1 /* $OpenBSD: umac.c,v 1.21 2021/04/03 06:58:30 djm Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public license at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #ifndef UMAC_OUTPUT_LEN 56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 57 #endif 58 59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \ 60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16 61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16 62 #endif 63 64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 66 /* #define SSE2 0 Is SSE2 is available? */ 67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 68 /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ 69 70 /* ---------------------------------------------------------------------- */ 71 /* -- Global Includes --------------------------------------------------- */ 72 /* ---------------------------------------------------------------------- */ 73 74 #include "includes.h" 75 #include <sys/types.h> 76 #include <string.h> 77 #include <stdarg.h> 78 #include <stdio.h> 79 #include <stdlib.h> 80 #include <stddef.h> 81 82 #include "xmalloc.h" 83 #include "umac.h" 84 #include "misc.h" 85 86 /* ---------------------------------------------------------------------- */ 87 /* --- Primitive Data Types --- */ 88 /* ---------------------------------------------------------------------- */ 89 90 /* The following assumptions may need change on your system */ 91 typedef u_int8_t UINT8; /* 1 byte */ 92 typedef u_int16_t UINT16; /* 2 byte */ 93 typedef u_int32_t UINT32; /* 4 byte */ 94 typedef u_int64_t UINT64; /* 8 bytes */ 95 typedef unsigned int UWORD; /* Register */ 96 97 /* ---------------------------------------------------------------------- */ 98 /* --- Constants -------------------------------------------------------- */ 99 /* ---------------------------------------------------------------------- */ 100 101 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 102 103 /* Message "words" are read from memory in an endian-specific manner. */ 104 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 105 /* be set true if the host computer is little-endian. */ 106 107 #if BYTE_ORDER == LITTLE_ENDIAN 108 #define __LITTLE_ENDIAN__ 1 109 #else 110 #define __LITTLE_ENDIAN__ 0 111 #endif 112 113 /* ---------------------------------------------------------------------- */ 114 /* ---------------------------------------------------------------------- */ 115 /* ----- Architecture Specific ------------------------------------------ */ 116 /* ---------------------------------------------------------------------- */ 117 /* ---------------------------------------------------------------------- */ 118 119 120 /* ---------------------------------------------------------------------- */ 121 /* ---------------------------------------------------------------------- */ 122 /* ----- Primitive Routines --------------------------------------------- */ 123 /* ---------------------------------------------------------------------- */ 124 /* ---------------------------------------------------------------------- */ 125 126 127 /* ---------------------------------------------------------------------- */ 128 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 129 /* ---------------------------------------------------------------------- */ 130 131 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 132 133 /* ---------------------------------------------------------------------- */ 134 /* --- Endian Conversion --- Forcing assembly on some platforms */ 135 /* ---------------------------------------------------------------------- */ 136 137 #if (__LITTLE_ENDIAN__) 138 #define LOAD_UINT32_REVERSED(p) get_u32(p) 139 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) 140 #else 141 #define LOAD_UINT32_REVERSED(p) get_u32_le(p) 142 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) 143 #endif 144 145 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) 146 #define STORE_UINT32_BIG(p,v) put_u32(p, v) 147 148 /* ---------------------------------------------------------------------- */ 149 /* ---------------------------------------------------------------------- */ 150 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 151 /* ---------------------------------------------------------------------- */ 152 /* ---------------------------------------------------------------------- */ 153 154 /* UMAC uses AES with 16 byte block and key lengths */ 155 #define AES_BLOCK_LEN 16 156 157 /* OpenSSL's AES */ 158 #ifdef WITH_OPENSSL 159 #include "openbsd-compat/openssl-compat.h" 160 #ifndef USE_BUILTIN_RIJNDAEL 161 # include <openssl/aes.h> 162 #endif 163 typedef AES_KEY aes_int_key[1]; 164 #define aes_encryption(in,out,int_key) \ 165 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 166 #define aes_key_setup(key,int_key) \ 167 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 168 #else 169 #include "rijndael.h" 170 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) 171 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ 172 #define aes_encryption(in,out,int_key) \ 173 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) 174 #define aes_key_setup(key,int_key) \ 175 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ 176 UMAC_KEY_LEN*8) 177 #endif 178 179 /* The user-supplied UMAC key is stretched using AES in a counter 180 * mode to supply all random bits needed by UMAC. The kdf function takes 181 * an AES internal key representation 'key' and writes a stream of 182 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct 183 * 'ndx' causes a distinct byte stream. 184 */ 185 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) 186 { 187 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 188 UINT8 out_buf[AES_BLOCK_LEN]; 189 UINT8 *dst_buf = (UINT8 *)bufp; 190 int i; 191 192 /* Setup the initial value */ 193 in_buf[AES_BLOCK_LEN-9] = ndx; 194 in_buf[AES_BLOCK_LEN-1] = i = 1; 195 196 while (nbytes >= AES_BLOCK_LEN) { 197 aes_encryption(in_buf, out_buf, key); 198 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 199 in_buf[AES_BLOCK_LEN-1] = ++i; 200 nbytes -= AES_BLOCK_LEN; 201 dst_buf += AES_BLOCK_LEN; 202 } 203 if (nbytes) { 204 aes_encryption(in_buf, out_buf, key); 205 memcpy(dst_buf,out_buf,nbytes); 206 } 207 explicit_bzero(in_buf, sizeof(in_buf)); 208 explicit_bzero(out_buf, sizeof(out_buf)); 209 } 210 211 /* The final UHASH result is XOR'd with the output of a pseudorandom 212 * function. Here, we use AES to generate random output and 213 * xor the appropriate bytes depending on the last bits of nonce. 214 * This scheme is optimized for sequential, increasing big-endian nonces. 215 */ 216 217 typedef struct { 218 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 219 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 220 aes_int_key prf_key; /* Expanded AES key for PDF */ 221 } pdf_ctx; 222 223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 224 { 225 UINT8 buf[UMAC_KEY_LEN]; 226 227 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 228 aes_key_setup(buf, pc->prf_key); 229 230 /* Initialize pdf and cache */ 231 memset(pc->nonce, 0, sizeof(pc->nonce)); 232 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 233 explicit_bzero(buf, sizeof(buf)); 234 } 235 236 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) 237 { 238 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 239 * of the AES output. If last time around we returned the ndx-1st 240 * element, then we may have the result in the cache already. 241 */ 242 243 #if (UMAC_OUTPUT_LEN == 4) 244 #define LOW_BIT_MASK 3 245 #elif (UMAC_OUTPUT_LEN == 8) 246 #define LOW_BIT_MASK 1 247 #elif (UMAC_OUTPUT_LEN > 8) 248 #define LOW_BIT_MASK 0 249 #endif 250 union { 251 UINT8 tmp_nonce_lo[4]; 252 UINT32 align; 253 } t; 254 #if LOW_BIT_MASK != 0 255 int ndx = nonce[7] & LOW_BIT_MASK; 256 #endif 257 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 258 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 259 260 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 261 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 262 { 263 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 264 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 265 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 266 } 267 268 #if (UMAC_OUTPUT_LEN == 4) 269 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 270 #elif (UMAC_OUTPUT_LEN == 8) 271 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 272 #elif (UMAC_OUTPUT_LEN == 12) 273 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 274 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 275 #elif (UMAC_OUTPUT_LEN == 16) 276 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 277 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 278 #endif 279 } 280 281 /* ---------------------------------------------------------------------- */ 282 /* ---------------------------------------------------------------------- */ 283 /* ----- Begin NH Hash Section ------------------------------------------ */ 284 /* ---------------------------------------------------------------------- */ 285 /* ---------------------------------------------------------------------- */ 286 287 /* The NH-based hash functions used in UMAC are described in the UMAC paper 288 * and specification, both of which can be found at the UMAC website. 289 * The interface to this implementation has two 290 * versions, one expects the entire message being hashed to be passed 291 * in a single buffer and returns the hash result immediately. The second 292 * allows the message to be passed in a sequence of buffers. In the 293 * multiple-buffer interface, the client calls the routine nh_update() as 294 * many times as necessary. When there is no more data to be fed to the 295 * hash, the client calls nh_final() which calculates the hash output. 296 * Before beginning another hash calculation the nh_reset() routine 297 * must be called. The single-buffer routine, nh(), is equivalent to 298 * the sequence of calls nh_update() and nh_final(); however it is 299 * optimized and should be preferred whenever the multiple-buffer interface 300 * is not necessary. When using either interface, it is the client's 301 * responsibility to pass no more than L1_KEY_LEN bytes per hash result. 302 * 303 * The routine nh_init() initializes the nh_ctx data structure and 304 * must be called once, before any other PDF routine. 305 */ 306 307 /* The "nh_aux" routines do the actual NH hashing work. They 308 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 309 * produce output for all STREAMS NH iterations in one call, 310 * allowing the parallel implementation of the streams. 311 */ 312 313 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 314 #define L1_KEY_LEN 1024 /* Internal key bytes */ 315 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 316 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 317 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 318 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 319 320 typedef struct { 321 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 322 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 323 int next_data_empty; /* Bookkeeping variable for data buffer. */ 324 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ 325 UINT64 state[STREAMS]; /* on-line state */ 326 } nh_ctx; 327 328 329 #if (UMAC_OUTPUT_LEN == 4) 330 331 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 332 /* NH hashing primitive. Previous (partial) hash result is loaded and 333 * then stored via hp pointer. The length of the data pointed at by "dp", 334 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 335 * is expected to be endian compensated in memory at key setup. 336 */ 337 { 338 UINT64 h; 339 UWORD c = dlen / 32; 340 UINT32 *k = (UINT32 *)kp; 341 const UINT32 *d = (const UINT32 *)dp; 342 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 343 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 344 345 h = *((UINT64 *)hp); 346 do { 347 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 348 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 349 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 350 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 351 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 352 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 353 h += MUL64((k0 + d0), (k4 + d4)); 354 h += MUL64((k1 + d1), (k5 + d5)); 355 h += MUL64((k2 + d2), (k6 + d6)); 356 h += MUL64((k3 + d3), (k7 + d7)); 357 358 d += 8; 359 k += 8; 360 } while (--c); 361 *((UINT64 *)hp) = h; 362 } 363 364 #elif (UMAC_OUTPUT_LEN == 8) 365 366 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 367 /* Same as previous nh_aux, but two streams are handled in one pass, 368 * reading and writing 16 bytes of hash-state per call. 369 */ 370 { 371 UINT64 h1,h2; 372 UWORD c = dlen / 32; 373 UINT32 *k = (UINT32 *)kp; 374 const UINT32 *d = (const UINT32 *)dp; 375 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 376 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 377 k8,k9,k10,k11; 378 379 h1 = *((UINT64 *)hp); 380 h2 = *((UINT64 *)hp + 1); 381 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 382 do { 383 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 384 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 385 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 386 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 387 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 388 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 389 390 h1 += MUL64((k0 + d0), (k4 + d4)); 391 h2 += MUL64((k4 + d0), (k8 + d4)); 392 393 h1 += MUL64((k1 + d1), (k5 + d5)); 394 h2 += MUL64((k5 + d1), (k9 + d5)); 395 396 h1 += MUL64((k2 + d2), (k6 + d6)); 397 h2 += MUL64((k6 + d2), (k10 + d6)); 398 399 h1 += MUL64((k3 + d3), (k7 + d7)); 400 h2 += MUL64((k7 + d3), (k11 + d7)); 401 402 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 403 404 d += 8; 405 k += 8; 406 } while (--c); 407 ((UINT64 *)hp)[0] = h1; 408 ((UINT64 *)hp)[1] = h2; 409 } 410 411 #elif (UMAC_OUTPUT_LEN == 12) 412 413 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 414 /* Same as previous nh_aux, but two streams are handled in one pass, 415 * reading and writing 24 bytes of hash-state per call. 416 */ 417 { 418 UINT64 h1,h2,h3; 419 UWORD c = dlen / 32; 420 UINT32 *k = (UINT32 *)kp; 421 const UINT32 *d = (const UINT32 *)dp; 422 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 423 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 424 k8,k9,k10,k11,k12,k13,k14,k15; 425 426 h1 = *((UINT64 *)hp); 427 h2 = *((UINT64 *)hp + 1); 428 h3 = *((UINT64 *)hp + 2); 429 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 430 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 431 do { 432 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 433 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 434 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 435 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 436 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 437 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 438 439 h1 += MUL64((k0 + d0), (k4 + d4)); 440 h2 += MUL64((k4 + d0), (k8 + d4)); 441 h3 += MUL64((k8 + d0), (k12 + d4)); 442 443 h1 += MUL64((k1 + d1), (k5 + d5)); 444 h2 += MUL64((k5 + d1), (k9 + d5)); 445 h3 += MUL64((k9 + d1), (k13 + d5)); 446 447 h1 += MUL64((k2 + d2), (k6 + d6)); 448 h2 += MUL64((k6 + d2), (k10 + d6)); 449 h3 += MUL64((k10 + d2), (k14 + d6)); 450 451 h1 += MUL64((k3 + d3), (k7 + d7)); 452 h2 += MUL64((k7 + d3), (k11 + d7)); 453 h3 += MUL64((k11 + d3), (k15 + d7)); 454 455 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 456 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 457 458 d += 8; 459 k += 8; 460 } while (--c); 461 ((UINT64 *)hp)[0] = h1; 462 ((UINT64 *)hp)[1] = h2; 463 ((UINT64 *)hp)[2] = h3; 464 } 465 466 #elif (UMAC_OUTPUT_LEN == 16) 467 468 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 469 /* Same as previous nh_aux, but two streams are handled in one pass, 470 * reading and writing 24 bytes of hash-state per call. 471 */ 472 { 473 UINT64 h1,h2,h3,h4; 474 UWORD c = dlen / 32; 475 UINT32 *k = (UINT32 *)kp; 476 const UINT32 *d = (const UINT32 *)dp; 477 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 478 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 479 k8,k9,k10,k11,k12,k13,k14,k15, 480 k16,k17,k18,k19; 481 482 h1 = *((UINT64 *)hp); 483 h2 = *((UINT64 *)hp + 1); 484 h3 = *((UINT64 *)hp + 2); 485 h4 = *((UINT64 *)hp + 3); 486 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 487 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 488 do { 489 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 490 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 491 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 492 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 493 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 494 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 495 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 496 497 h1 += MUL64((k0 + d0), (k4 + d4)); 498 h2 += MUL64((k4 + d0), (k8 + d4)); 499 h3 += MUL64((k8 + d0), (k12 + d4)); 500 h4 += MUL64((k12 + d0), (k16 + d4)); 501 502 h1 += MUL64((k1 + d1), (k5 + d5)); 503 h2 += MUL64((k5 + d1), (k9 + d5)); 504 h3 += MUL64((k9 + d1), (k13 + d5)); 505 h4 += MUL64((k13 + d1), (k17 + d5)); 506 507 h1 += MUL64((k2 + d2), (k6 + d6)); 508 h2 += MUL64((k6 + d2), (k10 + d6)); 509 h3 += MUL64((k10 + d2), (k14 + d6)); 510 h4 += MUL64((k14 + d2), (k18 + d6)); 511 512 h1 += MUL64((k3 + d3), (k7 + d7)); 513 h2 += MUL64((k7 + d3), (k11 + d7)); 514 h3 += MUL64((k11 + d3), (k15 + d7)); 515 h4 += MUL64((k15 + d3), (k19 + d7)); 516 517 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 518 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 519 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 520 521 d += 8; 522 k += 8; 523 } while (--c); 524 ((UINT64 *)hp)[0] = h1; 525 ((UINT64 *)hp)[1] = h2; 526 ((UINT64 *)hp)[2] = h3; 527 ((UINT64 *)hp)[3] = h4; 528 } 529 530 /* ---------------------------------------------------------------------- */ 531 #endif /* UMAC_OUTPUT_LENGTH */ 532 /* ---------------------------------------------------------------------- */ 533 534 535 /* ---------------------------------------------------------------------- */ 536 537 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 538 /* This function is a wrapper for the primitive NH hash functions. It takes 539 * as argument "hc" the current hash context and a buffer which must be a 540 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 541 * appropriately according to how much message has been hashed already. 542 */ 543 { 544 UINT8 *key; 545 546 key = hc->nh_key + hc->bytes_hashed; 547 nh_aux(key, buf, hc->state, nbytes); 548 } 549 550 /* ---------------------------------------------------------------------- */ 551 552 #if (__LITTLE_ENDIAN__) 553 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 554 /* We endian convert the keys on little-endian computers to */ 555 /* compensate for the lack of big-endian memory reads during hashing. */ 556 { 557 UWORD iters = num_bytes / bpw; 558 if (bpw == 4) { 559 UINT32 *p = (UINT32 *)buf; 560 do { 561 *p = LOAD_UINT32_REVERSED(p); 562 p++; 563 } while (--iters); 564 } else if (bpw == 8) { 565 UINT32 *p = (UINT32 *)buf; 566 UINT32 t; 567 do { 568 t = LOAD_UINT32_REVERSED(p+1); 569 p[1] = LOAD_UINT32_REVERSED(p); 570 p[0] = t; 571 p += 2; 572 } while (--iters); 573 } 574 } 575 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 576 #else 577 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 578 #endif 579 580 /* ---------------------------------------------------------------------- */ 581 582 static void nh_reset(nh_ctx *hc) 583 /* Reset nh_ctx to ready for hashing of new data */ 584 { 585 hc->bytes_hashed = 0; 586 hc->next_data_empty = 0; 587 hc->state[0] = 0; 588 #if (UMAC_OUTPUT_LEN >= 8) 589 hc->state[1] = 0; 590 #endif 591 #if (UMAC_OUTPUT_LEN >= 12) 592 hc->state[2] = 0; 593 #endif 594 #if (UMAC_OUTPUT_LEN == 16) 595 hc->state[3] = 0; 596 #endif 597 598 } 599 600 /* ---------------------------------------------------------------------- */ 601 602 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 603 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 604 { 605 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 606 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 607 nh_reset(hc); 608 } 609 610 /* ---------------------------------------------------------------------- */ 611 612 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 613 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 614 /* even multiple of HASH_BUF_BYTES. */ 615 { 616 UINT32 i,j; 617 618 j = hc->next_data_empty; 619 if ((j + nbytes) >= HASH_BUF_BYTES) { 620 if (j) { 621 i = HASH_BUF_BYTES - j; 622 memcpy(hc->data+j, buf, i); 623 nh_transform(hc,hc->data,HASH_BUF_BYTES); 624 nbytes -= i; 625 buf += i; 626 hc->bytes_hashed += HASH_BUF_BYTES; 627 } 628 if (nbytes >= HASH_BUF_BYTES) { 629 i = nbytes & ~(HASH_BUF_BYTES - 1); 630 nh_transform(hc, buf, i); 631 nbytes -= i; 632 buf += i; 633 hc->bytes_hashed += i; 634 } 635 j = 0; 636 } 637 memcpy(hc->data + j, buf, nbytes); 638 hc->next_data_empty = j + nbytes; 639 } 640 641 /* ---------------------------------------------------------------------- */ 642 643 static void zero_pad(UINT8 *p, int nbytes) 644 { 645 /* Write "nbytes" of zeroes, beginning at "p" */ 646 if (nbytes >= (int)sizeof(UWORD)) { 647 while ((ptrdiff_t)p % sizeof(UWORD)) { 648 *p = 0; 649 nbytes--; 650 p++; 651 } 652 while (nbytes >= (int)sizeof(UWORD)) { 653 *(UWORD *)p = 0; 654 nbytes -= sizeof(UWORD); 655 p += sizeof(UWORD); 656 } 657 } 658 while (nbytes) { 659 *p = 0; 660 nbytes--; 661 p++; 662 } 663 } 664 665 /* ---------------------------------------------------------------------- */ 666 667 static void nh_final(nh_ctx *hc, UINT8 *result) 668 /* After passing some number of data buffers to nh_update() for integration 669 * into an NH context, nh_final is called to produce a hash result. If any 670 * bytes are in the buffer hc->data, incorporate them into the 671 * NH context. Finally, add into the NH accumulation "state" the total number 672 * of bits hashed. The resulting numbers are written to the buffer "result". 673 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 674 */ 675 { 676 int nh_len, nbits; 677 678 if (hc->next_data_empty != 0) { 679 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 680 ~(L1_PAD_BOUNDARY - 1)); 681 zero_pad(hc->data + hc->next_data_empty, 682 nh_len - hc->next_data_empty); 683 nh_transform(hc, hc->data, nh_len); 684 hc->bytes_hashed += hc->next_data_empty; 685 } else if (hc->bytes_hashed == 0) { 686 nh_len = L1_PAD_BOUNDARY; 687 zero_pad(hc->data, L1_PAD_BOUNDARY); 688 nh_transform(hc, hc->data, nh_len); 689 } 690 691 nbits = (hc->bytes_hashed << 3); 692 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 693 #if (UMAC_OUTPUT_LEN >= 8) 694 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 695 #endif 696 #if (UMAC_OUTPUT_LEN >= 12) 697 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 698 #endif 699 #if (UMAC_OUTPUT_LEN == 16) 700 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 701 #endif 702 nh_reset(hc); 703 } 704 705 /* ---------------------------------------------------------------------- */ 706 707 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 708 UINT32 unpadded_len, UINT8 *result) 709 /* All-in-one nh_update() and nh_final() equivalent. 710 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 711 * well aligned 712 */ 713 { 714 UINT32 nbits; 715 716 /* Initialize the hash state */ 717 nbits = (unpadded_len << 3); 718 719 ((UINT64 *)result)[0] = nbits; 720 #if (UMAC_OUTPUT_LEN >= 8) 721 ((UINT64 *)result)[1] = nbits; 722 #endif 723 #if (UMAC_OUTPUT_LEN >= 12) 724 ((UINT64 *)result)[2] = nbits; 725 #endif 726 #if (UMAC_OUTPUT_LEN == 16) 727 ((UINT64 *)result)[3] = nbits; 728 #endif 729 730 nh_aux(hc->nh_key, buf, result, padded_len); 731 } 732 733 /* ---------------------------------------------------------------------- */ 734 /* ---------------------------------------------------------------------- */ 735 /* ----- Begin UHASH Section -------------------------------------------- */ 736 /* ---------------------------------------------------------------------- */ 737 /* ---------------------------------------------------------------------- */ 738 739 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 740 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 741 * unless the initial data to be hashed is short. After the polynomial- 742 * layer, an inner-product hash is used to produce the final UHASH output. 743 * 744 * UHASH provides two interfaces, one all-at-once and another where data 745 * buffers are presented sequentially. In the sequential interface, the 746 * UHASH client calls the routine uhash_update() as many times as necessary. 747 * When there is no more data to be fed to UHASH, the client calls 748 * uhash_final() which 749 * calculates the UHASH output. Before beginning another UHASH calculation 750 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 751 * uhash(), is equivalent to the sequence of calls uhash_update() and 752 * uhash_final(); however it is optimized and should be 753 * used whenever the sequential interface is not necessary. 754 * 755 * The routine uhash_init() initializes the uhash_ctx data structure and 756 * must be called once, before any other UHASH routine. 757 */ 758 759 /* ---------------------------------------------------------------------- */ 760 /* ----- Constants and uhash_ctx ---------------------------------------- */ 761 /* ---------------------------------------------------------------------- */ 762 763 /* ---------------------------------------------------------------------- */ 764 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 765 /* ---------------------------------------------------------------------- */ 766 767 /* Primes and masks */ 768 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 769 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 770 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 771 772 773 /* ---------------------------------------------------------------------- */ 774 775 typedef struct uhash_ctx { 776 nh_ctx hash; /* Hash context for L1 NH hash */ 777 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 778 UINT64 poly_accum[STREAMS]; /* poly hash result */ 779 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 780 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 781 UINT32 msg_len; /* Total length of data passed */ 782 /* to uhash */ 783 } uhash_ctx; 784 typedef struct uhash_ctx *uhash_ctx_t; 785 786 /* ---------------------------------------------------------------------- */ 787 788 789 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 790 * word at a time. As described in the specification, poly32 and poly64 791 * require keys from special domains. The following implementations exploit 792 * the special domains to avoid overflow. The results are not guaranteed to 793 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 794 * patches any errant values. 795 */ 796 797 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 798 { 799 UINT32 key_hi = (UINT32)(key >> 32), 800 key_lo = (UINT32)key, 801 cur_hi = (UINT32)(cur >> 32), 802 cur_lo = (UINT32)cur, 803 x_lo, 804 x_hi; 805 UINT64 X,T,res; 806 807 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 808 x_lo = (UINT32)X; 809 x_hi = (UINT32)(X >> 32); 810 811 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 812 813 T = ((UINT64)x_lo << 32); 814 res += T; 815 if (res < T) 816 res += 59; 817 818 res += data; 819 if (res < data) 820 res += 59; 821 822 return res; 823 } 824 825 826 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 827 * implementation does not handle all ramp levels. Because we don't handle 828 * the ramp up to p128 modulus in this implementation, we are limited to 829 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 830 * bytes input to UMAC per tag, ie. 16MB). 831 */ 832 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 833 { 834 int i; 835 UINT64 *data=(UINT64*)data_in; 836 837 for (i = 0; i < STREAMS; i++) { 838 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 839 hc->poly_accum[i] = poly64(hc->poly_accum[i], 840 hc->poly_key_8[i], p64 - 1); 841 hc->poly_accum[i] = poly64(hc->poly_accum[i], 842 hc->poly_key_8[i], (data[i] - 59)); 843 } else { 844 hc->poly_accum[i] = poly64(hc->poly_accum[i], 845 hc->poly_key_8[i], data[i]); 846 } 847 } 848 } 849 850 851 /* ---------------------------------------------------------------------- */ 852 853 854 /* The final step in UHASH is an inner-product hash. The poly hash 855 * produces a result not necessarily WORD_LEN bytes long. The inner- 856 * product hash breaks the polyhash output into 16-bit chunks and 857 * multiplies each with a 36 bit key. 858 */ 859 860 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 861 { 862 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 863 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 864 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 865 t = t + ipkp[3] * (UINT64)(UINT16)(data); 866 867 return t; 868 } 869 870 static UINT32 ip_reduce_p36(UINT64 t) 871 { 872 /* Divisionless modular reduction */ 873 UINT64 ret; 874 875 ret = (t & m36) + 5 * (t >> 36); 876 if (ret >= p36) 877 ret -= p36; 878 879 /* return least significant 32 bits */ 880 return (UINT32)(ret); 881 } 882 883 884 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 885 * the polyhash stage is skipped and ip_short is applied directly to the 886 * NH output. 887 */ 888 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 889 { 890 UINT64 t; 891 UINT64 *nhp = (UINT64 *)nh_res; 892 893 t = ip_aux(0,ahc->ip_keys, nhp[0]); 894 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 895 #if (UMAC_OUTPUT_LEN >= 8) 896 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 897 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 898 #endif 899 #if (UMAC_OUTPUT_LEN >= 12) 900 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 901 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 902 #endif 903 #if (UMAC_OUTPUT_LEN == 16) 904 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 905 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 906 #endif 907 } 908 909 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 910 * the polyhash stage is not skipped and ip_long is applied to the 911 * polyhash output. 912 */ 913 static void ip_long(uhash_ctx_t ahc, u_char *res) 914 { 915 int i; 916 UINT64 t; 917 918 for (i = 0; i < STREAMS; i++) { 919 /* fix polyhash output not in Z_p64 */ 920 if (ahc->poly_accum[i] >= p64) 921 ahc->poly_accum[i] -= p64; 922 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 923 STORE_UINT32_BIG((UINT32 *)res+i, 924 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 925 } 926 } 927 928 929 /* ---------------------------------------------------------------------- */ 930 931 /* ---------------------------------------------------------------------- */ 932 933 /* Reset uhash context for next hash session */ 934 static int uhash_reset(uhash_ctx_t pc) 935 { 936 nh_reset(&pc->hash); 937 pc->msg_len = 0; 938 pc->poly_accum[0] = 1; 939 #if (UMAC_OUTPUT_LEN >= 8) 940 pc->poly_accum[1] = 1; 941 #endif 942 #if (UMAC_OUTPUT_LEN >= 12) 943 pc->poly_accum[2] = 1; 944 #endif 945 #if (UMAC_OUTPUT_LEN == 16) 946 pc->poly_accum[3] = 1; 947 #endif 948 return 1; 949 } 950 951 /* ---------------------------------------------------------------------- */ 952 953 /* Given a pointer to the internal key needed by kdf() and a uhash context, 954 * initialize the NH context and generate keys needed for poly and inner- 955 * product hashing. All keys are endian adjusted in memory so that native 956 * loads cause correct keys to be in registers during calculation. 957 */ 958 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 959 { 960 int i; 961 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 962 963 /* Zero the entire uhash context */ 964 memset(ahc, 0, sizeof(uhash_ctx)); 965 966 /* Initialize the L1 hash */ 967 nh_init(&ahc->hash, prf_key); 968 969 /* Setup L2 hash variables */ 970 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 971 for (i = 0; i < STREAMS; i++) { 972 /* Fill keys from the buffer, skipping bytes in the buffer not 973 * used by this implementation. Endian reverse the keys if on a 974 * little-endian computer. 975 */ 976 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 977 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 978 /* Mask the 64-bit keys to their special domain */ 979 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 980 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 981 } 982 983 /* Setup L3-1 hash variables */ 984 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 985 for (i = 0; i < STREAMS; i++) 986 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 987 4*sizeof(UINT64)); 988 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 989 sizeof(ahc->ip_keys)); 990 for (i = 0; i < STREAMS*4; i++) 991 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 992 993 /* Setup L3-2 hash variables */ 994 /* Fill buffer with index 4 key */ 995 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 996 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 997 STREAMS * sizeof(UINT32)); 998 explicit_bzero(buf, sizeof(buf)); 999 } 1000 1001 /* ---------------------------------------------------------------------- */ 1002 1003 #if 0 1004 static uhash_ctx_t uhash_alloc(u_char key[]) 1005 { 1006 /* Allocate memory and force to a 16-byte boundary. */ 1007 uhash_ctx_t ctx; 1008 u_char bytes_to_add; 1009 aes_int_key prf_key; 1010 1011 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1012 if (ctx) { 1013 if (ALLOC_BOUNDARY) { 1014 bytes_to_add = ALLOC_BOUNDARY - 1015 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1016 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1017 *((u_char *)ctx - 1) = bytes_to_add; 1018 } 1019 aes_key_setup(key,prf_key); 1020 uhash_init(ctx, prf_key); 1021 } 1022 return (ctx); 1023 } 1024 #endif 1025 1026 /* ---------------------------------------------------------------------- */ 1027 1028 #if 0 1029 static int uhash_free(uhash_ctx_t ctx) 1030 { 1031 /* Free memory allocated by uhash_alloc */ 1032 u_char bytes_to_sub; 1033 1034 if (ctx) { 1035 if (ALLOC_BOUNDARY) { 1036 bytes_to_sub = *((u_char *)ctx - 1); 1037 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1038 } 1039 free(ctx); 1040 } 1041 return (1); 1042 } 1043 #endif 1044 /* ---------------------------------------------------------------------- */ 1045 1046 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1047 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1048 * hash each one with NH, calling the polyhash on each NH output. 1049 */ 1050 { 1051 UWORD bytes_hashed, bytes_remaining; 1052 UINT64 result_buf[STREAMS]; 1053 UINT8 *nh_result = (UINT8 *)&result_buf; 1054 1055 if (ctx->msg_len + len <= L1_KEY_LEN) { 1056 nh_update(&ctx->hash, (const UINT8 *)input, len); 1057 ctx->msg_len += len; 1058 } else { 1059 1060 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1061 if (ctx->msg_len == L1_KEY_LEN) 1062 bytes_hashed = L1_KEY_LEN; 1063 1064 if (bytes_hashed + len >= L1_KEY_LEN) { 1065 1066 /* If some bytes have been passed to the hash function */ 1067 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1068 /* bytes to complete the current nh_block. */ 1069 if (bytes_hashed) { 1070 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1071 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1072 nh_final(&ctx->hash, nh_result); 1073 ctx->msg_len += bytes_remaining; 1074 poly_hash(ctx,(UINT32 *)nh_result); 1075 len -= bytes_remaining; 1076 input += bytes_remaining; 1077 } 1078 1079 /* Hash directly from input stream if enough bytes */ 1080 while (len >= L1_KEY_LEN) { 1081 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1082 L1_KEY_LEN, nh_result); 1083 ctx->msg_len += L1_KEY_LEN; 1084 len -= L1_KEY_LEN; 1085 input += L1_KEY_LEN; 1086 poly_hash(ctx,(UINT32 *)nh_result); 1087 } 1088 } 1089 1090 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1091 if (len) { 1092 nh_update(&ctx->hash, (const UINT8 *)input, len); 1093 ctx->msg_len += len; 1094 } 1095 } 1096 1097 return (1); 1098 } 1099 1100 /* ---------------------------------------------------------------------- */ 1101 1102 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1103 /* Incorporate any pending data, pad, and generate tag */ 1104 { 1105 UINT64 result_buf[STREAMS]; 1106 UINT8 *nh_result = (UINT8 *)&result_buf; 1107 1108 if (ctx->msg_len > L1_KEY_LEN) { 1109 if (ctx->msg_len % L1_KEY_LEN) { 1110 nh_final(&ctx->hash, nh_result); 1111 poly_hash(ctx,(UINT32 *)nh_result); 1112 } 1113 ip_long(ctx, res); 1114 } else { 1115 nh_final(&ctx->hash, nh_result); 1116 ip_short(ctx,nh_result, res); 1117 } 1118 uhash_reset(ctx); 1119 return (1); 1120 } 1121 1122 /* ---------------------------------------------------------------------- */ 1123 1124 #if 0 1125 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1126 /* assumes that msg is in a writable buffer of length divisible by */ 1127 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1128 { 1129 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1130 UINT32 nh_len; 1131 int extra_zeroes_needed; 1132 1133 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1134 * the polyhash. 1135 */ 1136 if (len <= L1_KEY_LEN) { 1137 if (len == 0) /* If zero length messages will not */ 1138 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1139 else 1140 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1141 extra_zeroes_needed = nh_len - len; 1142 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1143 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1144 ip_short(ahc,nh_result, res); 1145 } else { 1146 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1147 * output to poly_hash(). 1148 */ 1149 do { 1150 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1151 poly_hash(ahc,(UINT32 *)nh_result); 1152 len -= L1_KEY_LEN; 1153 msg += L1_KEY_LEN; 1154 } while (len >= L1_KEY_LEN); 1155 if (len) { 1156 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1157 extra_zeroes_needed = nh_len - len; 1158 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1159 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1160 poly_hash(ahc,(UINT32 *)nh_result); 1161 } 1162 1163 ip_long(ahc, res); 1164 } 1165 1166 uhash_reset(ahc); 1167 return 1; 1168 } 1169 #endif 1170 1171 /* ---------------------------------------------------------------------- */ 1172 /* ---------------------------------------------------------------------- */ 1173 /* ----- Begin UMAC Section --------------------------------------------- */ 1174 /* ---------------------------------------------------------------------- */ 1175 /* ---------------------------------------------------------------------- */ 1176 1177 /* The UMAC interface has two interfaces, an all-at-once interface where 1178 * the entire message to be authenticated is passed to UMAC in one buffer, 1179 * and a sequential interface where the message is presented a little at a 1180 * time. The all-at-once is more optimaized than the sequential version and 1181 * should be preferred when the sequential interface is not required. 1182 */ 1183 struct umac_ctx { 1184 uhash_ctx hash; /* Hash function for message compression */ 1185 pdf_ctx pdf; /* PDF for hashed output */ 1186 void *free_ptr; /* Address to free this struct via */ 1187 } umac_ctx; 1188 1189 /* ---------------------------------------------------------------------- */ 1190 1191 #if 0 1192 int umac_reset(struct umac_ctx *ctx) 1193 /* Reset the hash function to begin a new authentication. */ 1194 { 1195 uhash_reset(&ctx->hash); 1196 return (1); 1197 } 1198 #endif 1199 1200 /* ---------------------------------------------------------------------- */ 1201 1202 int umac_delete(struct umac_ctx *ctx) 1203 /* Deallocate the ctx structure */ 1204 { 1205 if (ctx) { 1206 if (ALLOC_BOUNDARY) 1207 ctx = (struct umac_ctx *)ctx->free_ptr; 1208 freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); 1209 } 1210 return (1); 1211 } 1212 1213 /* ---------------------------------------------------------------------- */ 1214 1215 struct umac_ctx *umac_new(const u_char key[]) 1216 /* Dynamically allocate a umac_ctx struct, initialize variables, 1217 * generate subkeys from key. Align to 16-byte boundary. 1218 */ 1219 { 1220 struct umac_ctx *ctx, *octx; 1221 size_t bytes_to_add; 1222 aes_int_key prf_key; 1223 1224 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1225 if (ctx) { 1226 if (ALLOC_BOUNDARY) { 1227 bytes_to_add = ALLOC_BOUNDARY - 1228 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1229 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1230 } 1231 ctx->free_ptr = octx; 1232 aes_key_setup(key, prf_key); 1233 pdf_init(&ctx->pdf, prf_key); 1234 uhash_init(&ctx->hash, prf_key); 1235 explicit_bzero(prf_key, sizeof(prf_key)); 1236 } 1237 1238 return (ctx); 1239 } 1240 1241 /* ---------------------------------------------------------------------- */ 1242 1243 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1244 /* Incorporate any pending data, pad, and generate tag */ 1245 { 1246 uhash_final(&ctx->hash, (u_char *)tag); 1247 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1248 1249 return (1); 1250 } 1251 1252 /* ---------------------------------------------------------------------- */ 1253 1254 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1255 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1256 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1257 /* output buffer is full. */ 1258 { 1259 uhash_update(&ctx->hash, input, len); 1260 return (1); 1261 } 1262 1263 /* ---------------------------------------------------------------------- */ 1264 1265 #if 0 1266 int umac(struct umac_ctx *ctx, u_char *input, 1267 long len, u_char tag[], 1268 u_char nonce[8]) 1269 /* All-in-one version simply calls umac_update() and umac_final(). */ 1270 { 1271 uhash(&ctx->hash, input, len, (u_char *)tag); 1272 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1273 1274 return (1); 1275 } 1276 #endif 1277 1278 /* ---------------------------------------------------------------------- */ 1279 /* ---------------------------------------------------------------------- */ 1280 /* ----- End UMAC Section ----------------------------------------------- */ 1281 /* ---------------------------------------------------------------------- */ 1282 /* ---------------------------------------------------------------------- */ 1283