y_out, y2, z1_is_zero);
1325     copy_conditional(y_out, y1, z2_is_zero);
1326     copy_conditional(z_out, z2, z1_is_zero);
1327     copy_conditional(z_out, z1, z2_is_zero);
1328     felem_assign(x3, x_out);
1329     felem_assign(y3, y_out);
1330     felem_assign(z3, z_out);
1331 }
1332 
1333 /*-
1334  * Base point pre computation
1335  * --------------------------
1336  *
1337  * Two different sorts of precomputed tables are used in the following code.
1338  * Each contain various points on the curve, where each point is three field
1339  * elements (x, y, z).
1340  *
1341  * For the base point table, z is usually 1 (0 for the point at infinity).
1342  * This table has 16 elements:
1343  * index | bits    | point
1344  * ------+---------+------------------------------
1345  *     0 | 0 0 0 0 | 0G
1346  *     1 | 0 0 0 1 | 1G
1347  *     2 | 0 0 1 0 | 2^130G
1348  *     3 | 0 0 1 1 | (2^130 + 1)G
1349  *     4 | 0 1 0 0 | 2^260G
1350  *     5 | 0 1 0 1 | (2^260 + 1)G
1351  *     6 | 0 1 1 0 | (2^260 + 2^130)G
1352  *     7 | 0 1 1 1 | (2^260 + 2^130 + 1)G
1353  *     8 | 1 0 0 0 | 2^390G
1354  *     9 | 1 0 0 1 | (2^390 + 1)G
1355  *    10 | 1 0 1 0 | (2^390 + 2^130)G
1356  *    11 | 1 0 1 1 | (2^390 + 2^130 + 1)G
1357  *    12 | 1 1 0 0 | (2^390 + 2^260)G
1358  *    13 | 1 1 0 1 | (2^390 + 2^260 + 1)G
1359  *    14 | 1 1 1 0 | (2^390 + 2^260 + 2^130)G
1360  *    15 | 1 1 1 1 | (2^390 + 2^260 + 2^130 + 1)G
1361  *
1362  * The reason for this is so that we can clock bits into four different
1363  * locations when doing simple scalar multiplies against the base point.
1364  *
1365  * Tables for other points have table[i] = iG for i in 0 .. 16. */
1366 
1367 /* gmul is the table of precomputed base points */
1368 static const felem gmul[16][3] = {
1369 {{0, 0, 0, 0, 0, 0, 0, 0, 0},
1370  {0, 0, 0, 0, 0, 0, 0, 0, 0},
1371  {0, 0, 0, 0, 0, 0, 0, 0, 0}},
1372 {{0x017e7e31c2e5bd66, 0x022cf0615a90a6fe, 0x00127a2ffa8de334,
1373   0x01dfbf9d64a3f877, 0x006b4d3dbaa14b5e, 0x014fed487e0a2bd8,
1374   0x015b4429c6481390, 0x03a73678fb2d988e, 0x00c6858e06b70404},
1375  {0x00be94769fd16650, 0x031c21a89cb09022, 0x039013fad0761353,
1376   0x02657bd099031542, 0x03273e662c97ee72, 0x01e6d11a05ebef45,
1377   0x03d1bd998f544495, 0x03001172297ed0b1, 0x011839296a789a3b},
1378  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1379 {{0x0373faacbc875bae, 0x00f325023721c671, 0x00f666fd3dbde5ad,
1380   0x01a6932363f88ea7, 0x01fc6d9e13f9c47b, 0x03bcbffc2bbf734e,
1381   0x013ee3c3647f3a92, 0x029409fefe75d07d, 0x00ef9199963d85e5},
1382  {0x011173743ad5b178, 0x02499c7c21bf7d46, 0x035beaeabb8b1a58,
1383   0x00f989c4752ea0a3, 0x0101e1de48a9c1a3, 0x01a20076be28ba6c,
1384   0x02f8052e5eb2de95, 0x01bfe8f82dea117c, 0x0160074d3c36ddb7},
1385  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1386 {{0x012f3fc373393b3b, 0x03d3d6172f1419fa, 0x02adc943c0b86873,
1387   0x00d475584177952b, 0x012a4d1673750ee2, 0x00512517a0f13b0c,
1388   0x02b184671a7b1734, 0x0315b84236f1a50a, 0x00a4afc472edbdb9},
1389  {0x00152a7077f385c4, 0x03044007d8d1c2ee, 0x0065829d61d52b52,
1390   0x00494ff6b6631d0d, 0x00a11d94d5f06bcf, 0x02d2f89474d9282e,
1391   0x0241c5727c06eeb9, 0x0386928710fbdb9d, 0x01f883f727b0dfbe},
1392  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1393 {{0x019b0c3c9185544d, 0x006243a37c9d97db, 0x02ee3cbe030a2ad2,
1394   0x00cfdd946bb51e0d, 0x0271c00932606b91, 0x03f817d1ec68c561,
1395   0x03f37009806a369c, 0x03c1f30baf184fd5, 0x01091022d6d2f065},
1396  {0x0292c583514c45ed, 0x0316fca51f9a286c, 0x00300af507c1489a,
1397   0x0295f69008298cf1, 0x02c0ed8274943d7b, 0x016509b9b47a431e,
1398   0x02bc9de9634868ce, 0x005b34929bffcb09, 0x000c1a0121681524},
1399  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1400 {{0x0286abc0292fb9f2, 0x02665eee9805b3f7, 0x01ed7455f17f26d6,
1401   0x0346355b83175d13, 0x006284944cd0a097, 0x0191895bcdec5e51,
1402   0x02e288370afda7d9, 0x03b22312bfefa67a, 0x01d104d3fc0613fe},
1403  {0x0092421a12f7e47f, 0x0077a83fa373c501, 0x03bd25c5f696bd0d,
1404   0x035c41e4d5459761, 0x01ca0d1742b24f53, 0x00aaab27863a509c,
1405   0x018b6de47df73917, 0x025c0b771705cd01, 0x01fd51d566d760a7},
1406  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1407 {{0x01dd92ff6b0d1dbd, 0x039c5e2e8f8afa69, 0x0261ed13242c3b27,
1408   0x0382c6e67026e6a0, 0x01d60b10be2089f9, 0x03c15f3dce86723f,
1409   0x03c764a32d2a062d, 0x017307eac0fad056, 0x018207c0b96c5256},
1410  {0x0196a16d60e13154, 0x03e6ce74c0267030, 0x00ddbf2b4e52a5aa,
1411   0x012738241bbf31c8, 0x00ebe8dc04685a28, 0x024c2ad6d380d4a2,
1412   0x035ee062a6e62d0e, 0x0029ed74af7d3a0f, 0x00eef32aec142ebd},
1413  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1414 {{0x00c31ec398993b39, 0x03a9f45bcda68253, 0x00ac733c24c70890,
1415   0x00872b111401ff01, 0x01d178c23195eafb, 0x03bca2c816b87f74,
1416   0x0261a9af46fbad7a, 0x0324b2a8dd3d28f9, 0x00918121d8f24e23},
1417  {0x032bc8c1ca983cd7, 0x00d869dfb08fc8c6, 0x01693cb61fce1516,
1418   0x012a5ea68f4e88a8, 0x010869cab88d7ae3, 0x009081ad277ceee1,
1419   0x033a77166d064cdc, 0x03955235a1fb3a95, 0x01251a4a9b25b65e},
1420  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1421 {{0x00148a3a1b27f40b, 0x0123186df1b31fdc, 0x00026e7beaad34ce,
1422   0x01db446ac1d3dbba, 0x0299c1a33437eaec, 0x024540610183cbb7,
1423   0x0173bb0e9ce92e46, 0x02b937e43921214b, 0x01ab0436a9bf01b5},
1424  {0x0383381640d46948, 0x008dacbf0e7f330f, 0x03602122bcc3f318,
1425   0x01ee596b200620d6, 0x03bd0585fda430b3, 0x014aed77fd123a83,
1426   0x005ace749e52f742, 0x0390fe041da2b842, 0x0189a8ceb3299242},
1427  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1428 {{0x012a19d6b3282473, 0x00c0915918b423ce, 0x023a954eb94405ae,
1429   0x00529f692be26158, 0x0289fa1b6fa4b2aa, 0x0198ae4ceea346ef,
1430   0x0047d8cdfbdedd49, 0x00cc8c8953f0f6b8, 0x001424abbff49203},
1431  {0x0256732a1115a03a, 0x0351bc38665c6733, 0x03f7b950fb4a6447,
1432   0x000afffa94c22155, 0x025763d0a4dab540, 0x000511e92d4fc283,
1433   0x030a7e9eda0ee96c, 0x004c3cd93a28bf0a, 0x017edb3a8719217f},
1434  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1435 {{0x011de5675a88e673, 0x031d7d0f5e567fbe, 0x0016b2062c970ae5,
1436   0x03f4a2be49d90aa7, 0x03cef0bd13822866, 0x03f0923dcf774a6c,
1437   0x0284bebc4f322f72, 0x016ab2645302bb2c, 0x01793f95dace0e2a},
1438  {0x010646e13527a28f, 0x01ca1babd59dc5e7, 0x01afedfd9a5595df,
1439   0x01f15785212ea6b1, 0x0324e5d64f6ae3f4, 0x02d680f526d00645,
1440   0x0127920fadf627a7, 0x03b383f75df4f684, 0x0089e0057e783b0a},
1441  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1442 {{0x00f334b9eb3c26c6, 0x0298fdaa98568dce, 0x01c2d24843a82292,
1443   0x020bcb24fa1b0711, 0x02cbdb3d2b1875e6, 0x0014907598f89422,
1444   0x03abe3aa43b26664, 0x02cbf47f720bc168, 0x0133b5e73014b79b},
1445  {0x034aab5dab05779d, 0x00cdc5d71fee9abb, 0x0399f16bd4bd9d30,
1446   0x03582fa592d82647, 0x02be1cdfb775b0e9, 0x0034f7cea32e94cb,
1447   0x0335a7f08f56f286, 0x03b707e9565d1c8b, 0x0015c946ea5b614f},
1448  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1449 {{0x024676f6cff72255, 0x00d14625cac96378, 0x00532b6008bc3767,
1450   0x01fc16721b985322, 0x023355ea1b091668, 0x029de7afdc0317c3,
1451   0x02fc8a7ca2da037c, 0x02de1217d74a6f30, 0x013f7173175b73bf},
1452  {0x0344913f441490b5, 0x0200f9e272b61eca, 0x0258a246b1dd55d2,
1453   0x03753db9ea496f36, 0x025e02937a09c5ef, 0x030cbd3d14012692,
1454   0x01793a67e70dc72a, 0x03ec1d37048a662e, 0x006550f700c32a8d},
1455  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1456 {{0x00d3f48a347eba27, 0x008e636649b61bd8, 0x00d3b93716778fb3,
1457   0x004d1915757bd209, 0x019d5311a3da44e0, 0x016d1afcbbe6aade,
1458   0x0241bf5f73265616, 0x0384672e5d50d39b, 0x005009fee522b684},
1459  {0x029b4fab064435fe, 0x018868ee095bbb07, 0x01ea3d6936cc92b8,
1460   0x000608b00f78a2f3, 0x02db911073d1c20f, 0x018205938470100a,
1461   0x01f1e4964cbe6ff2, 0x021a19a29eed4663, 0x01414485f42afa81},
1462  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1463 {{0x01612b3a17f63e34, 0x03813992885428e6, 0x022b3c215b5a9608,
1464   0x029b4057e19f2fcb, 0x0384059a587af7e6, 0x02d6400ace6fe610,
1465   0x029354d896e8e331, 0x00c047ee6dfba65e, 0x0037720542e9d49d},
1466  {0x02ce9eed7c5e9278, 0x0374ed703e79643b, 0x01316c54c4072006,
1467   0x005aaa09054b2ee8, 0x002824000c840d57, 0x03d4eba24771ed86,
1468   0x0189c50aabc3bdae, 0x0338c01541e15510, 0x00466d56e38eed42},
1469  {1, 0, 0, 0, 0, 0, 0, 0, 0}},
1470 {{0x007efd8330ad8bd6, 0x02465ed48047710b, 0x0034c6606b215e0c,
1471   0x016ae30c53cbf839, 0x01fa17bd37161216, 0x018ead4e61ce8ab9,
1472   0x005482ed5f5dee46, 0x037543755bba1d7f, 0x005e5ac7e70a9d0f},
1473  {0x0117e1bb2fdcb2a2, 0x03deea36249f40c4, 0x028d09b4a6246cb7,
1474   0x03524b8855bcf756, 0x023d7d109d5ceb58, 0x0178e43e3223ef9c,
1475   0x0154536a0c6e966a, 0x037964d1286ee9fe, 0x0199bcd90e125055},
1476  {1, 0, 0, 0, 0, 0, 0, 0, 0}}
1477 };
1478 
1479 /*
1480  * select_point selects the |idx|th point from a precomputation table and
1481  * copies it to out.
1482  */
1483  /* pre_comp below is of the size provided in |size| */
1484 static void select_point(const limb idx, unsigned int size,
1485                          const felem pre_comp[][3], felem out[3])
1486 {
1487     unsigned i, j;
1488     limb *outlimbs = &out[0][0];
1489 
1490     memset(out, 0, sizeof(*out) * 3);
1491 
1492     for (i = 0; i < size; i++) {
1493         const limb *inlimbs = &pre_comp[i][0][0];
1494         limb mask = i ^ idx;
1495         mask |= mask >> 4;
1496         mask |= mask >> 2;
1497         mask |= mask >> 1;
1498         mask &= 1;
1499         mask--;
1500         for (j = 0; j < NLIMBS * 3; j++)
1501             outlimbs[j] |= inlimbs[j] & mask;
1502     }
1503 }
1504 
1505 /* get_bit returns the |i|th bit in |in| */
1506 static char get_bit(const felem_bytearray in, int i)
1507 {
1508     if (i < 0)
1509         return 0;
1510     return (in[i >> 3] >> (i & 7)) & 1;
1511 }
1512 
1513 /*
1514  * Interleaved point multiplication using precomputed point multiples: The
1515  * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
1516  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
1517  * generator, using certain (large) precomputed multiples in g_pre_comp.
1518  * Output point (X, Y, Z) is stored in x_out, y_out, z_out
1519  */
1520 static void batch_mul(felem x_out, felem y_out, felem z_out,
1521                       const felem_bytearray scalars[],
1522                       const unsigned num_points, const u8 *g_scalar,
1523                       const int mixed, const felem pre_comp[][17][3],
1524                       const felem g_pre_comp[16][3])
1525 {
1526     int i, skip;
1527     unsigned num, gen_mul = (g_scalar != NULL);
1528     felem nq[3], tmp[4];
1529     limb bits;
1530     u8 sign, digit;
1531 
1532     /* set nq to the point at infinity */
1533     memset(nq, 0, sizeof(nq));
1534 
1535     /*
1536      * Loop over all scalars msb-to-lsb, interleaving additions of multiples
1537      * of the generator (last quarter of rounds) and additions of other
1538      * points multiples (every 5th round).
1539      */
1540     skip = 1;                   /* save two point operations in the first
1541                                  * round */
1542     for (i = (num_points ? 520 : 130); i >= 0; --i) {
1543         /* double */
1544         if (!skip)
1545             point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
1546 
1547         /* add multiples of the generator */
1548         if (gen_mul && (i <= 130)) {
1549             bits = get_bit(g_scalar, i + 390) << 3;
1550             if (i < 130) {
1551                 bits |= get_bit(g_scalar, i + 260) << 2;
1552                 bits |= get_bit(g_scalar, i + 130) << 1;
1553                 bits |= get_bit(g_scalar, i);
1554             }
1555             /* select the point to add, in constant time */
1556             select_point(bits, 16, g_pre_comp, tmp);
1557             if (!skip) {
1558                 /* The 1 argument below is for "mixed" */
1559                 point_add(nq[0], nq[1], nq[2],
1560                           nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]);
1561             } else {
1562                 memcpy(nq, tmp, 3 * sizeof(felem));
1563                 skip = 0;
1564             }
1565         }
1566 
1567         /* do other additions every 5 doublings */
1568         if (num_points && (i % 5 == 0)) {
1569             /* loop over all scalars */
1570             for (num = 0; num < num_points; ++num) {
1571                 bits = get_bit(scalars[num], i + 4) << 5;
1572                 bits |= get_bit(scalars[num], i + 3) << 4;
1573                 bits |= get_bit(scalars[num], i + 2) << 3;
1574                 bits |= get_bit(scalars[num], i + 1) << 2;
1575                 bits |= get_bit(scalars[num], i) << 1;
1576                 bits |= get_bit(scalars[num], i - 1);
1577                 ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
1578 
1579                 /*
1580                  * select the point to add or subtract, in constant time
1581                  */
1582                 select_point(digit, 17, pre_comp[num], tmp);
1583                 felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
1584                                             * point */
1585                 copy_conditional(tmp[1], tmp[3], (-(limb) sign));
1586 
1587                 if (!skip) {
1588                     point_add(nq[0], nq[1], nq[2],
1589                               nq[0], nq[1], nq[2],
1590                               mixed, tmp[0], tmp[1], tmp[2]);
1591                 } else {
1592                     memcpy(nq, tmp, 3 * sizeof(felem));
1593                     skip = 0;
1594                 }
1595             }
1596         }
1597     }
1598     felem_assign(x_out, nq[0]);
1599     felem_assign(y_out, nq[1]);
1600     felem_assign(z_out, nq[2]);
1601 }
1602 
1603 /* Precomputation for the group generator. */
1604 struct nistp521_pre_comp_st {
1605     felem g_pre_comp[16][3];
1606     CRYPTO_REF_COUNT references;
1607     CRYPTO_RWLOCK *lock;
1608 };
1609 
1610 const EC_METHOD *EC_GFp_nistp521_method(void)
1611 {
1612     static const EC_METHOD ret = {
1613         EC_FLAGS_DEFAULT_OCT,
1614         NID_X9_62_prime_field,
1615         ec_GFp_nistp521_group_init,
1616         ec_GFp_simple_group_finish,
1617         ec_GFp_simple_group_clear_finish,
1618         ec_GFp_nist_group_copy,
1619         ec_GFp_nistp521_group_set_curve,
1620         ec_GFp_simple_group_get_curve,
1621         ec_GFp_simple_group_get_degree,
1622         ec_group_simple_order_bits,
1623         ec_GFp_simple_group_check_discriminant,
1624         ec_GFp_simple_point_init,
1625         ec_GFp_simple_point_finish,
1626         ec_GFp_simple_point_clear_finish,
1627         ec_GFp_simple_point_copy,
1628         ec_GFp_simple_point_set_to_infinity,
1629         ec_GFp_simple_set_Jprojective_coordinates_GFp,
1630         ec_GFp_simple_get_Jprojective_coordinates_GFp,
1631         ec_GFp_simple_point_set_affine_coordinates,
1632         ec_GFp_nistp521_point_get_affine_coordinates,
1633         0 /* point_set_compressed_coordinates */ ,
1634         0 /* point2oct */ ,
1635         0 /* oct2point */ ,
1636         ec_GFp_simple_add,
1637         ec_GFp_simple_dbl,
1638         ec_GFp_simple_invert,
1639         ec_GFp_simple_is_at_infinity,
1640         ec_GFp_simple_is_on_curve,
1641         ec_GFp_simple_cmp,
1642         ec_GFp_simple_make_affine,
1643         ec_GFp_simple_points_make_affine,
1644         ec_GFp_nistp521_points_mul,
1645         ec_GFp_nistp521_precompute_mult,
1646         ec_GFp_nistp521_have_precompute_mult,
1647         ec_GFp_nist_field_mul,
1648         ec_GFp_nist_field_sqr,
1649         0 /* field_div */ ,
1650         0 /* field_encode */ ,
1651         0 /* field_decode */ ,
1652         0,                      /* field_set_to_one */
1653         ec_key_simple_priv2oct,
1654         ec_key_simple_oct2priv,
1655         0, /* set private */
1656         ec_key_simple_generate_key,
1657         ec_key_simple_check_key,
1658         ec_key_simple_generate_public_key,
1659         0, /* keycopy */
1660         0, /* keyfinish */
1661         ecdh_simple_compute_key,
1662         0, /* field_inverse_mod_ord */
1663         0, /* blind_coordinates */
1664         0, /* ladder_pre */
1665         0, /* ladder_step */
1666         0  /* ladder_post */
1667     };
1668 
1669     return &ret;
1670 }
1671 
1672 /******************************************************************************/
1673 /*
1674  * FUNCTIONS TO MANAGE PRECOMPUTATION
1675  */
1676 
1677 static NISTP521_PRE_COMP *nistp521_pre_comp_new(void)
1678 {
1679     NISTP521_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
1680 
1681     if (ret == NULL) {
1682         ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1683         return ret;
1684     }
1685 
1686     ret->references = 1;
1687 
1688     ret->lock = CRYPTO_THREAD_lock_new();
1689     if (ret->lock == NULL) {
1690         ECerr(EC_F_NISTP521_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
1691         OPENSSL_free(ret);
1692         return NULL;
1693     }
1694     return ret;
1695 }
1696 
1697 NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *p)
1698 {
1699     int i;
1700     if (p != NULL)
1701         CRYPTO_UP_REF(&p->references, &i, p->lock);
1702     return p;
1703 }
1704 
1705 void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *p)
1706 {
1707     int i;
1708 
1709     if (p == NULL)
1710         return;
1711 
1712     CRYPTO_DOWN_REF(&p->references, &i, p->lock);
1713     REF_PRINT_COUNT("EC_nistp521", x);
1714     if (i > 0)
1715         return;
1716     REF_ASSERT_ISNT(i < 0);
1717 
1718     CRYPTO_THREAD_lock_free(p->lock);
1719     OPENSSL_free(p);
1720 }
1721 
1722 /******************************************************************************/
1723 /*
1724  * OPENSSL EC_METHOD FUNCTIONS
1725  */
1726 
1727 int ec_GFp_nistp521_group_init(EC_GROUP *group)
1728 {
1729     int ret;
1730     ret = ec_GFp_simple_group_init(group);
1731     group->a_is_minus3 = 1;
1732     return ret;
1733 }
1734 
1735 int ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
1736                                     const BIGNUM *a, const BIGNUM *b,
1737                                     BN_CTX *ctx)
1738 {
1739     int ret = 0;
1740     BN_CTX *new_ctx = NULL;
1741     BIGNUM *curve_p, *curve_a, *curve_b;
1742 
1743     if (ctx == NULL)
1744         if ((ctx = new_ctx = BN_CTX_new()) == NULL)
1745             return 0;
1746     BN_CTX_start(ctx);
1747     curve_p = BN_CTX_get(ctx);
1748     curve_a = BN_CTX_get(ctx);
1749     curve_b = BN_CTX_get(ctx);
1750     if (curve_b == NULL)
1751         goto err;
1752     BN_bin2bn(nistp521_curve_params[0], sizeof(felem_bytearray), curve_p);
1753     BN_bin2bn(nistp521_curve_params[1], sizeof(felem_bytearray), curve_a);
1754     BN_bin2bn(nistp521_curve_params[2], sizeof(felem_bytearray), curve_b);
1755     if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
1756         ECerr(EC_F_EC_GFP_NISTP521_GROUP_SET_CURVE,
1757               EC_R_WRONG_CURVE_PARAMETERS);
1758         goto err;
1759     }
1760     group->field_mod_func = BN_nist_mod_521;
1761     ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
1762  err:
1763     BN_CTX_end(ctx);
1764     BN_CTX_free(new_ctx);
1765     return ret;
1766 }
1767 
1768 /*
1769  * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
1770  * (X/Z^2, Y/Z^3)
1771  */
1772 int ec_GFp_nistp521_point_get_affine_coordinates(const EC_GROUP *group,
1773                                                  const EC_POINT *point,
1774                                                  BIGNUM *x, BIGNUM *y,
1775                                                  BN_CTX *ctx)
1776 {
1777     felem z1, z2, x_in, y_in, x_out, y_out;
1778     largefelem tmp;
1779 
1780     if (EC_POINT_is_at_infinity(group, point)) {
1781         ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1782               EC_R_POINT_AT_INFINITY);
1783         return 0;
1784     }
1785     if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
1786         (!BN_to_felem(z1, point->Z)))
1787         return 0;
1788     felem_inv(z2, z1);
1789     felem_square(tmp, z2);
1790     felem_reduce(z1, tmp);
1791     felem_mul(tmp, x_in, z1);
1792     felem_reduce(x_in, tmp);
1793     felem_contract(x_out, x_in);
1794     if (x != NULL) {
1795         if (!felem_to_BN(x, x_out)) {
1796             ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1797                   ERR_R_BN_LIB);
1798             return 0;
1799         }
1800     }
1801     felem_mul(tmp, z1, z2);
1802     felem_reduce(z1, tmp);
1803     felem_mul(tmp, y_in, z1);
1804     felem_reduce(y_in, tmp);
1805     felem_contract(y_out, y_in);
1806     if (y != NULL) {
1807         if (!felem_to_BN(y, y_out)) {
1808             ECerr(EC_F_EC_GFP_NISTP521_POINT_GET_AFFINE_COORDINATES,
1809                   ERR_R_BN_LIB);
1810             return 0;
1811         }
1812     }
1813     return 1;
1814 }
1815 
1816 /* points below is of size |num|, and tmp_felems is of size |num+1/ */
1817 static void make_points_affine(size_t num, felem points[][3],
1818                                felem tmp_felems[])
1819 {
1820     /*
1821      * Runs in constant time, unless an input is the point at infinity (which
1822      * normally shouldn't happen).
1823      */
1824     ec_GFp_nistp_points_make_affine_internal(num,
1825                                              points,
1826                                              sizeof(felem),
1827                                              tmp_felems,
1828                                              (void (*)(void *))felem_one,
1829                                              felem_is_zero_int,
1830                                              (void (*)(void *, const void *))
1831                                              felem_assign,
1832                                              (void (*)(void *, const void *))
1833                                              felem_square_reduce, (void (*)
1834                                                                    (void *,
1835                                                                     const void
1836                                                                     *,
1837                                                                     const void
1838                                                                     *))
1839                                              felem_mul_reduce,
1840                                              (void (*)(void *, const void *))
1841                                              felem_inv,
1842                                              (void (*)(void *, const void *))
1843                                              felem_contract);
1844 }
1845 
1846 /*
1847  * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
1848  * values Result is stored in r (r can equal one of the inputs).
1849  */
1850 int ec_GFp_nistp521_points_mul(const EC_GROUP *group, EC_POINT *r,
1851                                const BIGNUM *scalar, size_t num,
1852                                const EC_POINT *points[],
1853                                const BIGNUM *scalars[], BN_CTX *ctx)
1854 {
1855     int ret = 0;
1856     int j;
1857     int mixed = 0;
1858     BIGNUM *x, *y, *z, *tmp_scalar;
1859     felem_bytearray g_secret;
1860     felem_bytearray *secrets = NULL;
1861     felem (*pre_comp)[17][3] = NULL;
1862     felem *tmp_felems = NULL;
1863     felem_bytearray tmp;
1864     unsigned i, num_bytes;
1865     int have_pre_comp = 0;
1866     size_t num_points = num;
1867     felem x_in, y_in, z_in, x_out, y_out, z_out;
1868     NISTP521_PRE_COMP *pre = NULL;
1869     felem(*g_pre_comp)[3] = NULL;
1870     EC_POINT *generator = NULL;
1871     const EC_POINT *p = NULL;
1872     const BIGNUM *p_scalar = NULL;
1873 
1874     BN_CTX_start(ctx);
1875     x = BN_CTX_get(ctx);
1876     y = BN_CTX_get(ctx);
1877     z = BN_CTX_get(ctx);
1878     tmp_scalar = BN_CTX_get(ctx);
1879     if (tmp_scalar == NULL)
1880         goto err;
1881 
1882     if (scalar != NULL) {
1883         pre = group->pre_comp.nistp521;
1884         if (pre)
1885             /* we have precomputation, try to use it */
1886             g_pre_comp = &pre->g_pre_comp[0];
1887         else
1888             /* try to use the standard precomputation */
1889             g_pre_comp = (felem(*)[3]) gmul;
1890         generator = EC_POINT_new(group);
1891         if (generator == NULL)
1892             goto err;
1893         /* get the generator from precomputation */
1894         if (!felem_to_BN(x, g_pre_comp[1][0]) ||
1895             !felem_to_BN(y, g_pre_comp[1][1]) ||
1896             !felem_to_BN(z, g_pre_comp[1][2])) {
1897             ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1898             goto err;
1899         }
1900         if (!EC_POINT_set_Jprojective_coordinates_GFp(group,
1901                                                       generator, x, y, z,
1902                                                       ctx))
1903             goto err;
1904         if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
1905             /* precomputation matches generator */
1906             have_pre_comp = 1;
1907         else
1908             /*
1909              * we don't have valid precomputation: treat the generator as a
1910              * random point
1911              */
1912             num_points++;
1913     }
1914 
1915     if (num_points > 0) {
1916         if (num_points >= 2) {
1917             /*
1918              * unless we precompute multiples for just one point, converting
1919              * those into affine form is time well spent
1920              */
1921             mixed = 1;
1922         }
1923         secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
1924         pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
1925         if (mixed)
1926             tmp_felems =
1927                 OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
1928         if ((secrets == NULL) || (pre_comp == NULL)
1929             || (mixed && (tmp_felems == NULL))) {
1930             ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_MALLOC_FAILURE);
1931             goto err;
1932         }
1933 
1934         /*
1935          * we treat NULL scalars as 0, and NULL points as points at infinity,
1936          * i.e., they contribute nothing to the linear combination
1937          */
1938         for (i = 0; i < num_points; ++i) {
1939             if (i == num)
1940                 /*
1941                  * we didn't have a valid precomputation, so we pick the
1942                  * generator
1943                  */
1944             {
1945                 p = EC_GROUP_get0_generator(group);
1946                 p_scalar = scalar;
1947             } else
1948                 /* the i^th point */
1949             {
1950                 p = points[i];
1951                 p_scalar = scalars[i];
1952             }
1953             if ((p_scalar != NULL) && (p != NULL)) {
1954                 /* reduce scalar to 0 <= scalar < 2^521 */
1955                 if ((BN_num_bits(p_scalar) > 521)
1956                     || (BN_is_negative(p_scalar))) {
1957                     /*
1958                      * this is an unusual input, and we don't guarantee
1959                      * constant-timeness
1960                      */
1961                     if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
1962                         ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
1963                         goto err;
1964                     }
1965                     num_bytes = BN_bn2bin(tmp_scalar, tmp);
1966                 } else
1967                     num_bytes = BN_bn2bin(p_scalar, tmp);
1968                 flip_endian(secrets[i], tmp, num_bytes);
1969                 /* precompute multiples */
1970                 if ((!BN_to_felem(x_out, p->X)) ||
1971                     (!BN_to_felem(y_out, p->Y)) ||
1972                     (!BN_to_felem(z_out, p->Z)))
1973                     goto err;
1974                 memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
1975                 memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
1976                 memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
1977                 for (j = 2; j <= 16; ++j) {
1978                     if (j & 1) {
1979                         point_add(pre_comp[i][j][0], pre_comp[i][j][1],
1980                                   pre_comp[i][j][2], pre_comp[i][1][0],
1981                                   pre_comp[i][1][1], pre_comp[i][1][2], 0,
1982                                   pre_comp[i][j - 1][0],
1983                                   pre_comp[i][j - 1][1],
1984                                   pre_comp[i][j - 1][2]);
1985                     } else {
1986                         point_double(pre_comp[i][j][0], pre_comp[i][j][1],
1987                                      pre_comp[i][j][2], pre_comp[i][j / 2][0],
1988                                      pre_comp[i][j / 2][1],
1989                                      pre_comp[i][j / 2][2]);
1990                     }
1991                 }
1992             }
1993         }
1994         if (mixed)
1995             make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
1996     }
1997 
1998     /* the scalar for the generator */
1999     if ((scalar != NULL) && (have_pre_comp)) {
2000         memset(g_secret, 0, sizeof(g_secret));
2001         /* reduce scalar to 0 <= scalar < 2^521 */
2002         if ((BN_num_bits(scalar) > 521) || (BN_is_negative(scalar))) {
2003             /*
2004              * this is an unusual input, and we don't guarantee
2005              * constant-timeness
2006              */
2007             if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
2008                 ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2009                 goto err;
2010             }
2011             num_bytes = BN_bn2bin(tmp_scalar, tmp);
2012         } else
2013             num_bytes = BN_bn2bin(scalar, tmp);
2014         flip_endian(g_secret, tmp, num_bytes);
2015         /* do the multiplication with generator precomputation */
2016         batch_mul(x_out, y_out, z_out,
2017                   (const felem_bytearray(*))secrets, num_points,
2018                   g_secret,
2019                   mixed, (const felem(*)[17][3])pre_comp,
2020                   (const felem(*)[3])g_pre_comp);
2021     } else
2022         /* do the multiplication without generator precomputation */
2023         batch_mul(x_out, y_out, z_out,
2024                   (const felem_bytearray(*))secrets, num_points,
2025                   NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
2026     /* reduce the output to its unique minimal representation */
2027     felem_contract(x_in, x_out);
2028     felem_contract(y_in, y_out);
2029     felem_contract(z_in, z_out);
2030     if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
2031         (!felem_to_BN(z, z_in))) {
2032         ECerr(EC_F_EC_GFP_NISTP521_POINTS_MUL, ERR_R_BN_LIB);
2033         goto err;
2034     }
2035     ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
2036 
2037  err:
2038     BN_CTX_end(ctx);
2039     EC_POINT_free(generator);
2040     OPENSSL_free(secrets);
2041     OPENSSL_free(pre_comp);
2042     OPENSSL_free(tmp_felems);
2043     return ret;
2044 }
2045 
2046 int ec_GFp_nistp521_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
2047 {
2048     int ret = 0;
2049     NISTP521_PRE_COMP *pre = NULL;
2050     int i, j;
2051     BN_CTX *new_ctx = NULL;
2052     BIGNUM *x, *y;
2053     EC_POINT *generator = NULL;
2054     felem tmp_felems[16];
2055 
2056     /* throw away old precomputation */
2057     EC_pre_comp_free(group);
2058     if (ctx == NULL)
2059         if ((ctx = new_ctx = BN_CTX_new()) == NULL)
2060             return 0;
2061     BN_CTX_start(ctx);
2062     x = BN_CTX_get(ctx);
2063     y = BN_CTX_get(ctx);
2064     if (y == NULL)
2065         goto err;
2066     /* get the generator */
2067     if (group->generator == NULL)
2068         goto err;
2069     generator = EC_POINT_new(group);
2070     if (generator == NULL)
2071         goto err;
2072     BN_bin2bn(nistp521_curve_params[3], sizeof(felem_bytearray), x);
2073     BN_bin2bn(nistp521_curve_params[4], sizeof(felem_bytearray), y);
2074     if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
2075         goto err;
2076     if ((pre = nistp521_pre_comp_new()) == NULL)
2077         goto err;
2078     /*
2079      * if the generator is the standard one, use built-in precomputation
2080      */
2081     if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
2082         memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
2083         goto done;
2084     }
2085     if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
2086         (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
2087         (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
2088         goto err;
2089     /* compute 2^130*G, 2^260*G, 2^390*G */
2090     for (i = 1; i <= 4; i <<= 1) {
2091         point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1],
2092                      pre->g_pre_comp[2 * i][2], pre->g_pre_comp[i][0],
2093                      pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
2094         for (j = 0; j < 129; ++j) {
2095             point_double(pre->g_pre_comp[2 * i][0],
2096                          pre->g_pre_comp[2 * i][1],
2097                          pre->g_pre_comp[2 * i][2],
2098                          pre->g_pre_comp[2 * i][0],
2099                          pre->g_pre_comp[2 * i][1],
2100                          pre->g_pre_comp[2 * i][2]);
2101         }
2102     }
2103     /* g_pre_comp[0] is the point at infinity */
2104     memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
2105     /* the remaining multiples */
2106     /* 2^130*G + 2^260*G */
2107     point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1],
2108               pre->g_pre_comp[6][2], pre->g_pre_comp[4][0],
2109               pre->g_pre_comp[4][1], pre->g_pre_comp[4][2],
2110               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2111               pre->g_pre_comp[2][2]);
2112     /* 2^130*G + 2^390*G */
2113     point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1],
2114               pre->g_pre_comp[10][2], pre->g_pre_comp[8][0],
2115               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2116               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2117               pre->g_pre_comp[2][2]);
2118     /* 2^260*G + 2^390*G */
2119     point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1],
2120               pre->g_pre_comp[12][2], pre->g_pre_comp[8][0],
2121               pre->g_pre_comp[8][1], pre->g_pre_comp[8][2],
2122               0, pre->g_pre_comp[4][0], pre->g_pre_comp[4][1],
2123               pre->g_pre_comp[4][2]);
2124     /* 2^130*G + 2^260*G + 2^390*G */
2125     point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1],
2126               pre->g_pre_comp[14][2], pre->g_pre_comp[12][0],
2127               pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
2128               0, pre->g_pre_comp[2][0], pre->g_pre_comp[2][1],
2129               pre->g_pre_comp[2][2]);
2130     for (i = 1; i < 8; ++i) {
2131         /* odd multiples: add G */
2132         point_add(pre->g_pre_comp[2 * i + 1][0],
2133                   pre->g_pre_comp[2 * i + 1][1],
2134                   pre->g_pre_comp[2 * i + 1][2], pre->g_pre_comp[2 * i][0],
2135                   pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
2136                   pre->g_pre_comp[1][0], pre->g_pre_comp[1][1],
2137                   pre->g_pre_comp[1][2]);
2138     }
2139     make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
2140 
2141  done:
2142     SETPRECOMP(group, nistp521, pre);
2143     ret = 1;
2144     pre = NULL;
2145  err:
2146     BN_CTX_end(ctx);
2147     EC_POINT_free(generator);
2148     BN_CTX_free(new_ctx);
2149     EC_nistp521_pre_comp_free(pre);
2150     return ret;
2151 }
2152 
2153 int ec_GFp_nistp521_have_precompute_mult(const EC_GROUP *group)
2154 {
2155     return HAVEPRECOMP(group, nistp521);
2156 }
2157 
2158 #endif
2159