1 /* $OpenBSD: umac.c,v 1.23 2023/03/07 01:30:52 djm Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public license at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #ifndef UMAC_OUTPUT_LEN 56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 57 #endif 58 59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \ 60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16 61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16 62 #endif 63 64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 66 /* #define SSE2 0 Is SSE2 is available? */ 67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 68 /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ 69 70 /* ---------------------------------------------------------------------- */ 71 /* -- Global Includes --------------------------------------------------- */ 72 /* ---------------------------------------------------------------------- */ 73 74 #include "includes.h" 75 #include <sys/types.h> 76 #include <string.h> 77 #include <stdarg.h> 78 #include <stdio.h> 79 #include <stdlib.h> 80 #include <stddef.h> 81 82 #include "xmalloc.h" 83 #include "umac.h" 84 #include "misc.h" 85 86 /* ---------------------------------------------------------------------- */ 87 /* --- Primitive Data Types --- */ 88 /* ---------------------------------------------------------------------- */ 89 90 /* The following assumptions may need change on your system */ 91 typedef u_int8_t UINT8; /* 1 byte */ 92 typedef u_int16_t UINT16; /* 2 byte */ 93 typedef u_int32_t UINT32; /* 4 byte */ 94 typedef u_int64_t UINT64; /* 8 bytes */ 95 typedef unsigned int UWORD; /* Register */ 96 97 /* ---------------------------------------------------------------------- */ 98 /* --- Constants -------------------------------------------------------- */ 99 /* ---------------------------------------------------------------------- */ 100 101 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 102 103 /* Message "words" are read from memory in an endian-specific manner. */ 104 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 105 /* be set true if the host computer is little-endian. */ 106 107 #if BYTE_ORDER == LITTLE_ENDIAN 108 #define __LITTLE_ENDIAN__ 1 109 #else 110 #define __LITTLE_ENDIAN__ 0 111 #endif 112 113 /* ---------------------------------------------------------------------- */ 114 /* ---------------------------------------------------------------------- */ 115 /* ----- Architecture Specific ------------------------------------------ */ 116 /* ---------------------------------------------------------------------- */ 117 /* ---------------------------------------------------------------------- */ 118 119 120 /* ---------------------------------------------------------------------- */ 121 /* ---------------------------------------------------------------------- */ 122 /* ----- Primitive Routines --------------------------------------------- */ 123 /* ---------------------------------------------------------------------- */ 124 /* ---------------------------------------------------------------------- */ 125 126 127 /* ---------------------------------------------------------------------- */ 128 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 129 /* ---------------------------------------------------------------------- */ 130 131 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 132 133 /* ---------------------------------------------------------------------- */ 134 /* --- Endian Conversion --- Forcing assembly on some platforms */ 135 /* ---------------------------------------------------------------------- */ 136 137 #if (__LITTLE_ENDIAN__) 138 #define LOAD_UINT32_REVERSED(p) get_u32(p) 139 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) 140 #else 141 #define LOAD_UINT32_REVERSED(p) get_u32_le(p) 142 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) 143 #endif 144 145 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) 146 #define STORE_UINT32_BIG(p,v) put_u32(p, v) 147 148 /* ---------------------------------------------------------------------- */ 149 /* ---------------------------------------------------------------------- */ 150 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 151 /* ---------------------------------------------------------------------- */ 152 /* ---------------------------------------------------------------------- */ 153 154 /* UMAC uses AES with 16 byte block and key lengths */ 155 #define AES_BLOCK_LEN 16 156 157 /* OpenSSL's AES */ 158 #ifdef WITH_OPENSSL 159 #include "openbsd-compat/openssl-compat.h" 160 #ifndef USE_BUILTIN_RIJNDAEL 161 # include <openssl/aes.h> 162 #endif 163 typedef AES_KEY aes_int_key[1]; 164 #define aes_encryption(in,out,int_key) \ 165 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 166 #define aes_key_setup(key,int_key) \ 167 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 168 #else 169 #include "rijndael.h" 170 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) 171 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ 172 #define aes_encryption(in,out,int_key) \ 173 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) 174 #define aes_key_setup(key,int_key) \ 175 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ 176 UMAC_KEY_LEN*8) 177 #endif 178 179 /* The user-supplied UMAC key is stretched using AES in a counter 180 * mode to supply all random bits needed by UMAC. The kdf function takes 181 * an AES internal key representation 'key' and writes a stream of 182 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct 183 * 'ndx' causes a distinct byte stream. 184 */ 185 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) 186 { 187 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 188 UINT8 out_buf[AES_BLOCK_LEN]; 189 UINT8 *dst_buf = (UINT8 *)bufp; 190 int i; 191 192 /* Setup the initial value */ 193 in_buf[AES_BLOCK_LEN-9] = ndx; 194 in_buf[AES_BLOCK_LEN-1] = i = 1; 195 196 while (nbytes >= AES_BLOCK_LEN) { 197 aes_encryption(in_buf, out_buf, key); 198 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 199 in_buf[AES_BLOCK_LEN-1] = ++i; 200 nbytes -= AES_BLOCK_LEN; 201 dst_buf += AES_BLOCK_LEN; 202 } 203 if (nbytes) { 204 aes_encryption(in_buf, out_buf, key); 205 memcpy(dst_buf,out_buf,nbytes); 206 } 207 explicit_bzero(in_buf, sizeof(in_buf)); 208 explicit_bzero(out_buf, sizeof(out_buf)); 209 } 210 211 /* The final UHASH result is XOR'd with the output of a pseudorandom 212 * function. Here, we use AES to generate random output and 213 * xor the appropriate bytes depending on the last bits of nonce. 214 * This scheme is optimized for sequential, increasing big-endian nonces. 215 */ 216 217 typedef struct { 218 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 219 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 220 aes_int_key prf_key; /* Expanded AES key for PDF */ 221 } pdf_ctx; 222 223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 224 { 225 UINT8 buf[UMAC_KEY_LEN]; 226 227 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 228 aes_key_setup(buf, pc->prf_key); 229 230 /* Initialize pdf and cache */ 231 memset(pc->nonce, 0, sizeof(pc->nonce)); 232 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 233 explicit_bzero(buf, sizeof(buf)); 234 } 235 236 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], 237 UINT8 buf[UMAC_OUTPUT_LEN]) 238 { 239 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 240 * of the AES output. If last time around we returned the ndx-1st 241 * element, then we may have the result in the cache already. 242 */ 243 244 #if (UMAC_OUTPUT_LEN == 4) 245 #define LOW_BIT_MASK 3 246 #elif (UMAC_OUTPUT_LEN == 8) 247 #define LOW_BIT_MASK 1 248 #elif (UMAC_OUTPUT_LEN > 8) 249 #define LOW_BIT_MASK 0 250 #endif 251 union { 252 UINT8 tmp_nonce_lo[4]; 253 UINT32 align; 254 } t; 255 #if LOW_BIT_MASK != 0 256 int ndx = nonce[7] & LOW_BIT_MASK; 257 #endif 258 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 259 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 260 261 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 262 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 263 { 264 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 265 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 266 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 267 } 268 269 #if (UMAC_OUTPUT_LEN == 4) 270 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 271 #elif (UMAC_OUTPUT_LEN == 8) 272 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 273 #elif (UMAC_OUTPUT_LEN == 12) 274 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 275 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 276 #elif (UMAC_OUTPUT_LEN == 16) 277 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 278 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 279 #endif 280 } 281 282 /* ---------------------------------------------------------------------- */ 283 /* ---------------------------------------------------------------------- */ 284 /* ----- Begin NH Hash Section ------------------------------------------ */ 285 /* ---------------------------------------------------------------------- */ 286 /* ---------------------------------------------------------------------- */ 287 288 /* The NH-based hash functions used in UMAC are described in the UMAC paper 289 * and specification, both of which can be found at the UMAC website. 290 * The interface to this implementation has two 291 * versions, one expects the entire message being hashed to be passed 292 * in a single buffer and returns the hash result immediately. The second 293 * allows the message to be passed in a sequence of buffers. In the 294 * multiple-buffer interface, the client calls the routine nh_update() as 295 * many times as necessary. When there is no more data to be fed to the 296 * hash, the client calls nh_final() which calculates the hash output. 297 * Before beginning another hash calculation the nh_reset() routine 298 * must be called. The single-buffer routine, nh(), is equivalent to 299 * the sequence of calls nh_update() and nh_final(); however it is 300 * optimized and should be preferred whenever the multiple-buffer interface 301 * is not necessary. When using either interface, it is the client's 302 * responsibility to pass no more than L1_KEY_LEN bytes per hash result. 303 * 304 * The routine nh_init() initializes the nh_ctx data structure and 305 * must be called once, before any other PDF routine. 306 */ 307 308 /* The "nh_aux" routines do the actual NH hashing work. They 309 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 310 * produce output for all STREAMS NH iterations in one call, 311 * allowing the parallel implementation of the streams. 312 */ 313 314 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 315 #define L1_KEY_LEN 1024 /* Internal key bytes */ 316 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 317 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 318 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 319 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 320 321 typedef struct { 322 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 323 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 324 int next_data_empty; /* Bookkeeping variable for data buffer. */ 325 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ 326 UINT64 state[STREAMS]; /* on-line state */ 327 } nh_ctx; 328 329 330 #if (UMAC_OUTPUT_LEN == 4) 331 332 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 333 /* NH hashing primitive. Previous (partial) hash result is loaded and 334 * then stored via hp pointer. The length of the data pointed at by "dp", 335 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 336 * is expected to be endian compensated in memory at key setup. 337 */ 338 { 339 UINT64 h; 340 UWORD c = dlen / 32; 341 UINT32 *k = (UINT32 *)kp; 342 const UINT32 *d = (const UINT32 *)dp; 343 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 344 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 345 346 h = *((UINT64 *)hp); 347 do { 348 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 349 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 350 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 351 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 352 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 353 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 354 h += MUL64((k0 + d0), (k4 + d4)); 355 h += MUL64((k1 + d1), (k5 + d5)); 356 h += MUL64((k2 + d2), (k6 + d6)); 357 h += MUL64((k3 + d3), (k7 + d7)); 358 359 d += 8; 360 k += 8; 361 } while (--c); 362 *((UINT64 *)hp) = h; 363 } 364 365 #elif (UMAC_OUTPUT_LEN == 8) 366 367 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 368 /* Same as previous nh_aux, but two streams are handled in one pass, 369 * reading and writing 16 bytes of hash-state per call. 370 */ 371 { 372 UINT64 h1,h2; 373 UWORD c = dlen / 32; 374 UINT32 *k = (UINT32 *)kp; 375 const UINT32 *d = (const UINT32 *)dp; 376 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 377 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 378 k8,k9,k10,k11; 379 380 h1 = *((UINT64 *)hp); 381 h2 = *((UINT64 *)hp + 1); 382 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 383 do { 384 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 385 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 386 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 387 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 388 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 389 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 390 391 h1 += MUL64((k0 + d0), (k4 + d4)); 392 h2 += MUL64((k4 + d0), (k8 + d4)); 393 394 h1 += MUL64((k1 + d1), (k5 + d5)); 395 h2 += MUL64((k5 + d1), (k9 + d5)); 396 397 h1 += MUL64((k2 + d2), (k6 + d6)); 398 h2 += MUL64((k6 + d2), (k10 + d6)); 399 400 h1 += MUL64((k3 + d3), (k7 + d7)); 401 h2 += MUL64((k7 + d3), (k11 + d7)); 402 403 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 404 405 d += 8; 406 k += 8; 407 } while (--c); 408 ((UINT64 *)hp)[0] = h1; 409 ((UINT64 *)hp)[1] = h2; 410 } 411 412 #elif (UMAC_OUTPUT_LEN == 12) 413 414 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 415 /* Same as previous nh_aux, but two streams are handled in one pass, 416 * reading and writing 24 bytes of hash-state per call. 417 */ 418 { 419 UINT64 h1,h2,h3; 420 UWORD c = dlen / 32; 421 UINT32 *k = (UINT32 *)kp; 422 const UINT32 *d = (const UINT32 *)dp; 423 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 424 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 425 k8,k9,k10,k11,k12,k13,k14,k15; 426 427 h1 = *((UINT64 *)hp); 428 h2 = *((UINT64 *)hp + 1); 429 h3 = *((UINT64 *)hp + 2); 430 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 431 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 432 do { 433 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 434 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 435 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 436 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 437 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 438 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 439 440 h1 += MUL64((k0 + d0), (k4 + d4)); 441 h2 += MUL64((k4 + d0), (k8 + d4)); 442 h3 += MUL64((k8 + d0), (k12 + d4)); 443 444 h1 += MUL64((k1 + d1), (k5 + d5)); 445 h2 += MUL64((k5 + d1), (k9 + d5)); 446 h3 += MUL64((k9 + d1), (k13 + d5)); 447 448 h1 += MUL64((k2 + d2), (k6 + d6)); 449 h2 += MUL64((k6 + d2), (k10 + d6)); 450 h3 += MUL64((k10 + d2), (k14 + d6)); 451 452 h1 += MUL64((k3 + d3), (k7 + d7)); 453 h2 += MUL64((k7 + d3), (k11 + d7)); 454 h3 += MUL64((k11 + d3), (k15 + d7)); 455 456 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 457 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 458 459 d += 8; 460 k += 8; 461 } while (--c); 462 ((UINT64 *)hp)[0] = h1; 463 ((UINT64 *)hp)[1] = h2; 464 ((UINT64 *)hp)[2] = h3; 465 } 466 467 #elif (UMAC_OUTPUT_LEN == 16) 468 469 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 470 /* Same as previous nh_aux, but two streams are handled in one pass, 471 * reading and writing 24 bytes of hash-state per call. 472 */ 473 { 474 UINT64 h1,h2,h3,h4; 475 UWORD c = dlen / 32; 476 UINT32 *k = (UINT32 *)kp; 477 const UINT32 *d = (const UINT32 *)dp; 478 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 479 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 480 k8,k9,k10,k11,k12,k13,k14,k15, 481 k16,k17,k18,k19; 482 483 h1 = *((UINT64 *)hp); 484 h2 = *((UINT64 *)hp + 1); 485 h3 = *((UINT64 *)hp + 2); 486 h4 = *((UINT64 *)hp + 3); 487 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 488 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 489 do { 490 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 491 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 492 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 493 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 494 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 495 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 496 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 497 498 h1 += MUL64((k0 + d0), (k4 + d4)); 499 h2 += MUL64((k4 + d0), (k8 + d4)); 500 h3 += MUL64((k8 + d0), (k12 + d4)); 501 h4 += MUL64((k12 + d0), (k16 + d4)); 502 503 h1 += MUL64((k1 + d1), (k5 + d5)); 504 h2 += MUL64((k5 + d1), (k9 + d5)); 505 h3 += MUL64((k9 + d1), (k13 + d5)); 506 h4 += MUL64((k13 + d1), (k17 + d5)); 507 508 h1 += MUL64((k2 + d2), (k6 + d6)); 509 h2 += MUL64((k6 + d2), (k10 + d6)); 510 h3 += MUL64((k10 + d2), (k14 + d6)); 511 h4 += MUL64((k14 + d2), (k18 + d6)); 512 513 h1 += MUL64((k3 + d3), (k7 + d7)); 514 h2 += MUL64((k7 + d3), (k11 + d7)); 515 h3 += MUL64((k11 + d3), (k15 + d7)); 516 h4 += MUL64((k15 + d3), (k19 + d7)); 517 518 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 519 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 520 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 521 522 d += 8; 523 k += 8; 524 } while (--c); 525 ((UINT64 *)hp)[0] = h1; 526 ((UINT64 *)hp)[1] = h2; 527 ((UINT64 *)hp)[2] = h3; 528 ((UINT64 *)hp)[3] = h4; 529 } 530 531 /* ---------------------------------------------------------------------- */ 532 #endif /* UMAC_OUTPUT_LENGTH */ 533 /* ---------------------------------------------------------------------- */ 534 535 536 /* ---------------------------------------------------------------------- */ 537 538 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 539 /* This function is a wrapper for the primitive NH hash functions. It takes 540 * as argument "hc" the current hash context and a buffer which must be a 541 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 542 * appropriately according to how much message has been hashed already. 543 */ 544 { 545 UINT8 *key; 546 547 key = hc->nh_key + hc->bytes_hashed; 548 nh_aux(key, buf, hc->state, nbytes); 549 } 550 551 /* ---------------------------------------------------------------------- */ 552 553 #if (__LITTLE_ENDIAN__) 554 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 555 /* We endian convert the keys on little-endian computers to */ 556 /* compensate for the lack of big-endian memory reads during hashing. */ 557 { 558 UWORD iters = num_bytes / bpw; 559 if (bpw == 4) { 560 UINT32 *p = (UINT32 *)buf; 561 do { 562 *p = LOAD_UINT32_REVERSED(p); 563 p++; 564 } while (--iters); 565 } else if (bpw == 8) { 566 UINT32 *p = (UINT32 *)buf; 567 UINT32 t; 568 do { 569 t = LOAD_UINT32_REVERSED(p+1); 570 p[1] = LOAD_UINT32_REVERSED(p); 571 p[0] = t; 572 p += 2; 573 } while (--iters); 574 } 575 } 576 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 577 #else 578 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 579 #endif 580 581 /* ---------------------------------------------------------------------- */ 582 583 static void nh_reset(nh_ctx *hc) 584 /* Reset nh_ctx to ready for hashing of new data */ 585 { 586 hc->bytes_hashed = 0; 587 hc->next_data_empty = 0; 588 hc->state[0] = 0; 589 #if (UMAC_OUTPUT_LEN >= 8) 590 hc->state[1] = 0; 591 #endif 592 #if (UMAC_OUTPUT_LEN >= 12) 593 hc->state[2] = 0; 594 #endif 595 #if (UMAC_OUTPUT_LEN == 16) 596 hc->state[3] = 0; 597 #endif 598 599 } 600 601 /* ---------------------------------------------------------------------- */ 602 603 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 604 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 605 { 606 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 607 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 608 nh_reset(hc); 609 } 610 611 /* ---------------------------------------------------------------------- */ 612 613 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 614 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 615 /* even multiple of HASH_BUF_BYTES. */ 616 { 617 UINT32 i,j; 618 619 j = hc->next_data_empty; 620 if ((j + nbytes) >= HASH_BUF_BYTES) { 621 if (j) { 622 i = HASH_BUF_BYTES - j; 623 memcpy(hc->data+j, buf, i); 624 nh_transform(hc,hc->data,HASH_BUF_BYTES); 625 nbytes -= i; 626 buf += i; 627 hc->bytes_hashed += HASH_BUF_BYTES; 628 } 629 if (nbytes >= HASH_BUF_BYTES) { 630 i = nbytes & ~(HASH_BUF_BYTES - 1); 631 nh_transform(hc, buf, i); 632 nbytes -= i; 633 buf += i; 634 hc->bytes_hashed += i; 635 } 636 j = 0; 637 } 638 memcpy(hc->data + j, buf, nbytes); 639 hc->next_data_empty = j + nbytes; 640 } 641 642 /* ---------------------------------------------------------------------- */ 643 644 static void zero_pad(UINT8 *p, int nbytes) 645 { 646 /* Write "nbytes" of zeroes, beginning at "p" */ 647 if (nbytes >= (int)sizeof(UWORD)) { 648 while ((ptrdiff_t)p % sizeof(UWORD)) { 649 *p = 0; 650 nbytes--; 651 p++; 652 } 653 while (nbytes >= (int)sizeof(UWORD)) { 654 *(UWORD *)p = 0; 655 nbytes -= sizeof(UWORD); 656 p += sizeof(UWORD); 657 } 658 } 659 while (nbytes) { 660 *p = 0; 661 nbytes--; 662 p++; 663 } 664 } 665 666 /* ---------------------------------------------------------------------- */ 667 668 static void nh_final(nh_ctx *hc, UINT8 *result) 669 /* After passing some number of data buffers to nh_update() for integration 670 * into an NH context, nh_final is called to produce a hash result. If any 671 * bytes are in the buffer hc->data, incorporate them into the 672 * NH context. Finally, add into the NH accumulation "state" the total number 673 * of bits hashed. The resulting numbers are written to the buffer "result". 674 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 675 */ 676 { 677 int nh_len, nbits; 678 679 if (hc->next_data_empty != 0) { 680 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 681 ~(L1_PAD_BOUNDARY - 1)); 682 zero_pad(hc->data + hc->next_data_empty, 683 nh_len - hc->next_data_empty); 684 nh_transform(hc, hc->data, nh_len); 685 hc->bytes_hashed += hc->next_data_empty; 686 } else if (hc->bytes_hashed == 0) { 687 nh_len = L1_PAD_BOUNDARY; 688 zero_pad(hc->data, L1_PAD_BOUNDARY); 689 nh_transform(hc, hc->data, nh_len); 690 } 691 692 nbits = (hc->bytes_hashed << 3); 693 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 694 #if (UMAC_OUTPUT_LEN >= 8) 695 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 696 #endif 697 #if (UMAC_OUTPUT_LEN >= 12) 698 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 699 #endif 700 #if (UMAC_OUTPUT_LEN == 16) 701 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 702 #endif 703 nh_reset(hc); 704 } 705 706 /* ---------------------------------------------------------------------- */ 707 708 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 709 UINT32 unpadded_len, UINT8 *result) 710 /* All-in-one nh_update() and nh_final() equivalent. 711 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 712 * well aligned 713 */ 714 { 715 UINT32 nbits; 716 717 /* Initialize the hash state */ 718 nbits = (unpadded_len << 3); 719 720 ((UINT64 *)result)[0] = nbits; 721 #if (UMAC_OUTPUT_LEN >= 8) 722 ((UINT64 *)result)[1] = nbits; 723 #endif 724 #if (UMAC_OUTPUT_LEN >= 12) 725 ((UINT64 *)result)[2] = nbits; 726 #endif 727 #if (UMAC_OUTPUT_LEN == 16) 728 ((UINT64 *)result)[3] = nbits; 729 #endif 730 731 nh_aux(hc->nh_key, buf, result, padded_len); 732 } 733 734 /* ---------------------------------------------------------------------- */ 735 /* ---------------------------------------------------------------------- */ 736 /* ----- Begin UHASH Section -------------------------------------------- */ 737 /* ---------------------------------------------------------------------- */ 738 /* ---------------------------------------------------------------------- */ 739 740 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 741 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 742 * unless the initial data to be hashed is short. After the polynomial- 743 * layer, an inner-product hash is used to produce the final UHASH output. 744 * 745 * UHASH provides two interfaces, one all-at-once and another where data 746 * buffers are presented sequentially. In the sequential interface, the 747 * UHASH client calls the routine uhash_update() as many times as necessary. 748 * When there is no more data to be fed to UHASH, the client calls 749 * uhash_final() which 750 * calculates the UHASH output. Before beginning another UHASH calculation 751 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 752 * uhash(), is equivalent to the sequence of calls uhash_update() and 753 * uhash_final(); however it is optimized and should be 754 * used whenever the sequential interface is not necessary. 755 * 756 * The routine uhash_init() initializes the uhash_ctx data structure and 757 * must be called once, before any other UHASH routine. 758 */ 759 760 /* ---------------------------------------------------------------------- */ 761 /* ----- Constants and uhash_ctx ---------------------------------------- */ 762 /* ---------------------------------------------------------------------- */ 763 764 /* ---------------------------------------------------------------------- */ 765 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 766 /* ---------------------------------------------------------------------- */ 767 768 /* Primes and masks */ 769 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 770 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 771 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 772 773 774 /* ---------------------------------------------------------------------- */ 775 776 typedef struct uhash_ctx { 777 nh_ctx hash; /* Hash context for L1 NH hash */ 778 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 779 UINT64 poly_accum[STREAMS]; /* poly hash result */ 780 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 781 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 782 UINT32 msg_len; /* Total length of data passed */ 783 /* to uhash */ 784 } uhash_ctx; 785 typedef struct uhash_ctx *uhash_ctx_t; 786 787 /* ---------------------------------------------------------------------- */ 788 789 790 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 791 * word at a time. As described in the specification, poly32 and poly64 792 * require keys from special domains. The following implementations exploit 793 * the special domains to avoid overflow. The results are not guaranteed to 794 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 795 * patches any errant values. 796 */ 797 798 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 799 { 800 UINT32 key_hi = (UINT32)(key >> 32), 801 key_lo = (UINT32)key, 802 cur_hi = (UINT32)(cur >> 32), 803 cur_lo = (UINT32)cur, 804 x_lo, 805 x_hi; 806 UINT64 X,T,res; 807 808 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 809 x_lo = (UINT32)X; 810 x_hi = (UINT32)(X >> 32); 811 812 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 813 814 T = ((UINT64)x_lo << 32); 815 res += T; 816 if (res < T) 817 res += 59; 818 819 res += data; 820 if (res < data) 821 res += 59; 822 823 return res; 824 } 825 826 827 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 828 * implementation does not handle all ramp levels. Because we don't handle 829 * the ramp up to p128 modulus in this implementation, we are limited to 830 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 831 * bytes input to UMAC per tag, ie. 16MB). 832 */ 833 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 834 { 835 int i; 836 UINT64 *data=(UINT64*)data_in; 837 838 for (i = 0; i < STREAMS; i++) { 839 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 840 hc->poly_accum[i] = poly64(hc->poly_accum[i], 841 hc->poly_key_8[i], p64 - 1); 842 hc->poly_accum[i] = poly64(hc->poly_accum[i], 843 hc->poly_key_8[i], (data[i] - 59)); 844 } else { 845 hc->poly_accum[i] = poly64(hc->poly_accum[i], 846 hc->poly_key_8[i], data[i]); 847 } 848 } 849 } 850 851 852 /* ---------------------------------------------------------------------- */ 853 854 855 /* The final step in UHASH is an inner-product hash. The poly hash 856 * produces a result not necessarily WORD_LEN bytes long. The inner- 857 * product hash breaks the polyhash output into 16-bit chunks and 858 * multiplies each with a 36 bit key. 859 */ 860 861 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 862 { 863 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 864 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 865 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 866 t = t + ipkp[3] * (UINT64)(UINT16)(data); 867 868 return t; 869 } 870 871 static UINT32 ip_reduce_p36(UINT64 t) 872 { 873 /* Divisionless modular reduction */ 874 UINT64 ret; 875 876 ret = (t & m36) + 5 * (t >> 36); 877 if (ret >= p36) 878 ret -= p36; 879 880 /* return least significant 32 bits */ 881 return (UINT32)(ret); 882 } 883 884 885 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 886 * the polyhash stage is skipped and ip_short is applied directly to the 887 * NH output. 888 */ 889 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 890 { 891 UINT64 t; 892 UINT64 *nhp = (UINT64 *)nh_res; 893 894 t = ip_aux(0,ahc->ip_keys, nhp[0]); 895 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 896 #if (UMAC_OUTPUT_LEN >= 8) 897 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 898 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 899 #endif 900 #if (UMAC_OUTPUT_LEN >= 12) 901 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 902 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 903 #endif 904 #if (UMAC_OUTPUT_LEN == 16) 905 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 906 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 907 #endif 908 } 909 910 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 911 * the polyhash stage is not skipped and ip_long is applied to the 912 * polyhash output. 913 */ 914 static void ip_long(uhash_ctx_t ahc, u_char *res) 915 { 916 int i; 917 UINT64 t; 918 919 for (i = 0; i < STREAMS; i++) { 920 /* fix polyhash output not in Z_p64 */ 921 if (ahc->poly_accum[i] >= p64) 922 ahc->poly_accum[i] -= p64; 923 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 924 STORE_UINT32_BIG((UINT32 *)res+i, 925 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 926 } 927 } 928 929 930 /* ---------------------------------------------------------------------- */ 931 932 /* ---------------------------------------------------------------------- */ 933 934 /* Reset uhash context for next hash session */ 935 static int uhash_reset(uhash_ctx_t pc) 936 { 937 nh_reset(&pc->hash); 938 pc->msg_len = 0; 939 pc->poly_accum[0] = 1; 940 #if (UMAC_OUTPUT_LEN >= 8) 941 pc->poly_accum[1] = 1; 942 #endif 943 #if (UMAC_OUTPUT_LEN >= 12) 944 pc->poly_accum[2] = 1; 945 #endif 946 #if (UMAC_OUTPUT_LEN == 16) 947 pc->poly_accum[3] = 1; 948 #endif 949 return 1; 950 } 951 952 /* ---------------------------------------------------------------------- */ 953 954 /* Given a pointer to the internal key needed by kdf() and a uhash context, 955 * initialize the NH context and generate keys needed for poly and inner- 956 * product hashing. All keys are endian adjusted in memory so that native 957 * loads cause correct keys to be in registers during calculation. 958 */ 959 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 960 { 961 int i; 962 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 963 964 /* Zero the entire uhash context */ 965 memset(ahc, 0, sizeof(uhash_ctx)); 966 967 /* Initialize the L1 hash */ 968 nh_init(&ahc->hash, prf_key); 969 970 /* Setup L2 hash variables */ 971 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 972 for (i = 0; i < STREAMS; i++) { 973 /* Fill keys from the buffer, skipping bytes in the buffer not 974 * used by this implementation. Endian reverse the keys if on a 975 * little-endian computer. 976 */ 977 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 978 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 979 /* Mask the 64-bit keys to their special domain */ 980 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 981 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 982 } 983 984 /* Setup L3-1 hash variables */ 985 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 986 for (i = 0; i < STREAMS; i++) 987 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 988 4*sizeof(UINT64)); 989 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 990 sizeof(ahc->ip_keys)); 991 for (i = 0; i < STREAMS*4; i++) 992 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 993 994 /* Setup L3-2 hash variables */ 995 /* Fill buffer with index 4 key */ 996 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 997 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 998 STREAMS * sizeof(UINT32)); 999 explicit_bzero(buf, sizeof(buf)); 1000 } 1001 1002 /* ---------------------------------------------------------------------- */ 1003 1004 #if 0 1005 static uhash_ctx_t uhash_alloc(u_char key[]) 1006 { 1007 /* Allocate memory and force to a 16-byte boundary. */ 1008 uhash_ctx_t ctx; 1009 u_char bytes_to_add; 1010 aes_int_key prf_key; 1011 1012 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1013 if (ctx) { 1014 if (ALLOC_BOUNDARY) { 1015 bytes_to_add = ALLOC_BOUNDARY - 1016 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1017 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1018 *((u_char *)ctx - 1) = bytes_to_add; 1019 } 1020 aes_key_setup(key,prf_key); 1021 uhash_init(ctx, prf_key); 1022 } 1023 return (ctx); 1024 } 1025 #endif 1026 1027 /* ---------------------------------------------------------------------- */ 1028 1029 #if 0 1030 static int uhash_free(uhash_ctx_t ctx) 1031 { 1032 /* Free memory allocated by uhash_alloc */ 1033 u_char bytes_to_sub; 1034 1035 if (ctx) { 1036 if (ALLOC_BOUNDARY) { 1037 bytes_to_sub = *((u_char *)ctx - 1); 1038 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1039 } 1040 free(ctx); 1041 } 1042 return (1); 1043 } 1044 #endif 1045 /* ---------------------------------------------------------------------- */ 1046 1047 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1048 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1049 * hash each one with NH, calling the polyhash on each NH output. 1050 */ 1051 { 1052 UWORD bytes_hashed, bytes_remaining; 1053 UINT64 result_buf[STREAMS]; 1054 UINT8 *nh_result = (UINT8 *)&result_buf; 1055 1056 if (ctx->msg_len + len <= L1_KEY_LEN) { 1057 nh_update(&ctx->hash, (const UINT8 *)input, len); 1058 ctx->msg_len += len; 1059 } else { 1060 1061 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1062 if (ctx->msg_len == L1_KEY_LEN) 1063 bytes_hashed = L1_KEY_LEN; 1064 1065 if (bytes_hashed + len >= L1_KEY_LEN) { 1066 1067 /* If some bytes have been passed to the hash function */ 1068 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1069 /* bytes to complete the current nh_block. */ 1070 if (bytes_hashed) { 1071 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1072 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1073 nh_final(&ctx->hash, nh_result); 1074 ctx->msg_len += bytes_remaining; 1075 poly_hash(ctx,(UINT32 *)nh_result); 1076 len -= bytes_remaining; 1077 input += bytes_remaining; 1078 } 1079 1080 /* Hash directly from input stream if enough bytes */ 1081 while (len >= L1_KEY_LEN) { 1082 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1083 L1_KEY_LEN, nh_result); 1084 ctx->msg_len += L1_KEY_LEN; 1085 len -= L1_KEY_LEN; 1086 input += L1_KEY_LEN; 1087 poly_hash(ctx,(UINT32 *)nh_result); 1088 } 1089 } 1090 1091 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1092 if (len) { 1093 nh_update(&ctx->hash, (const UINT8 *)input, len); 1094 ctx->msg_len += len; 1095 } 1096 } 1097 1098 return (1); 1099 } 1100 1101 /* ---------------------------------------------------------------------- */ 1102 1103 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1104 /* Incorporate any pending data, pad, and generate tag */ 1105 { 1106 UINT64 result_buf[STREAMS]; 1107 UINT8 *nh_result = (UINT8 *)&result_buf; 1108 1109 if (ctx->msg_len > L1_KEY_LEN) { 1110 if (ctx->msg_len % L1_KEY_LEN) { 1111 nh_final(&ctx->hash, nh_result); 1112 poly_hash(ctx,(UINT32 *)nh_result); 1113 } 1114 ip_long(ctx, res); 1115 } else { 1116 nh_final(&ctx->hash, nh_result); 1117 ip_short(ctx,nh_result, res); 1118 } 1119 uhash_reset(ctx); 1120 return (1); 1121 } 1122 1123 /* ---------------------------------------------------------------------- */ 1124 1125 #if 0 1126 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1127 /* assumes that msg is in a writable buffer of length divisible by */ 1128 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1129 { 1130 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1131 UINT32 nh_len; 1132 int extra_zeroes_needed; 1133 1134 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1135 * the polyhash. 1136 */ 1137 if (len <= L1_KEY_LEN) { 1138 if (len == 0) /* If zero length messages will not */ 1139 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1140 else 1141 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1142 extra_zeroes_needed = nh_len - len; 1143 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1144 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1145 ip_short(ahc,nh_result, res); 1146 } else { 1147 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1148 * output to poly_hash(). 1149 */ 1150 do { 1151 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1152 poly_hash(ahc,(UINT32 *)nh_result); 1153 len -= L1_KEY_LEN; 1154 msg += L1_KEY_LEN; 1155 } while (len >= L1_KEY_LEN); 1156 if (len) { 1157 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1158 extra_zeroes_needed = nh_len - len; 1159 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1160 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1161 poly_hash(ahc,(UINT32 *)nh_result); 1162 } 1163 1164 ip_long(ahc, res); 1165 } 1166 1167 uhash_reset(ahc); 1168 return 1; 1169 } 1170 #endif 1171 1172 /* ---------------------------------------------------------------------- */ 1173 /* ---------------------------------------------------------------------- */ 1174 /* ----- Begin UMAC Section --------------------------------------------- */ 1175 /* ---------------------------------------------------------------------- */ 1176 /* ---------------------------------------------------------------------- */ 1177 1178 /* The UMAC interface has two interfaces, an all-at-once interface where 1179 * the entire message to be authenticated is passed to UMAC in one buffer, 1180 * and a sequential interface where the message is presented a little at a 1181 * time. The all-at-once is more optimized than the sequential version and 1182 * should be preferred when the sequential interface is not required. 1183 */ 1184 struct umac_ctx { 1185 uhash_ctx hash; /* Hash function for message compression */ 1186 pdf_ctx pdf; /* PDF for hashed output */ 1187 void *free_ptr; /* Address to free this struct via */ 1188 } umac_ctx; 1189 1190 /* ---------------------------------------------------------------------- */ 1191 1192 #if 0 1193 int umac_reset(struct umac_ctx *ctx) 1194 /* Reset the hash function to begin a new authentication. */ 1195 { 1196 uhash_reset(&ctx->hash); 1197 return (1); 1198 } 1199 #endif 1200 1201 /* ---------------------------------------------------------------------- */ 1202 1203 int umac_delete(struct umac_ctx *ctx) 1204 /* Deallocate the ctx structure */ 1205 { 1206 if (ctx) { 1207 if (ALLOC_BOUNDARY) 1208 ctx = (struct umac_ctx *)ctx->free_ptr; 1209 freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); 1210 } 1211 return (1); 1212 } 1213 1214 /* ---------------------------------------------------------------------- */ 1215 1216 struct umac_ctx *umac_new(const u_char key[]) 1217 /* Dynamically allocate a umac_ctx struct, initialize variables, 1218 * generate subkeys from key. Align to 16-byte boundary. 1219 */ 1220 { 1221 struct umac_ctx *ctx, *octx; 1222 size_t bytes_to_add; 1223 aes_int_key prf_key; 1224 1225 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1226 if (ctx) { 1227 if (ALLOC_BOUNDARY) { 1228 bytes_to_add = ALLOC_BOUNDARY - 1229 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1230 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1231 } 1232 ctx->free_ptr = octx; 1233 aes_key_setup(key, prf_key); 1234 pdf_init(&ctx->pdf, prf_key); 1235 uhash_init(&ctx->hash, prf_key); 1236 explicit_bzero(prf_key, sizeof(prf_key)); 1237 } 1238 1239 return (ctx); 1240 } 1241 1242 /* ---------------------------------------------------------------------- */ 1243 1244 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1245 /* Incorporate any pending data, pad, and generate tag */ 1246 { 1247 uhash_final(&ctx->hash, (u_char *)tag); 1248 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1249 1250 return (1); 1251 } 1252 1253 /* ---------------------------------------------------------------------- */ 1254 1255 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1256 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1257 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1258 /* output buffer is full. */ 1259 { 1260 uhash_update(&ctx->hash, input, len); 1261 return (1); 1262 } 1263 1264 /* ---------------------------------------------------------------------- */ 1265 1266 #if 0 1267 int umac(struct umac_ctx *ctx, u_char *input, 1268 long len, u_char tag[], 1269 u_char nonce[8]) 1270 /* All-in-one version simply calls umac_update() and umac_final(). */ 1271 { 1272 uhash(&ctx->hash, input, len, (u_char *)tag); 1273 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1274 1275 return (1); 1276 } 1277 #endif 1278 1279 /* ---------------------------------------------------------------------- */ 1280 /* ---------------------------------------------------------------------- */ 1281 /* ----- End UMAC Section ----------------------------------------------- */ 1282 /* ---------------------------------------------------------------------- */ 1283 /* ---------------------------------------------------------------------- */ 1284