1 /* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 56 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 57 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 58 /* #define SSE2 0 Is SSE2 is available? */ 59 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 60 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ 61 62 /* ---------------------------------------------------------------------- */ 63 /* -- Global Includes --------------------------------------------------- */ 64 /* ---------------------------------------------------------------------- */ 65 66 #include "includes.h" 67 #include <sys/types.h> 68 69 #include "xmalloc.h" 70 #include "umac.h" 71 #include <string.h> 72 #include <stdlib.h> 73 #include <stddef.h> 74 75 /* ---------------------------------------------------------------------- */ 76 /* --- Primitive Data Types --- */ 77 /* ---------------------------------------------------------------------- */ 78 79 /* The following assumptions may need change on your system */ 80 typedef u_int8_t UINT8; /* 1 byte */ 81 typedef u_int16_t UINT16; /* 2 byte */ 82 typedef u_int32_t UINT32; /* 4 byte */ 83 typedef u_int64_t UINT64; /* 8 bytes */ 84 typedef unsigned int UWORD; /* Register */ 85 86 /* ---------------------------------------------------------------------- */ 87 /* --- Constants -------------------------------------------------------- */ 88 /* ---------------------------------------------------------------------- */ 89 90 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 91 92 /* Message "words" are read from memory in an endian-specific manner. */ 93 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 94 /* be set true if the host computer is little-endian. */ 95 96 #if BYTE_ORDER == LITTLE_ENDIAN 97 #define __LITTLE_ENDIAN__ 1 98 #else 99 #define __LITTLE_ENDIAN__ 0 100 #endif 101 102 /* ---------------------------------------------------------------------- */ 103 /* ---------------------------------------------------------------------- */ 104 /* ----- Architecture Specific ------------------------------------------ */ 105 /* ---------------------------------------------------------------------- */ 106 /* ---------------------------------------------------------------------- */ 107 108 109 /* ---------------------------------------------------------------------- */ 110 /* ---------------------------------------------------------------------- */ 111 /* ----- Primitive Routines --------------------------------------------- */ 112 /* ---------------------------------------------------------------------- */ 113 /* ---------------------------------------------------------------------- */ 114 115 116 /* ---------------------------------------------------------------------- */ 117 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 118 /* ---------------------------------------------------------------------- */ 119 120 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 121 122 /* ---------------------------------------------------------------------- */ 123 /* --- Endian Conversion --- Forcing assembly on some platforms */ 124 /* ---------------------------------------------------------------------- */ 125 126 #if HAVE_SWAP32 127 #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p))) 128 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v)) 129 #else /* HAVE_SWAP32 */ 130 131 static UINT32 LOAD_UINT32_REVERSED(void *ptr) 132 { 133 UINT32 temp = *(UINT32 *)ptr; 134 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 ) 135 | ((temp & 0x0000FF00) << 8 ) | (temp << 24); 136 return (UINT32)temp; 137 } 138 139 # if (__LITTLE_ENDIAN__) 140 static void STORE_UINT32_REVERSED(void *ptr, UINT32 x) 141 { 142 UINT32 i = (UINT32)x; 143 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 ) 144 | ((i & 0x0000FF00) << 8 ) | (i << 24); 145 } 146 # endif /* __LITTLE_ENDIAN */ 147 #endif /* HAVE_SWAP32 */ 148 149 /* The following definitions use the above reversal-primitives to do the right 150 * thing on endian specific load and stores. 151 */ 152 153 #if (__LITTLE_ENDIAN__) 154 #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr)) 155 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x) 156 #else 157 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr) 158 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x)) 159 #endif 160 161 /* ---------------------------------------------------------------------- */ 162 /* ---------------------------------------------------------------------- */ 163 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 164 /* ---------------------------------------------------------------------- */ 165 /* ---------------------------------------------------------------------- */ 166 167 /* UMAC uses AES with 16 byte block and key lengths */ 168 #define AES_BLOCK_LEN 16 169 170 /* OpenSSL's AES */ 171 #include "openbsd-compat/openssl-compat.h" 172 #ifndef USE_BUILTIN_RIJNDAEL 173 # include <openssl/aes.h> 174 #endif 175 typedef AES_KEY aes_int_key[1]; 176 #define aes_encryption(in,out,int_key) \ 177 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 178 #define aes_key_setup(key,int_key) \ 179 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key) 180 181 /* The user-supplied UMAC key is stretched using AES in a counter 182 * mode to supply all random bits needed by UMAC. The kdf function takes 183 * an AES internal key representation 'key' and writes a stream of 184 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct 185 * 'ndx' causes a distinct byte stream. 186 */ 187 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) 188 { 189 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 190 UINT8 out_buf[AES_BLOCK_LEN]; 191 UINT8 *dst_buf = (UINT8 *)bufp; 192 int i; 193 194 /* Setup the initial value */ 195 in_buf[AES_BLOCK_LEN-9] = ndx; 196 in_buf[AES_BLOCK_LEN-1] = i = 1; 197 198 while (nbytes >= AES_BLOCK_LEN) { 199 aes_encryption(in_buf, out_buf, key); 200 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 201 in_buf[AES_BLOCK_LEN-1] = ++i; 202 nbytes -= AES_BLOCK_LEN; 203 dst_buf += AES_BLOCK_LEN; 204 } 205 if (nbytes) { 206 aes_encryption(in_buf, out_buf, key); 207 memcpy(dst_buf,out_buf,nbytes); 208 } 209 } 210 211 /* The final UHASH result is XOR'd with the output of a pseudorandom 212 * function. Here, we use AES to generate random output and 213 * xor the appropriate bytes depending on the last bits of nonce. 214 * This scheme is optimized for sequential, increasing big-endian nonces. 215 */ 216 217 typedef struct { 218 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 219 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 220 aes_int_key prf_key; /* Expanded AES key for PDF */ 221 } pdf_ctx; 222 223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 224 { 225 UINT8 buf[UMAC_KEY_LEN]; 226 227 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 228 aes_key_setup(buf, pc->prf_key); 229 230 /* Initialize pdf and cache */ 231 memset(pc->nonce, 0, sizeof(pc->nonce)); 232 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 233 } 234 235 static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8]) 236 { 237 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 238 * of the AES output. If last time around we returned the ndx-1st 239 * element, then we may have the result in the cache already. 240 */ 241 242 #if (UMAC_OUTPUT_LEN == 4) 243 #define LOW_BIT_MASK 3 244 #elif (UMAC_OUTPUT_LEN == 8) 245 #define LOW_BIT_MASK 1 246 #elif (UMAC_OUTPUT_LEN > 8) 247 #define LOW_BIT_MASK 0 248 #endif 249 250 UINT8 tmp_nonce_lo[4]; 251 #if LOW_BIT_MASK != 0 252 int ndx = nonce[7] & LOW_BIT_MASK; 253 #endif 254 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1]; 255 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 256 257 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 258 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 259 { 260 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0]; 261 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0]; 262 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 263 } 264 265 #if (UMAC_OUTPUT_LEN == 4) 266 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 267 #elif (UMAC_OUTPUT_LEN == 8) 268 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 269 #elif (UMAC_OUTPUT_LEN == 12) 270 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 271 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 272 #elif (UMAC_OUTPUT_LEN == 16) 273 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 274 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 275 #endif 276 } 277 278 /* ---------------------------------------------------------------------- */ 279 /* ---------------------------------------------------------------------- */ 280 /* ----- Begin NH Hash Section ------------------------------------------ */ 281 /* ---------------------------------------------------------------------- */ 282 /* ---------------------------------------------------------------------- */ 283 284 /* The NH-based hash functions used in UMAC are described in the UMAC paper 285 * and specification, both of which can be found at the UMAC website. 286 * The interface to this implementation has two 287 * versions, one expects the entire message being hashed to be passed 288 * in a single buffer and returns the hash result immediately. The second 289 * allows the message to be passed in a sequence of buffers. In the 290 * muliple-buffer interface, the client calls the routine nh_update() as 291 * many times as necessary. When there is no more data to be fed to the 292 * hash, the client calls nh_final() which calculates the hash output. 293 * Before beginning another hash calculation the nh_reset() routine 294 * must be called. The single-buffer routine, nh(), is equivalent to 295 * the sequence of calls nh_update() and nh_final(); however it is 296 * optimized and should be prefered whenever the multiple-buffer interface 297 * is not necessary. When using either interface, it is the client's 298 * responsability to pass no more than L1_KEY_LEN bytes per hash result. 299 * 300 * The routine nh_init() initializes the nh_ctx data structure and 301 * must be called once, before any other PDF routine. 302 */ 303 304 /* The "nh_aux" routines do the actual NH hashing work. They 305 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 306 * produce output for all STREAMS NH iterations in one call, 307 * allowing the parallel implementation of the streams. 308 */ 309 310 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 311 #define L1_KEY_LEN 1024 /* Internal key bytes */ 312 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 313 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 314 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 315 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 316 317 typedef struct { 318 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 319 UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */ 320 int next_data_empty; /* Bookeeping variable for data buffer. */ 321 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ 322 UINT64 state[STREAMS]; /* on-line state */ 323 } nh_ctx; 324 325 326 #if (UMAC_OUTPUT_LEN == 4) 327 328 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) 329 /* NH hashing primitive. Previous (partial) hash result is loaded and 330 * then stored via hp pointer. The length of the data pointed at by "dp", 331 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 332 * is expected to be endian compensated in memory at key setup. 333 */ 334 { 335 UINT64 h; 336 UWORD c = dlen / 32; 337 UINT32 *k = (UINT32 *)kp; 338 UINT32 *d = (UINT32 *)dp; 339 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 340 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 341 342 h = *((UINT64 *)hp); 343 do { 344 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 345 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 346 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 347 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 348 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 349 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 350 h += MUL64((k0 + d0), (k4 + d4)); 351 h += MUL64((k1 + d1), (k5 + d5)); 352 h += MUL64((k2 + d2), (k6 + d6)); 353 h += MUL64((k3 + d3), (k7 + d7)); 354 355 d += 8; 356 k += 8; 357 } while (--c); 358 *((UINT64 *)hp) = h; 359 } 360 361 #elif (UMAC_OUTPUT_LEN == 8) 362 363 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) 364 /* Same as previous nh_aux, but two streams are handled in one pass, 365 * reading and writing 16 bytes of hash-state per call. 366 */ 367 { 368 UINT64 h1,h2; 369 UWORD c = dlen / 32; 370 UINT32 *k = (UINT32 *)kp; 371 UINT32 *d = (UINT32 *)dp; 372 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 373 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 374 k8,k9,k10,k11; 375 376 h1 = *((UINT64 *)hp); 377 h2 = *((UINT64 *)hp + 1); 378 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 379 do { 380 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 381 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 382 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 383 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 384 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 385 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 386 387 h1 += MUL64((k0 + d0), (k4 + d4)); 388 h2 += MUL64((k4 + d0), (k8 + d4)); 389 390 h1 += MUL64((k1 + d1), (k5 + d5)); 391 h2 += MUL64((k5 + d1), (k9 + d5)); 392 393 h1 += MUL64((k2 + d2), (k6 + d6)); 394 h2 += MUL64((k6 + d2), (k10 + d6)); 395 396 h1 += MUL64((k3 + d3), (k7 + d7)); 397 h2 += MUL64((k7 + d3), (k11 + d7)); 398 399 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 400 401 d += 8; 402 k += 8; 403 } while (--c); 404 ((UINT64 *)hp)[0] = h1; 405 ((UINT64 *)hp)[1] = h2; 406 } 407 408 #elif (UMAC_OUTPUT_LEN == 12) 409 410 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) 411 /* Same as previous nh_aux, but two streams are handled in one pass, 412 * reading and writing 24 bytes of hash-state per call. 413 */ 414 { 415 UINT64 h1,h2,h3; 416 UWORD c = dlen / 32; 417 UINT32 *k = (UINT32 *)kp; 418 UINT32 *d = (UINT32 *)dp; 419 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 420 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 421 k8,k9,k10,k11,k12,k13,k14,k15; 422 423 h1 = *((UINT64 *)hp); 424 h2 = *((UINT64 *)hp + 1); 425 h3 = *((UINT64 *)hp + 2); 426 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 427 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 428 do { 429 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 430 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 431 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 432 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 433 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 434 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 435 436 h1 += MUL64((k0 + d0), (k4 + d4)); 437 h2 += MUL64((k4 + d0), (k8 + d4)); 438 h3 += MUL64((k8 + d0), (k12 + d4)); 439 440 h1 += MUL64((k1 + d1), (k5 + d5)); 441 h2 += MUL64((k5 + d1), (k9 + d5)); 442 h3 += MUL64((k9 + d1), (k13 + d5)); 443 444 h1 += MUL64((k2 + d2), (k6 + d6)); 445 h2 += MUL64((k6 + d2), (k10 + d6)); 446 h3 += MUL64((k10 + d2), (k14 + d6)); 447 448 h1 += MUL64((k3 + d3), (k7 + d7)); 449 h2 += MUL64((k7 + d3), (k11 + d7)); 450 h3 += MUL64((k11 + d3), (k15 + d7)); 451 452 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 453 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 454 455 d += 8; 456 k += 8; 457 } while (--c); 458 ((UINT64 *)hp)[0] = h1; 459 ((UINT64 *)hp)[1] = h2; 460 ((UINT64 *)hp)[2] = h3; 461 } 462 463 #elif (UMAC_OUTPUT_LEN == 16) 464 465 static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) 466 /* Same as previous nh_aux, but two streams are handled in one pass, 467 * reading and writing 24 bytes of hash-state per call. 468 */ 469 { 470 UINT64 h1,h2,h3,h4; 471 UWORD c = dlen / 32; 472 UINT32 *k = (UINT32 *)kp; 473 UINT32 *d = (UINT32 *)dp; 474 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 475 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 476 k8,k9,k10,k11,k12,k13,k14,k15, 477 k16,k17,k18,k19; 478 479 h1 = *((UINT64 *)hp); 480 h2 = *((UINT64 *)hp + 1); 481 h3 = *((UINT64 *)hp + 2); 482 h4 = *((UINT64 *)hp + 3); 483 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 484 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 485 do { 486 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 487 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 488 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 489 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 490 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 491 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 492 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 493 494 h1 += MUL64((k0 + d0), (k4 + d4)); 495 h2 += MUL64((k4 + d0), (k8 + d4)); 496 h3 += MUL64((k8 + d0), (k12 + d4)); 497 h4 += MUL64((k12 + d0), (k16 + d4)); 498 499 h1 += MUL64((k1 + d1), (k5 + d5)); 500 h2 += MUL64((k5 + d1), (k9 + d5)); 501 h3 += MUL64((k9 + d1), (k13 + d5)); 502 h4 += MUL64((k13 + d1), (k17 + d5)); 503 504 h1 += MUL64((k2 + d2), (k6 + d6)); 505 h2 += MUL64((k6 + d2), (k10 + d6)); 506 h3 += MUL64((k10 + d2), (k14 + d6)); 507 h4 += MUL64((k14 + d2), (k18 + d6)); 508 509 h1 += MUL64((k3 + d3), (k7 + d7)); 510 h2 += MUL64((k7 + d3), (k11 + d7)); 511 h3 += MUL64((k11 + d3), (k15 + d7)); 512 h4 += MUL64((k15 + d3), (k19 + d7)); 513 514 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 515 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 516 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 517 518 d += 8; 519 k += 8; 520 } while (--c); 521 ((UINT64 *)hp)[0] = h1; 522 ((UINT64 *)hp)[1] = h2; 523 ((UINT64 *)hp)[2] = h3; 524 ((UINT64 *)hp)[3] = h4; 525 } 526 527 /* ---------------------------------------------------------------------- */ 528 #endif /* UMAC_OUTPUT_LENGTH */ 529 /* ---------------------------------------------------------------------- */ 530 531 532 /* ---------------------------------------------------------------------- */ 533 534 static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) 535 /* This function is a wrapper for the primitive NH hash functions. It takes 536 * as argument "hc" the current hash context and a buffer which must be a 537 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 538 * appropriately according to how much message has been hashed already. 539 */ 540 { 541 UINT8 *key; 542 543 key = hc->nh_key + hc->bytes_hashed; 544 nh_aux(key, buf, hc->state, nbytes); 545 } 546 547 /* ---------------------------------------------------------------------- */ 548 549 #if (__LITTLE_ENDIAN__) 550 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 551 /* We endian convert the keys on little-endian computers to */ 552 /* compensate for the lack of big-endian memory reads during hashing. */ 553 { 554 UWORD iters = num_bytes / bpw; 555 if (bpw == 4) { 556 UINT32 *p = (UINT32 *)buf; 557 do { 558 *p = LOAD_UINT32_REVERSED(p); 559 p++; 560 } while (--iters); 561 } else if (bpw == 8) { 562 UINT32 *p = (UINT32 *)buf; 563 UINT32 t; 564 do { 565 t = LOAD_UINT32_REVERSED(p+1); 566 p[1] = LOAD_UINT32_REVERSED(p); 567 p[0] = t; 568 p += 2; 569 } while (--iters); 570 } 571 } 572 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 573 #else 574 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 575 #endif 576 577 /* ---------------------------------------------------------------------- */ 578 579 static void nh_reset(nh_ctx *hc) 580 /* Reset nh_ctx to ready for hashing of new data */ 581 { 582 hc->bytes_hashed = 0; 583 hc->next_data_empty = 0; 584 hc->state[0] = 0; 585 #if (UMAC_OUTPUT_LEN >= 8) 586 hc->state[1] = 0; 587 #endif 588 #if (UMAC_OUTPUT_LEN >= 12) 589 hc->state[2] = 0; 590 #endif 591 #if (UMAC_OUTPUT_LEN == 16) 592 hc->state[3] = 0; 593 #endif 594 595 } 596 597 /* ---------------------------------------------------------------------- */ 598 599 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 600 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 601 { 602 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 603 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 604 nh_reset(hc); 605 } 606 607 /* ---------------------------------------------------------------------- */ 608 609 static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) 610 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 611 /* even multiple of HASH_BUF_BYTES. */ 612 { 613 UINT32 i,j; 614 615 j = hc->next_data_empty; 616 if ((j + nbytes) >= HASH_BUF_BYTES) { 617 if (j) { 618 i = HASH_BUF_BYTES - j; 619 memcpy(hc->data+j, buf, i); 620 nh_transform(hc,hc->data,HASH_BUF_BYTES); 621 nbytes -= i; 622 buf += i; 623 hc->bytes_hashed += HASH_BUF_BYTES; 624 } 625 if (nbytes >= HASH_BUF_BYTES) { 626 i = nbytes & ~(HASH_BUF_BYTES - 1); 627 nh_transform(hc, buf, i); 628 nbytes -= i; 629 buf += i; 630 hc->bytes_hashed += i; 631 } 632 j = 0; 633 } 634 memcpy(hc->data + j, buf, nbytes); 635 hc->next_data_empty = j + nbytes; 636 } 637 638 /* ---------------------------------------------------------------------- */ 639 640 static void zero_pad(UINT8 *p, int nbytes) 641 { 642 /* Write "nbytes" of zeroes, beginning at "p" */ 643 if (nbytes >= (int)sizeof(UWORD)) { 644 while ((ptrdiff_t)p % sizeof(UWORD)) { 645 *p = 0; 646 nbytes--; 647 p++; 648 } 649 while (nbytes >= (int)sizeof(UWORD)) { 650 *(UWORD *)p = 0; 651 nbytes -= sizeof(UWORD); 652 p += sizeof(UWORD); 653 } 654 } 655 while (nbytes) { 656 *p = 0; 657 nbytes--; 658 p++; 659 } 660 } 661 662 /* ---------------------------------------------------------------------- */ 663 664 static void nh_final(nh_ctx *hc, UINT8 *result) 665 /* After passing some number of data buffers to nh_update() for integration 666 * into an NH context, nh_final is called to produce a hash result. If any 667 * bytes are in the buffer hc->data, incorporate them into the 668 * NH context. Finally, add into the NH accumulation "state" the total number 669 * of bits hashed. The resulting numbers are written to the buffer "result". 670 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 671 */ 672 { 673 int nh_len, nbits; 674 675 if (hc->next_data_empty != 0) { 676 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 677 ~(L1_PAD_BOUNDARY - 1)); 678 zero_pad(hc->data + hc->next_data_empty, 679 nh_len - hc->next_data_empty); 680 nh_transform(hc, hc->data, nh_len); 681 hc->bytes_hashed += hc->next_data_empty; 682 } else if (hc->bytes_hashed == 0) { 683 nh_len = L1_PAD_BOUNDARY; 684 zero_pad(hc->data, L1_PAD_BOUNDARY); 685 nh_transform(hc, hc->data, nh_len); 686 } 687 688 nbits = (hc->bytes_hashed << 3); 689 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 690 #if (UMAC_OUTPUT_LEN >= 8) 691 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 692 #endif 693 #if (UMAC_OUTPUT_LEN >= 12) 694 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 695 #endif 696 #if (UMAC_OUTPUT_LEN == 16) 697 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 698 #endif 699 nh_reset(hc); 700 } 701 702 /* ---------------------------------------------------------------------- */ 703 704 static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len, 705 UINT32 unpadded_len, UINT8 *result) 706 /* All-in-one nh_update() and nh_final() equivalent. 707 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 708 * well aligned 709 */ 710 { 711 UINT32 nbits; 712 713 /* Initialize the hash state */ 714 nbits = (unpadded_len << 3); 715 716 ((UINT64 *)result)[0] = nbits; 717 #if (UMAC_OUTPUT_LEN >= 8) 718 ((UINT64 *)result)[1] = nbits; 719 #endif 720 #if (UMAC_OUTPUT_LEN >= 12) 721 ((UINT64 *)result)[2] = nbits; 722 #endif 723 #if (UMAC_OUTPUT_LEN == 16) 724 ((UINT64 *)result)[3] = nbits; 725 #endif 726 727 nh_aux(hc->nh_key, buf, result, padded_len); 728 } 729 730 /* ---------------------------------------------------------------------- */ 731 /* ---------------------------------------------------------------------- */ 732 /* ----- Begin UHASH Section -------------------------------------------- */ 733 /* ---------------------------------------------------------------------- */ 734 /* ---------------------------------------------------------------------- */ 735 736 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 737 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 738 * unless the initial data to be hashed is short. After the polynomial- 739 * layer, an inner-product hash is used to produce the final UHASH output. 740 * 741 * UHASH provides two interfaces, one all-at-once and another where data 742 * buffers are presented sequentially. In the sequential interface, the 743 * UHASH client calls the routine uhash_update() as many times as necessary. 744 * When there is no more data to be fed to UHASH, the client calls 745 * uhash_final() which 746 * calculates the UHASH output. Before beginning another UHASH calculation 747 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 748 * uhash(), is equivalent to the sequence of calls uhash_update() and 749 * uhash_final(); however it is optimized and should be 750 * used whenever the sequential interface is not necessary. 751 * 752 * The routine uhash_init() initializes the uhash_ctx data structure and 753 * must be called once, before any other UHASH routine. 754 */ 755 756 /* ---------------------------------------------------------------------- */ 757 /* ----- Constants and uhash_ctx ---------------------------------------- */ 758 /* ---------------------------------------------------------------------- */ 759 760 /* ---------------------------------------------------------------------- */ 761 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 762 /* ---------------------------------------------------------------------- */ 763 764 /* Primes and masks */ 765 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 766 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 767 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 768 769 770 /* ---------------------------------------------------------------------- */ 771 772 typedef struct uhash_ctx { 773 nh_ctx hash; /* Hash context for L1 NH hash */ 774 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 775 UINT64 poly_accum[STREAMS]; /* poly hash result */ 776 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 777 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 778 UINT32 msg_len; /* Total length of data passed */ 779 /* to uhash */ 780 } uhash_ctx; 781 typedef struct uhash_ctx *uhash_ctx_t; 782 783 /* ---------------------------------------------------------------------- */ 784 785 786 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 787 * word at a time. As described in the specification, poly32 and poly64 788 * require keys from special domains. The following implementations exploit 789 * the special domains to avoid overflow. The results are not guaranteed to 790 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 791 * patches any errant values. 792 */ 793 794 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 795 { 796 UINT32 key_hi = (UINT32)(key >> 32), 797 key_lo = (UINT32)key, 798 cur_hi = (UINT32)(cur >> 32), 799 cur_lo = (UINT32)cur, 800 x_lo, 801 x_hi; 802 UINT64 X,T,res; 803 804 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 805 x_lo = (UINT32)X; 806 x_hi = (UINT32)(X >> 32); 807 808 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 809 810 T = ((UINT64)x_lo << 32); 811 res += T; 812 if (res < T) 813 res += 59; 814 815 res += data; 816 if (res < data) 817 res += 59; 818 819 return res; 820 } 821 822 823 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 824 * implementation does not handle all ramp levels. Because we don't handle 825 * the ramp up to p128 modulus in this implementation, we are limited to 826 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 827 * bytes input to UMAC per tag, ie. 16MB). 828 */ 829 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 830 { 831 int i; 832 UINT64 *data=(UINT64*)data_in; 833 834 for (i = 0; i < STREAMS; i++) { 835 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 836 hc->poly_accum[i] = poly64(hc->poly_accum[i], 837 hc->poly_key_8[i], p64 - 1); 838 hc->poly_accum[i] = poly64(hc->poly_accum[i], 839 hc->poly_key_8[i], (data[i] - 59)); 840 } else { 841 hc->poly_accum[i] = poly64(hc->poly_accum[i], 842 hc->poly_key_8[i], data[i]); 843 } 844 } 845 } 846 847 848 /* ---------------------------------------------------------------------- */ 849 850 851 /* The final step in UHASH is an inner-product hash. The poly hash 852 * produces a result not neccesarily WORD_LEN bytes long. The inner- 853 * product hash breaks the polyhash output into 16-bit chunks and 854 * multiplies each with a 36 bit key. 855 */ 856 857 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 858 { 859 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 860 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 861 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 862 t = t + ipkp[3] * (UINT64)(UINT16)(data); 863 864 return t; 865 } 866 867 static UINT32 ip_reduce_p36(UINT64 t) 868 { 869 /* Divisionless modular reduction */ 870 UINT64 ret; 871 872 ret = (t & m36) + 5 * (t >> 36); 873 if (ret >= p36) 874 ret -= p36; 875 876 /* return least significant 32 bits */ 877 return (UINT32)(ret); 878 } 879 880 881 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 882 * the polyhash stage is skipped and ip_short is applied directly to the 883 * NH output. 884 */ 885 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 886 { 887 UINT64 t; 888 UINT64 *nhp = (UINT64 *)nh_res; 889 890 t = ip_aux(0,ahc->ip_keys, nhp[0]); 891 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 892 #if (UMAC_OUTPUT_LEN >= 8) 893 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 894 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 895 #endif 896 #if (UMAC_OUTPUT_LEN >= 12) 897 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 898 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 899 #endif 900 #if (UMAC_OUTPUT_LEN == 16) 901 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 902 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 903 #endif 904 } 905 906 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 907 * the polyhash stage is not skipped and ip_long is applied to the 908 * polyhash output. 909 */ 910 static void ip_long(uhash_ctx_t ahc, u_char *res) 911 { 912 int i; 913 UINT64 t; 914 915 for (i = 0; i < STREAMS; i++) { 916 /* fix polyhash output not in Z_p64 */ 917 if (ahc->poly_accum[i] >= p64) 918 ahc->poly_accum[i] -= p64; 919 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 920 STORE_UINT32_BIG((UINT32 *)res+i, 921 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 922 } 923 } 924 925 926 /* ---------------------------------------------------------------------- */ 927 928 /* ---------------------------------------------------------------------- */ 929 930 /* Reset uhash context for next hash session */ 931 static int uhash_reset(uhash_ctx_t pc) 932 { 933 nh_reset(&pc->hash); 934 pc->msg_len = 0; 935 pc->poly_accum[0] = 1; 936 #if (UMAC_OUTPUT_LEN >= 8) 937 pc->poly_accum[1] = 1; 938 #endif 939 #if (UMAC_OUTPUT_LEN >= 12) 940 pc->poly_accum[2] = 1; 941 #endif 942 #if (UMAC_OUTPUT_LEN == 16) 943 pc->poly_accum[3] = 1; 944 #endif 945 return 1; 946 } 947 948 /* ---------------------------------------------------------------------- */ 949 950 /* Given a pointer to the internal key needed by kdf() and a uhash context, 951 * initialize the NH context and generate keys needed for poly and inner- 952 * product hashing. All keys are endian adjusted in memory so that native 953 * loads cause correct keys to be in registers during calculation. 954 */ 955 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 956 { 957 int i; 958 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 959 960 /* Zero the entire uhash context */ 961 memset(ahc, 0, sizeof(uhash_ctx)); 962 963 /* Initialize the L1 hash */ 964 nh_init(&ahc->hash, prf_key); 965 966 /* Setup L2 hash variables */ 967 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 968 for (i = 0; i < STREAMS; i++) { 969 /* Fill keys from the buffer, skipping bytes in the buffer not 970 * used by this implementation. Endian reverse the keys if on a 971 * little-endian computer. 972 */ 973 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 974 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 975 /* Mask the 64-bit keys to their special domain */ 976 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 977 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 978 } 979 980 /* Setup L3-1 hash variables */ 981 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 982 for (i = 0; i < STREAMS; i++) 983 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 984 4*sizeof(UINT64)); 985 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 986 sizeof(ahc->ip_keys)); 987 for (i = 0; i < STREAMS*4; i++) 988 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 989 990 /* Setup L3-2 hash variables */ 991 /* Fill buffer with index 4 key */ 992 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 993 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 994 STREAMS * sizeof(UINT32)); 995 } 996 997 /* ---------------------------------------------------------------------- */ 998 999 #if 0 1000 static uhash_ctx_t uhash_alloc(u_char key[]) 1001 { 1002 /* Allocate memory and force to a 16-byte boundary. */ 1003 uhash_ctx_t ctx; 1004 u_char bytes_to_add; 1005 aes_int_key prf_key; 1006 1007 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1008 if (ctx) { 1009 if (ALLOC_BOUNDARY) { 1010 bytes_to_add = ALLOC_BOUNDARY - 1011 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1012 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1013 *((u_char *)ctx - 1) = bytes_to_add; 1014 } 1015 aes_key_setup(key,prf_key); 1016 uhash_init(ctx, prf_key); 1017 } 1018 return (ctx); 1019 } 1020 #endif 1021 1022 /* ---------------------------------------------------------------------- */ 1023 1024 #if 0 1025 static int uhash_free(uhash_ctx_t ctx) 1026 { 1027 /* Free memory allocated by uhash_alloc */ 1028 u_char bytes_to_sub; 1029 1030 if (ctx) { 1031 if (ALLOC_BOUNDARY) { 1032 bytes_to_sub = *((u_char *)ctx - 1); 1033 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1034 } 1035 free(ctx); 1036 } 1037 return (1); 1038 } 1039 #endif 1040 /* ---------------------------------------------------------------------- */ 1041 1042 static int uhash_update(uhash_ctx_t ctx, u_char *input, long len) 1043 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1044 * hash each one with NH, calling the polyhash on each NH output. 1045 */ 1046 { 1047 UWORD bytes_hashed, bytes_remaining; 1048 UINT64 result_buf[STREAMS]; 1049 UINT8 *nh_result = (UINT8 *)&result_buf; 1050 1051 if (ctx->msg_len + len <= L1_KEY_LEN) { 1052 nh_update(&ctx->hash, (UINT8 *)input, len); 1053 ctx->msg_len += len; 1054 } else { 1055 1056 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1057 if (ctx->msg_len == L1_KEY_LEN) 1058 bytes_hashed = L1_KEY_LEN; 1059 1060 if (bytes_hashed + len >= L1_KEY_LEN) { 1061 1062 /* If some bytes have been passed to the hash function */ 1063 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1064 /* bytes to complete the current nh_block. */ 1065 if (bytes_hashed) { 1066 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1067 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining); 1068 nh_final(&ctx->hash, nh_result); 1069 ctx->msg_len += bytes_remaining; 1070 poly_hash(ctx,(UINT32 *)nh_result); 1071 len -= bytes_remaining; 1072 input += bytes_remaining; 1073 } 1074 1075 /* Hash directly from input stream if enough bytes */ 1076 while (len >= L1_KEY_LEN) { 1077 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN, 1078 L1_KEY_LEN, nh_result); 1079 ctx->msg_len += L1_KEY_LEN; 1080 len -= L1_KEY_LEN; 1081 input += L1_KEY_LEN; 1082 poly_hash(ctx,(UINT32 *)nh_result); 1083 } 1084 } 1085 1086 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1087 if (len) { 1088 nh_update(&ctx->hash, (UINT8 *)input, len); 1089 ctx->msg_len += len; 1090 } 1091 } 1092 1093 return (1); 1094 } 1095 1096 /* ---------------------------------------------------------------------- */ 1097 1098 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1099 /* Incorporate any pending data, pad, and generate tag */ 1100 { 1101 UINT64 result_buf[STREAMS]; 1102 UINT8 *nh_result = (UINT8 *)&result_buf; 1103 1104 if (ctx->msg_len > L1_KEY_LEN) { 1105 if (ctx->msg_len % L1_KEY_LEN) { 1106 nh_final(&ctx->hash, nh_result); 1107 poly_hash(ctx,(UINT32 *)nh_result); 1108 } 1109 ip_long(ctx, res); 1110 } else { 1111 nh_final(&ctx->hash, nh_result); 1112 ip_short(ctx,nh_result, res); 1113 } 1114 uhash_reset(ctx); 1115 return (1); 1116 } 1117 1118 /* ---------------------------------------------------------------------- */ 1119 1120 #if 0 1121 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1122 /* assumes that msg is in a writable buffer of length divisible by */ 1123 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1124 { 1125 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1126 UINT32 nh_len; 1127 int extra_zeroes_needed; 1128 1129 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1130 * the polyhash. 1131 */ 1132 if (len <= L1_KEY_LEN) { 1133 if (len == 0) /* If zero length messages will not */ 1134 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1135 else 1136 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1137 extra_zeroes_needed = nh_len - len; 1138 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1139 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1140 ip_short(ahc,nh_result, res); 1141 } else { 1142 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1143 * output to poly_hash(). 1144 */ 1145 do { 1146 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1147 poly_hash(ahc,(UINT32 *)nh_result); 1148 len -= L1_KEY_LEN; 1149 msg += L1_KEY_LEN; 1150 } while (len >= L1_KEY_LEN); 1151 if (len) { 1152 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1153 extra_zeroes_needed = nh_len - len; 1154 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1155 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1156 poly_hash(ahc,(UINT32 *)nh_result); 1157 } 1158 1159 ip_long(ahc, res); 1160 } 1161 1162 uhash_reset(ahc); 1163 return 1; 1164 } 1165 #endif 1166 1167 /* ---------------------------------------------------------------------- */ 1168 /* ---------------------------------------------------------------------- */ 1169 /* ----- Begin UMAC Section --------------------------------------------- */ 1170 /* ---------------------------------------------------------------------- */ 1171 /* ---------------------------------------------------------------------- */ 1172 1173 /* The UMAC interface has two interfaces, an all-at-once interface where 1174 * the entire message to be authenticated is passed to UMAC in one buffer, 1175 * and a sequential interface where the message is presented a little at a 1176 * time. The all-at-once is more optimaized than the sequential version and 1177 * should be preferred when the sequential interface is not required. 1178 */ 1179 struct umac_ctx { 1180 uhash_ctx hash; /* Hash function for message compression */ 1181 pdf_ctx pdf; /* PDF for hashed output */ 1182 void *free_ptr; /* Address to free this struct via */ 1183 } umac_ctx; 1184 1185 /* ---------------------------------------------------------------------- */ 1186 1187 #if 0 1188 int umac_reset(struct umac_ctx *ctx) 1189 /* Reset the hash function to begin a new authentication. */ 1190 { 1191 uhash_reset(&ctx->hash); 1192 return (1); 1193 } 1194 #endif 1195 1196 /* ---------------------------------------------------------------------- */ 1197 1198 int umac_delete(struct umac_ctx *ctx) 1199 /* Deallocate the ctx structure */ 1200 { 1201 if (ctx) { 1202 if (ALLOC_BOUNDARY) 1203 ctx = (struct umac_ctx *)ctx->free_ptr; 1204 xfree(ctx); 1205 } 1206 return (1); 1207 } 1208 1209 /* ---------------------------------------------------------------------- */ 1210 1211 struct umac_ctx *umac_new(u_char key[]) 1212 /* Dynamically allocate a umac_ctx struct, initialize variables, 1213 * generate subkeys from key. Align to 16-byte boundary. 1214 */ 1215 { 1216 struct umac_ctx *ctx, *octx; 1217 size_t bytes_to_add; 1218 aes_int_key prf_key; 1219 1220 octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY); 1221 if (ctx) { 1222 if (ALLOC_BOUNDARY) { 1223 bytes_to_add = ALLOC_BOUNDARY - 1224 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1225 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1226 } 1227 ctx->free_ptr = octx; 1228 aes_key_setup(key,prf_key); 1229 pdf_init(&ctx->pdf, prf_key); 1230 uhash_init(&ctx->hash, prf_key); 1231 } 1232 1233 return (ctx); 1234 } 1235 1236 /* ---------------------------------------------------------------------- */ 1237 1238 int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8]) 1239 /* Incorporate any pending data, pad, and generate tag */ 1240 { 1241 uhash_final(&ctx->hash, (u_char *)tag); 1242 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1243 1244 return (1); 1245 } 1246 1247 /* ---------------------------------------------------------------------- */ 1248 1249 int umac_update(struct umac_ctx *ctx, u_char *input, long len) 1250 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1251 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1252 /* output buffer is full. */ 1253 { 1254 uhash_update(&ctx->hash, input, len); 1255 return (1); 1256 } 1257 1258 /* ---------------------------------------------------------------------- */ 1259 1260 #if 0 1261 int umac(struct umac_ctx *ctx, u_char *input, 1262 long len, u_char tag[], 1263 u_char nonce[8]) 1264 /* All-in-one version simply calls umac_update() and umac_final(). */ 1265 { 1266 uhash(&ctx->hash, input, len, (u_char *)tag); 1267 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1268 1269 return (1); 1270 } 1271 #endif 1272 1273 /* ---------------------------------------------------------------------- */ 1274 /* ---------------------------------------------------------------------- */ 1275 /* ----- End UMAC Section ----------------------------------------------- */ 1276 /* ---------------------------------------------------------------------- */ 1277 /* ---------------------------------------------------------------------- */ 1278