1 /* $OpenBSD: umac.c,v 1.17 2018/04/10 00:10:49 djm Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #ifndef UMAC_OUTPUT_LEN 56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 57 #endif 58 59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \ 60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16 61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16 62 #endif 63 64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 66 /* #define SSE2 0 Is SSE2 is available? */ 67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 68 /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ 69 70 /* ---------------------------------------------------------------------- */ 71 /* -- Global Includes --------------------------------------------------- */ 72 /* ---------------------------------------------------------------------- */ 73 74 #include "includes.h" 75 #include <sys/types.h> 76 #include <string.h> 77 #include <stdio.h> 78 #include <stdlib.h> 79 #include <stddef.h> 80 81 #include "xmalloc.h" 82 #include "umac.h" 83 #include "misc.h" 84 85 /* ---------------------------------------------------------------------- */ 86 /* --- Primitive Data Types --- */ 87 /* ---------------------------------------------------------------------- */ 88 89 /* The following assumptions may need change on your system */ 90 typedef u_int8_t UINT8; /* 1 byte */ 91 typedef u_int16_t UINT16; /* 2 byte */ 92 typedef u_int32_t UINT32; /* 4 byte */ 93 typedef u_int64_t UINT64; /* 8 bytes */ 94 typedef unsigned int UWORD; /* Register */ 95 96 /* ---------------------------------------------------------------------- */ 97 /* --- Constants -------------------------------------------------------- */ 98 /* ---------------------------------------------------------------------- */ 99 100 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 101 102 /* Message "words" are read from memory in an endian-specific manner. */ 103 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 104 /* be set true if the host computer is little-endian. */ 105 106 #if BYTE_ORDER == LITTLE_ENDIAN 107 #define __LITTLE_ENDIAN__ 1 108 #else 109 #define __LITTLE_ENDIAN__ 0 110 #endif 111 112 /* ---------------------------------------------------------------------- */ 113 /* ---------------------------------------------------------------------- */ 114 /* ----- Architecture Specific ------------------------------------------ */ 115 /* ---------------------------------------------------------------------- */ 116 /* ---------------------------------------------------------------------- */ 117 118 119 /* ---------------------------------------------------------------------- */ 120 /* ---------------------------------------------------------------------- */ 121 /* ----- Primitive Routines --------------------------------------------- */ 122 /* ---------------------------------------------------------------------- */ 123 /* ---------------------------------------------------------------------- */ 124 125 126 /* ---------------------------------------------------------------------- */ 127 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 128 /* ---------------------------------------------------------------------- */ 129 130 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 131 132 /* ---------------------------------------------------------------------- */ 133 /* --- Endian Conversion --- Forcing assembly on some platforms */ 134 /* ---------------------------------------------------------------------- */ 135 136 #if (__LITTLE_ENDIAN__) 137 #define LOAD_UINT32_REVERSED(p) get_u32(p) 138 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v) 139 #else 140 #define LOAD_UINT32_REVERSED(p) get_u32_le(p) 141 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v) 142 #endif 143 144 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p)) 145 #define STORE_UINT32_BIG(p,v) put_u32(p, v) 146 147 /* ---------------------------------------------------------------------- */ 148 /* ---------------------------------------------------------------------- */ 149 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 150 /* ---------------------------------------------------------------------- */ 151 /* ---------------------------------------------------------------------- */ 152 153 /* UMAC uses AES with 16 byte block and key lengths */ 154 #define AES_BLOCK_LEN 16 155 156 /* OpenSSL's AES */ 157 #ifdef WITH_OPENSSL 158 #include "openbsd-compat/openssl-compat.h" 159 #ifndef USE_BUILTIN_RIJNDAEL 160 # include <openssl/aes.h> 161 #endif 162 typedef AES_KEY aes_int_key[1]; 163 #define aes_encryption(in,out,int_key) \ 164 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 165 #define aes_key_setup(key,int_key) \ 166 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 167 #else 168 #include "rijndael.h" 169 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6) 170 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ 171 #define aes_encryption(in,out,int_key) \ 172 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) 173 #define aes_key_setup(key,int_key) \ 174 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ 175 UMAC_KEY_LEN*8) 176 #endif 177 178 /* The user-supplied UMAC key is stretched using AES in a counter 179 * mode to supply all random bits needed by UMAC. The kdf function takes 180 * an AES internal key representation 'key' and writes a stream of 181 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct 182 * 'ndx' causes a distinct byte stream. 183 */ 184 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) 185 { 186 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 187 UINT8 out_buf[AES_BLOCK_LEN]; 188 UINT8 *dst_buf = (UINT8 *)bufp; 189 int i; 190 191 /* Setup the initial value */ 192 in_buf[AES_BLOCK_LEN-9] = ndx; 193 in_buf[AES_BLOCK_LEN-1] = i = 1; 194 195 while (nbytes >= AES_BLOCK_LEN) { 196 aes_encryption(in_buf, out_buf, key); 197 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 198 in_buf[AES_BLOCK_LEN-1] = ++i; 199 nbytes -= AES_BLOCK_LEN; 200 dst_buf += AES_BLOCK_LEN; 201 } 202 if (nbytes) { 203 aes_encryption(in_buf, out_buf, key); 204 memcpy(dst_buf,out_buf,nbytes); 205 } 206 explicit_bzero(in_buf, sizeof(in_buf)); 207 explicit_bzero(out_buf, sizeof(out_buf)); 208 } 209 210 /* The final UHASH result is XOR'd with the output of a pseudorandom 211 * function. Here, we use AES to generate random output and 212 * xor the appropriate bytes depending on the last bits of nonce. 213 * This scheme is optimized for sequential, increasing big-endian nonces. 214 */ 215 216 typedef struct { 217 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 218 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 219 aes_int_key prf_key; /* Expanded AES key for PDF */ 220 } pdf_ctx; 221 222 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 223 { 224 UINT8 buf[UMAC_KEY_LEN]; 225 226 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 227 aes_key_setup(buf, pc->prf_key); 228 229 /* Initialize pdf and cache */ 230 memset(pc->nonce, 0, sizeof(pc->nonce)); 231 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 232 explicit_bzero(buf, sizeof(buf)); 233 } 234 235 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) 236 { 237 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 238 * of the AES output. If last time around we returned the ndx-1st 239 * element, then we may have the result in the cache already. 240 */ 241 242 #if (UMAC_OUTPUT_LEN == 4) 243 #define LOW_BIT_MASK 3 244 #elif (UMAC_OUTPUT_LEN == 8) 245 #define LOW_BIT_MASK 1 246 #elif (UMAC_OUTPUT_LEN > 8) 247 #define LOW_BIT_MASK 0 248 #endif 249 union { 250 UINT8 tmp_nonce_lo[4]; 251 UINT32 align; 252 } t; 253 #if LOW_BIT_MASK != 0 254 int ndx = nonce[7] & LOW_BIT_MASK; 255 #endif 256 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 257 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 258 259 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 260 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 261 { 262 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 263 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 264 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 265 } 266 267 #if (UMAC_OUTPUT_LEN == 4) 268 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 269 #elif (UMAC_OUTPUT_LEN == 8) 270 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 271 #elif (UMAC_OUTPUT_LEN == 12) 272 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 273 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 274 #elif (UMAC_OUTPUT_LEN == 16) 275 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 276 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 277 #endif 278 } 279 280 /* ---------------------------------------------------------------------- */ 281 /* ---------------------------------------------------------------------- */ 282 /* ----- Begin NH Hash Section ------------------------------------------ */ 283 /* ---------------------------------------------------------------------- */ 284 /* ---------------------------------------------------------------------- */ 285 286 /* The NH-based hash functions used in UMAC are described in the UMAC paper 287 * and specification, both of which can be found at the UMAC website. 288 * The interface to this implementation has two 289 * versions, one expects the entire message being hashed to be passed 290 * in a single buffer and returns the hash result immediately. The second 291 * allows the message to be passed in a sequence of buffers. In the 292 * muliple-buffer interface, the client calls the routine nh_update() as 293 * many times as necessary. When there is no more data to be fed to the 294 * hash, the client calls nh_final() which calculates the hash output. 295 * Before beginning another hash calculation the nh_reset() routine 296 * must be called. The single-buffer routine, nh(), is equivalent to 297 * the sequence of calls nh_update() and nh_final(); however it is 298 * optimized and should be preferred whenever the multiple-buffer interface 299 * is not necessary. When using either interface, it is the client's 300 * responsibility to pass no more than L1_KEY_LEN bytes per hash result. 301 * 302 * The routine nh_init() initializes the nh_ctx data structure and 303 * must be called once, before any other PDF routine. 304 */ 305 306 /* The "nh_aux" routines do the actual NH hashing work. They 307 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 308 * produce output for all STREAMS NH iterations in one call, 309 * allowing the parallel implementation of the streams. 310 */ 311 312 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 313 #define L1_KEY_LEN 1024 /* Internal key bytes */ 314 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 315 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 316 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 317 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 318 319 typedef struct { 320 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 321 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 322 int next_data_empty; /* Bookkeeping variable for data buffer. */ 323 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ 324 UINT64 state[STREAMS]; /* on-line state */ 325 } nh_ctx; 326 327 328 #if (UMAC_OUTPUT_LEN == 4) 329 330 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 331 /* NH hashing primitive. Previous (partial) hash result is loaded and 332 * then stored via hp pointer. The length of the data pointed at by "dp", 333 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 334 * is expected to be endian compensated in memory at key setup. 335 */ 336 { 337 UINT64 h; 338 UWORD c = dlen / 32; 339 UINT32 *k = (UINT32 *)kp; 340 const UINT32 *d = (const UINT32 *)dp; 341 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 342 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 343 344 h = *((UINT64 *)hp); 345 do { 346 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 347 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 348 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 349 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 350 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 351 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 352 h += MUL64((k0 + d0), (k4 + d4)); 353 h += MUL64((k1 + d1), (k5 + d5)); 354 h += MUL64((k2 + d2), (k6 + d6)); 355 h += MUL64((k3 + d3), (k7 + d7)); 356 357 d += 8; 358 k += 8; 359 } while (--c); 360 *((UINT64 *)hp) = h; 361 } 362 363 #elif (UMAC_OUTPUT_LEN == 8) 364 365 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 366 /* Same as previous nh_aux, but two streams are handled in one pass, 367 * reading and writing 16 bytes of hash-state per call. 368 */ 369 { 370 UINT64 h1,h2; 371 UWORD c = dlen / 32; 372 UINT32 *k = (UINT32 *)kp; 373 const UINT32 *d = (const UINT32 *)dp; 374 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 375 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 376 k8,k9,k10,k11; 377 378 h1 = *((UINT64 *)hp); 379 h2 = *((UINT64 *)hp + 1); 380 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 381 do { 382 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 383 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 384 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 385 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 386 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 387 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 388 389 h1 += MUL64((k0 + d0), (k4 + d4)); 390 h2 += MUL64((k4 + d0), (k8 + d4)); 391 392 h1 += MUL64((k1 + d1), (k5 + d5)); 393 h2 += MUL64((k5 + d1), (k9 + d5)); 394 395 h1 += MUL64((k2 + d2), (k6 + d6)); 396 h2 += MUL64((k6 + d2), (k10 + d6)); 397 398 h1 += MUL64((k3 + d3), (k7 + d7)); 399 h2 += MUL64((k7 + d3), (k11 + d7)); 400 401 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 402 403 d += 8; 404 k += 8; 405 } while (--c); 406 ((UINT64 *)hp)[0] = h1; 407 ((UINT64 *)hp)[1] = h2; 408 } 409 410 #elif (UMAC_OUTPUT_LEN == 12) 411 412 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 413 /* Same as previous nh_aux, but two streams are handled in one pass, 414 * reading and writing 24 bytes of hash-state per call. 415 */ 416 { 417 UINT64 h1,h2,h3; 418 UWORD c = dlen / 32; 419 UINT32 *k = (UINT32 *)kp; 420 const UINT32 *d = (const UINT32 *)dp; 421 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 422 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 423 k8,k9,k10,k11,k12,k13,k14,k15; 424 425 h1 = *((UINT64 *)hp); 426 h2 = *((UINT64 *)hp + 1); 427 h3 = *((UINT64 *)hp + 2); 428 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 429 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 430 do { 431 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 432 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 433 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 434 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 435 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 436 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 437 438 h1 += MUL64((k0 + d0), (k4 + d4)); 439 h2 += MUL64((k4 + d0), (k8 + d4)); 440 h3 += MUL64((k8 + d0), (k12 + d4)); 441 442 h1 += MUL64((k1 + d1), (k5 + d5)); 443 h2 += MUL64((k5 + d1), (k9 + d5)); 444 h3 += MUL64((k9 + d1), (k13 + d5)); 445 446 h1 += MUL64((k2 + d2), (k6 + d6)); 447 h2 += MUL64((k6 + d2), (k10 + d6)); 448 h3 += MUL64((k10 + d2), (k14 + d6)); 449 450 h1 += MUL64((k3 + d3), (k7 + d7)); 451 h2 += MUL64((k7 + d3), (k11 + d7)); 452 h3 += MUL64((k11 + d3), (k15 + d7)); 453 454 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 455 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 456 457 d += 8; 458 k += 8; 459 } while (--c); 460 ((UINT64 *)hp)[0] = h1; 461 ((UINT64 *)hp)[1] = h2; 462 ((UINT64 *)hp)[2] = h3; 463 } 464 465 #elif (UMAC_OUTPUT_LEN == 16) 466 467 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 468 /* Same as previous nh_aux, but two streams are handled in one pass, 469 * reading and writing 24 bytes of hash-state per call. 470 */ 471 { 472 UINT64 h1,h2,h3,h4; 473 UWORD c = dlen / 32; 474 UINT32 *k = (UINT32 *)kp; 475 const UINT32 *d = (const UINT32 *)dp; 476 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 477 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 478 k8,k9,k10,k11,k12,k13,k14,k15, 479 k16,k17,k18,k19; 480 481 h1 = *((UINT64 *)hp); 482 h2 = *((UINT64 *)hp + 1); 483 h3 = *((UINT64 *)hp + 2); 484 h4 = *((UINT64 *)hp + 3); 485 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 486 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 487 do { 488 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 489 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 490 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 491 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 492 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 493 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 494 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 495 496 h1 += MUL64((k0 + d0), (k4 + d4)); 497 h2 += MUL64((k4 + d0), (k8 + d4)); 498 h3 += MUL64((k8 + d0), (k12 + d4)); 499 h4 += MUL64((k12 + d0), (k16 + d4)); 500 501 h1 += MUL64((k1 + d1), (k5 + d5)); 502 h2 += MUL64((k5 + d1), (k9 + d5)); 503 h3 += MUL64((k9 + d1), (k13 + d5)); 504 h4 += MUL64((k13 + d1), (k17 + d5)); 505 506 h1 += MUL64((k2 + d2), (k6 + d6)); 507 h2 += MUL64((k6 + d2), (k10 + d6)); 508 h3 += MUL64((k10 + d2), (k14 + d6)); 509 h4 += MUL64((k14 + d2), (k18 + d6)); 510 511 h1 += MUL64((k3 + d3), (k7 + d7)); 512 h2 += MUL64((k7 + d3), (k11 + d7)); 513 h3 += MUL64((k11 + d3), (k15 + d7)); 514 h4 += MUL64((k15 + d3), (k19 + d7)); 515 516 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 517 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 518 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 519 520 d += 8; 521 k += 8; 522 } while (--c); 523 ((UINT64 *)hp)[0] = h1; 524 ((UINT64 *)hp)[1] = h2; 525 ((UINT64 *)hp)[2] = h3; 526 ((UINT64 *)hp)[3] = h4; 527 } 528 529 /* ---------------------------------------------------------------------- */ 530 #endif /* UMAC_OUTPUT_LENGTH */ 531 /* ---------------------------------------------------------------------- */ 532 533 534 /* ---------------------------------------------------------------------- */ 535 536 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 537 /* This function is a wrapper for the primitive NH hash functions. It takes 538 * as argument "hc" the current hash context and a buffer which must be a 539 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 540 * appropriately according to how much message has been hashed already. 541 */ 542 { 543 UINT8 *key; 544 545 key = hc->nh_key + hc->bytes_hashed; 546 nh_aux(key, buf, hc->state, nbytes); 547 } 548 549 /* ---------------------------------------------------------------------- */ 550 551 #if (__LITTLE_ENDIAN__) 552 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 553 /* We endian convert the keys on little-endian computers to */ 554 /* compensate for the lack of big-endian memory reads during hashing. */ 555 { 556 UWORD iters = num_bytes / bpw; 557 if (bpw == 4) { 558 UINT32 *p = (UINT32 *)buf; 559 do { 560 *p = LOAD_UINT32_REVERSED(p); 561 p++; 562 } while (--iters); 563 } else if (bpw == 8) { 564 UINT32 *p = (UINT32 *)buf; 565 UINT32 t; 566 do { 567 t = LOAD_UINT32_REVERSED(p+1); 568 p[1] = LOAD_UINT32_REVERSED(p); 569 p[0] = t; 570 p += 2; 571 } while (--iters); 572 } 573 } 574 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 575 #else 576 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 577 #endif 578 579 /* ---------------------------------------------------------------------- */ 580 581 static void nh_reset(nh_ctx *hc) 582 /* Reset nh_ctx to ready for hashing of new data */ 583 { 584 hc->bytes_hashed = 0; 585 hc->next_data_empty = 0; 586 hc->state[0] = 0; 587 #if (UMAC_OUTPUT_LEN >= 8) 588 hc->state[1] = 0; 589 #endif 590 #if (UMAC_OUTPUT_LEN >= 12) 591 hc->state[2] = 0; 592 #endif 593 #if (UMAC_OUTPUT_LEN == 16) 594 hc->state[3] = 0; 595 #endif 596 597 } 598 599 /* ---------------------------------------------------------------------- */ 600 601 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 602 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 603 { 604 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 605 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 606 nh_reset(hc); 607 } 608 609 /* ---------------------------------------------------------------------- */ 610 611 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 612 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 613 /* even multiple of HASH_BUF_BYTES. */ 614 { 615 UINT32 i,j; 616 617 j = hc->next_data_empty; 618 if ((j + nbytes) >= HASH_BUF_BYTES) { 619 if (j) { 620 i = HASH_BUF_BYTES - j; 621 memcpy(hc->data+j, buf, i); 622 nh_transform(hc,hc->data,HASH_BUF_BYTES); 623 nbytes -= i; 624 buf += i; 625 hc->bytes_hashed += HASH_BUF_BYTES; 626 } 627 if (nbytes >= HASH_BUF_BYTES) { 628 i = nbytes & ~(HASH_BUF_BYTES - 1); 629 nh_transform(hc, buf, i); 630 nbytes -= i; 631 buf += i; 632 hc->bytes_hashed += i; 633 } 634 j = 0; 635 } 636 memcpy(hc->data + j, buf, nbytes); 637 hc->next_data_empty = j + nbytes; 638 } 639 640 /* ---------------------------------------------------------------------- */ 641 642 static void zero_pad(UINT8 *p, int nbytes) 643 { 644 /* Write "nbytes" of zeroes, beginning at "p" */ 645 if (nbytes >= (int)sizeof(UWORD)) { 646 while ((ptrdiff_t)p % sizeof(UWORD)) { 647 *p = 0; 648 nbytes--; 649 p++; 650 } 651 while (nbytes >= (int)sizeof(UWORD)) { 652 *(UWORD *)p = 0; 653 nbytes -= sizeof(UWORD); 654 p += sizeof(UWORD); 655 } 656 } 657 while (nbytes) { 658 *p = 0; 659 nbytes--; 660 p++; 661 } 662 } 663 664 /* ---------------------------------------------------------------------- */ 665 666 static void nh_final(nh_ctx *hc, UINT8 *result) 667 /* After passing some number of data buffers to nh_update() for integration 668 * into an NH context, nh_final is called to produce a hash result. If any 669 * bytes are in the buffer hc->data, incorporate them into the 670 * NH context. Finally, add into the NH accumulation "state" the total number 671 * of bits hashed. The resulting numbers are written to the buffer "result". 672 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 673 */ 674 { 675 int nh_len, nbits; 676 677 if (hc->next_data_empty != 0) { 678 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 679 ~(L1_PAD_BOUNDARY - 1)); 680 zero_pad(hc->data + hc->next_data_empty, 681 nh_len - hc->next_data_empty); 682 nh_transform(hc, hc->data, nh_len); 683 hc->bytes_hashed += hc->next_data_empty; 684 } else if (hc->bytes_hashed == 0) { 685 nh_len = L1_PAD_BOUNDARY; 686 zero_pad(hc->data, L1_PAD_BOUNDARY); 687 nh_transform(hc, hc->data, nh_len); 688 } 689 690 nbits = (hc->bytes_hashed << 3); 691 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 692 #if (UMAC_OUTPUT_LEN >= 8) 693 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 694 #endif 695 #if (UMAC_OUTPUT_LEN >= 12) 696 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 697 #endif 698 #if (UMAC_OUTPUT_LEN == 16) 699 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 700 #endif 701 nh_reset(hc); 702 } 703 704 /* ---------------------------------------------------------------------- */ 705 706 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 707 UINT32 unpadded_len, UINT8 *result) 708 /* All-in-one nh_update() and nh_final() equivalent. 709 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 710 * well aligned 711 */ 712 { 713 UINT32 nbits; 714 715 /* Initialize the hash state */ 716 nbits = (unpadded_len << 3); 717 718 ((UINT64 *)result)[0] = nbits; 719 #if (UMAC_OUTPUT_LEN >= 8) 720 ((UINT64 *)result)[1] = nbits; 721 #endif 722 #if (UMAC_OUTPUT_LEN >= 12) 723 ((UINT64 *)result)[2] = nbits; 724 #endif 725 #if (UMAC_OUTPUT_LEN == 16) 726 ((UINT64 *)result)[3] = nbits; 727 #endif 728 729 nh_aux(hc->nh_key, buf, result, padded_len); 730 } 731 732 /* ---------------------------------------------------------------------- */ 733 /* ---------------------------------------------------------------------- */ 734 /* ----- Begin UHASH Section -------------------------------------------- */ 735 /* ---------------------------------------------------------------------- */ 736 /* ---------------------------------------------------------------------- */ 737 738 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 739 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 740 * unless the initial data to be hashed is short. After the polynomial- 741 * layer, an inner-product hash is used to produce the final UHASH output. 742 * 743 * UHASH provides two interfaces, one all-at-once and another where data 744 * buffers are presented sequentially. In the sequential interface, the 745 * UHASH client calls the routine uhash_update() as many times as necessary. 746 * When there is no more data to be fed to UHASH, the client calls 747 * uhash_final() which 748 * calculates the UHASH output. Before beginning another UHASH calculation 749 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 750 * uhash(), is equivalent to the sequence of calls uhash_update() and 751 * uhash_final(); however it is optimized and should be 752 * used whenever the sequential interface is not necessary. 753 * 754 * The routine uhash_init() initializes the uhash_ctx data structure and 755 * must be called once, before any other UHASH routine. 756 */ 757 758 /* ---------------------------------------------------------------------- */ 759 /* ----- Constants and uhash_ctx ---------------------------------------- */ 760 /* ---------------------------------------------------------------------- */ 761 762 /* ---------------------------------------------------------------------- */ 763 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 764 /* ---------------------------------------------------------------------- */ 765 766 /* Primes and masks */ 767 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 768 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 769 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 770 771 772 /* ---------------------------------------------------------------------- */ 773 774 typedef struct uhash_ctx { 775 nh_ctx hash; /* Hash context for L1 NH hash */ 776 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 777 UINT64 poly_accum[STREAMS]; /* poly hash result */ 778 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 779 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 780 UINT32 msg_len; /* Total length of data passed */ 781 /* to uhash */ 782 } uhash_ctx; 783 typedef struct uhash_ctx *uhash_ctx_t; 784 785 /* ---------------------------------------------------------------------- */ 786 787 788 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 789 * word at a time. As described in the specification, poly32 and poly64 790 * require keys from special domains. The following implementations exploit 791 * the special domains to avoid overflow. The results are not guaranteed to 792 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 793 * patches any errant values. 794 */ 795 796 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 797 { 798 UINT32 key_hi = (UINT32)(key >> 32), 799 key_lo = (UINT32)key, 800 cur_hi = (UINT32)(cur >> 32), 801 cur_lo = (UINT32)cur, 802 x_lo, 803 x_hi; 804 UINT64 X,T,res; 805 806 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 807 x_lo = (UINT32)X; 808 x_hi = (UINT32)(X >> 32); 809 810 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 811 812 T = ((UINT64)x_lo << 32); 813 res += T; 814 if (res < T) 815 res += 59; 816 817 res += data; 818 if (res < data) 819 res += 59; 820 821 return res; 822 } 823 824 825 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 826 * implementation does not handle all ramp levels. Because we don't handle 827 * the ramp up to p128 modulus in this implementation, we are limited to 828 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 829 * bytes input to UMAC per tag, ie. 16MB). 830 */ 831 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 832 { 833 int i; 834 UINT64 *data=(UINT64*)data_in; 835 836 for (i = 0; i < STREAMS; i++) { 837 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 838 hc->poly_accum[i] = poly64(hc->poly_accum[i], 839 hc->poly_key_8[i], p64 - 1); 840 hc->poly_accum[i] = poly64(hc->poly_accum[i], 841 hc->poly_key_8[i], (data[i] - 59)); 842 } else { 843 hc->poly_accum[i] = poly64(hc->poly_accum[i], 844 hc->poly_key_8[i], data[i]); 845 } 846 } 847 } 848 849 850 /* ---------------------------------------------------------------------- */ 851 852 853 /* The final step in UHASH is an inner-product hash. The poly hash 854 * produces a result not necessarily WORD_LEN bytes long. The inner- 855 * product hash breaks the polyhash output into 16-bit chunks and 856 * multiplies each with a 36 bit key. 857 */ 858 859 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 860 { 861 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 862 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 863 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 864 t = t + ipkp[3] * (UINT64)(UINT16)(data); 865 866 return t; 867 } 868 869 static UINT32 ip_reduce_p36(UINT64 t) 870 { 871 /* Divisionless modular reduction */ 872 UINT64 ret; 873 874 ret = (t & m36) + 5 * (t >> 36); 875 if (ret >= p36) 876 ret -= p36; 877 878 /* return least significant 32 bits */ 879 return (UINT32)(ret); 880 } 881 882 883 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 884 * the polyhash stage is skipped and ip_short is applied directly to the 885 * NH output. 886 */ 887 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 888 { 889 UINT64 t; 890 UINT64 *nhp = (UINT64 *)nh_res; 891 892 t = ip_aux(0,ahc->ip_keys, nhp[0]); 893 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 894 #if (UMAC_OUTPUT_LEN >= 8) 895 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 896 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 897 #endif 898 #if (UMAC_OUTPUT_LEN >= 12) 899 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 900 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 901 #endif 902 #if (UMAC_OUTPUT_LEN == 16) 903 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 904 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 905 #endif 906 } 907 908 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 909 * the polyhash stage is not skipped and ip_long is applied to the 910 * polyhash output. 911 */ 912 static void ip_long(uhash_ctx_t ahc, u_char *res) 913 { 914 int i; 915 UINT64 t; 916 917 for (i = 0; i < STREAMS; i++) { 918 /* fix polyhash output not in Z_p64 */ 919 if (ahc->poly_accum[i] >= p64) 920 ahc->poly_accum[i] -= p64; 921 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 922 STORE_UINT32_BIG((UINT32 *)res+i, 923 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 924 } 925 } 926 927 928 /* ---------------------------------------------------------------------- */ 929 930 /* ---------------------------------------------------------------------- */ 931 932 /* Reset uhash context for next hash session */ 933 static int uhash_reset(uhash_ctx_t pc) 934 { 935 nh_reset(&pc->hash); 936 pc->msg_len = 0; 937 pc->poly_accum[0] = 1; 938 #if (UMAC_OUTPUT_LEN >= 8) 939 pc->poly_accum[1] = 1; 940 #endif 941 #if (UMAC_OUTPUT_LEN >= 12) 942 pc->poly_accum[2] = 1; 943 #endif 944 #if (UMAC_OUTPUT_LEN == 16) 945 pc->poly_accum[3] = 1; 946 #endif 947 return 1; 948 } 949 950 /* ---------------------------------------------------------------------- */ 951 952 /* Given a pointer to the internal key needed by kdf() and a uhash context, 953 * initialize the NH context and generate keys needed for poly and inner- 954 * product hashing. All keys are endian adjusted in memory so that native 955 * loads cause correct keys to be in registers during calculation. 956 */ 957 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 958 { 959 int i; 960 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 961 962 /* Zero the entire uhash context */ 963 memset(ahc, 0, sizeof(uhash_ctx)); 964 965 /* Initialize the L1 hash */ 966 nh_init(&ahc->hash, prf_key); 967 968 /* Setup L2 hash variables */ 969 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 970 for (i = 0; i < STREAMS; i++) { 971 /* Fill keys from the buffer, skipping bytes in the buffer not 972 * used by this implementation. Endian reverse the keys if on a 973 * little-endian computer. 974 */ 975 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 976 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 977 /* Mask the 64-bit keys to their special domain */ 978 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 979 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 980 } 981 982 /* Setup L3-1 hash variables */ 983 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 984 for (i = 0; i < STREAMS; i++) 985 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 986 4*sizeof(UINT64)); 987 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 988 sizeof(ahc->ip_keys)); 989 for (i = 0; i < STREAMS*4; i++) 990 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 991 992 /* Setup L3-2 hash variables */ 993 /* Fill buffer with index 4 key */ 994 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 995 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 996 STREAMS * sizeof(UINT32)); 997 explicit_bzero(buf, sizeof(buf)); 998 } 999 1000 /* ---------------------------------------------------------------------- */ 1001 1002 #if 0 1003 static uhash_ctx_t uhash_alloc(u_char key[]) 1004 { 1005 /* Allocate memory and force to a 16-byte boundary. */ 1006 uhash_ctx_t ctx; 1007 u_char bytes_to_add; 1008 aes_int_key prf_key; 1009 1010 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1011 if (ctx) { 1012 if (ALLOC_BOUNDARY) { 1013 bytes_to_add = ALLOC_BOUNDARY - 1014 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1015 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1016 *((u_char *)ctx - 1) = bytes_to_add; 1017 } 1018 aes_key_setup(key,prf_key); 1019 uhash_init(ctx, prf_key); 1020 } 1021 return (ctx); 1022 } 1023 #endif 1024 1025 /* ---------------------------------------------------------------------- */ 1026 1027 #if 0 1028 static int uhash_free(uhash_ctx_t ctx) 1029 { 1030 /* Free memory allocated by uhash_alloc */ 1031 u_char bytes_to_sub; 1032 1033 if (ctx) { 1034 if (ALLOC_BOUNDARY) { 1035 bytes_to_sub = *((u_char *)ctx - 1); 1036 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1037 } 1038 free(ctx); 1039 } 1040 return (1); 1041 } 1042 #endif 1043 /* ---------------------------------------------------------------------- */ 1044 1045 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1046 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1047 * hash each one with NH, calling the polyhash on each NH output. 1048 */ 1049 { 1050 UWORD bytes_hashed, bytes_remaining; 1051 UINT64 result_buf[STREAMS]; 1052 UINT8 *nh_result = (UINT8 *)&result_buf; 1053 1054 if (ctx->msg_len + len <= L1_KEY_LEN) { 1055 nh_update(&ctx->hash, (const UINT8 *)input, len); 1056 ctx->msg_len += len; 1057 } else { 1058 1059 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1060 if (ctx->msg_len == L1_KEY_LEN) 1061 bytes_hashed = L1_KEY_LEN; 1062 1063 if (bytes_hashed + len >= L1_KEY_LEN) { 1064 1065 /* If some bytes have been passed to the hash function */ 1066 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1067 /* bytes to complete the current nh_block. */ 1068 if (bytes_hashed) { 1069 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1070 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1071 nh_final(&ctx->hash, nh_result); 1072 ctx->msg_len += bytes_remaining; 1073 poly_hash(ctx,(UINT32 *)nh_result); 1074 len -= bytes_remaining; 1075 input += bytes_remaining; 1076 } 1077 1078 /* Hash directly from input stream if enough bytes */ 1079 while (len >= L1_KEY_LEN) { 1080 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1081 L1_KEY_LEN, nh_result); 1082 ctx->msg_len += L1_KEY_LEN; 1083 len -= L1_KEY_LEN; 1084 input += L1_KEY_LEN; 1085 poly_hash(ctx,(UINT32 *)nh_result); 1086 } 1087 } 1088 1089 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1090 if (len) { 1091 nh_update(&ctx->hash, (const UINT8 *)input, len); 1092 ctx->msg_len += len; 1093 } 1094 } 1095 1096 return (1); 1097 } 1098 1099 /* ---------------------------------------------------------------------- */ 1100 1101 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1102 /* Incorporate any pending data, pad, and generate tag */ 1103 { 1104 UINT64 result_buf[STREAMS]; 1105 UINT8 *nh_result = (UINT8 *)&result_buf; 1106 1107 if (ctx->msg_len > L1_KEY_LEN) { 1108 if (ctx->msg_len % L1_KEY_LEN) { 1109 nh_final(&ctx->hash, nh_result); 1110 poly_hash(ctx,(UINT32 *)nh_result); 1111 } 1112 ip_long(ctx, res); 1113 } else { 1114 nh_final(&ctx->hash, nh_result); 1115 ip_short(ctx,nh_result, res); 1116 } 1117 uhash_reset(ctx); 1118 return (1); 1119 } 1120 1121 /* ---------------------------------------------------------------------- */ 1122 1123 #if 0 1124 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1125 /* assumes that msg is in a writable buffer of length divisible by */ 1126 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1127 { 1128 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1129 UINT32 nh_len; 1130 int extra_zeroes_needed; 1131 1132 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1133 * the polyhash. 1134 */ 1135 if (len <= L1_KEY_LEN) { 1136 if (len == 0) /* If zero length messages will not */ 1137 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1138 else 1139 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1140 extra_zeroes_needed = nh_len - len; 1141 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1142 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1143 ip_short(ahc,nh_result, res); 1144 } else { 1145 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1146 * output to poly_hash(). 1147 */ 1148 do { 1149 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1150 poly_hash(ahc,(UINT32 *)nh_result); 1151 len -= L1_KEY_LEN; 1152 msg += L1_KEY_LEN; 1153 } while (len >= L1_KEY_LEN); 1154 if (len) { 1155 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1156 extra_zeroes_needed = nh_len - len; 1157 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1158 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1159 poly_hash(ahc,(UINT32 *)nh_result); 1160 } 1161 1162 ip_long(ahc, res); 1163 } 1164 1165 uhash_reset(ahc); 1166 return 1; 1167 } 1168 #endif 1169 1170 /* ---------------------------------------------------------------------- */ 1171 /* ---------------------------------------------------------------------- */ 1172 /* ----- Begin UMAC Section --------------------------------------------- */ 1173 /* ---------------------------------------------------------------------- */ 1174 /* ---------------------------------------------------------------------- */ 1175 1176 /* The UMAC interface has two interfaces, an all-at-once interface where 1177 * the entire message to be authenticated is passed to UMAC in one buffer, 1178 * and a sequential interface where the message is presented a little at a 1179 * time. The all-at-once is more optimaized than the sequential version and 1180 * should be preferred when the sequential interface is not required. 1181 */ 1182 struct umac_ctx { 1183 uhash_ctx hash; /* Hash function for message compression */ 1184 pdf_ctx pdf; /* PDF for hashed output */ 1185 void *free_ptr; /* Address to free this struct via */ 1186 } umac_ctx; 1187 1188 /* ---------------------------------------------------------------------- */ 1189 1190 #if 0 1191 int umac_reset(struct umac_ctx *ctx) 1192 /* Reset the hash function to begin a new authentication. */ 1193 { 1194 uhash_reset(&ctx->hash); 1195 return (1); 1196 } 1197 #endif 1198 1199 /* ---------------------------------------------------------------------- */ 1200 1201 int umac_delete(struct umac_ctx *ctx) 1202 /* Deallocate the ctx structure */ 1203 { 1204 if (ctx) { 1205 if (ALLOC_BOUNDARY) 1206 ctx = (struct umac_ctx *)ctx->free_ptr; 1207 explicit_bzero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY); 1208 free(ctx); 1209 } 1210 return (1); 1211 } 1212 1213 /* ---------------------------------------------------------------------- */ 1214 1215 struct umac_ctx *umac_new(const u_char key[]) 1216 /* Dynamically allocate a umac_ctx struct, initialize variables, 1217 * generate subkeys from key. Align to 16-byte boundary. 1218 */ 1219 { 1220 struct umac_ctx *ctx, *octx; 1221 size_t bytes_to_add; 1222 aes_int_key prf_key; 1223 1224 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1225 if (ctx) { 1226 if (ALLOC_BOUNDARY) { 1227 bytes_to_add = ALLOC_BOUNDARY - 1228 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1229 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1230 } 1231 ctx->free_ptr = octx; 1232 aes_key_setup(key, prf_key); 1233 pdf_init(&ctx->pdf, prf_key); 1234 uhash_init(&ctx->hash, prf_key); 1235 explicit_bzero(prf_key, sizeof(prf_key)); 1236 } 1237 1238 return (ctx); 1239 } 1240 1241 /* ---------------------------------------------------------------------- */ 1242 1243 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1244 /* Incorporate any pending data, pad, and generate tag */ 1245 { 1246 uhash_final(&ctx->hash, (u_char *)tag); 1247 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1248 1249 return (1); 1250 } 1251 1252 /* ---------------------------------------------------------------------- */ 1253 1254 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1255 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1256 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1257 /* output buffer is full. */ 1258 { 1259 uhash_update(&ctx->hash, input, len); 1260 return (1); 1261 } 1262 1263 /* ---------------------------------------------------------------------- */ 1264 1265 #if 0 1266 int umac(struct umac_ctx *ctx, u_char *input, 1267 long len, u_char tag[], 1268 u_char nonce[8]) 1269 /* All-in-one version simply calls umac_update() and umac_final(). */ 1270 { 1271 uhash(&ctx->hash, input, len, (u_char *)tag); 1272 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1273 1274 return (1); 1275 } 1276 #endif 1277 1278 /* ---------------------------------------------------------------------- */ 1279 /* ---------------------------------------------------------------------- */ 1280 /* ----- End UMAC Section ----------------------------------------------- */ 1281 /* ---------------------------------------------------------------------- */ 1282 /* ---------------------------------------------------------------------- */ 1283