1 /* $OpenBSD: umac.c,v 1.8 2013/11/08 00:39:15 djm Exp $ */ 2 /* ----------------------------------------------------------------------- 3 * 4 * umac.c -- C Implementation UMAC Message Authentication 5 * 6 * Version 0.93b of rfc4418.txt -- 2006 July 18 7 * 8 * For a full description of UMAC message authentication see the UMAC 9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac 10 * Please report bugs and suggestions to the UMAC webpage. 11 * 12 * Copyright (c) 1999-2006 Ted Krovetz 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation for any purpose and with or without fee, is hereby 16 * granted provided that the above copyright notice appears in all copies 17 * and in supporting documentation, and that the name of the copyright 18 * holder not be used in advertising or publicity pertaining to 19 * distribution of the software without specific, written prior permission. 20 * 21 * Comments should be directed to Ted Krovetz (tdk@acm.org) 22 * 23 * ---------------------------------------------------------------------- */ 24 25 /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// 26 * 27 * 1) This version does not work properly on messages larger than 16MB 28 * 29 * 2) If you set the switch to use SSE2, then all data must be 16-byte 30 * aligned 31 * 32 * 3) When calling the function umac(), it is assumed that msg is in 33 * a writable buffer of length divisible by 32 bytes. The message itself 34 * does not have to fill the entire buffer, but bytes beyond msg may be 35 * zeroed. 36 * 37 * 4) Three free AES implementations are supported by this implementation of 38 * UMAC. Paulo Barreto's version is in the public domain and can be found 39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for 40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and 41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU 42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It 43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is 44 * the third. 45 * 46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes 47 * produced under gcc with optimizations set -O3 or higher. Dunno why. 48 * 49 /////////////////////////////////////////////////////////////////////// */ 50 51 /* ---------------------------------------------------------------------- */ 52 /* --- User Switches ---------------------------------------------------- */ 53 /* ---------------------------------------------------------------------- */ 54 55 #ifndef UMAC_OUTPUT_LEN 56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ 57 #endif 58 59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \ 60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16 61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16 62 #endif 63 64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ 65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ 66 /* #define SSE2 0 Is SSE2 is available? */ 67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */ 68 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ 69 70 /* ---------------------------------------------------------------------- */ 71 /* -- Global Includes --------------------------------------------------- */ 72 /* ---------------------------------------------------------------------- */ 73 74 #include "includes.h" 75 #include <sys/types.h> 76 77 #include "xmalloc.h" 78 #include "umac.h" 79 #include <string.h> 80 #include <stdlib.h> 81 #include <stddef.h> 82 83 /* ---------------------------------------------------------------------- */ 84 /* --- Primitive Data Types --- */ 85 /* ---------------------------------------------------------------------- */ 86 87 /* The following assumptions may need change on your system */ 88 typedef u_int8_t UINT8; /* 1 byte */ 89 typedef u_int16_t UINT16; /* 2 byte */ 90 typedef u_int32_t UINT32; /* 4 byte */ 91 typedef u_int64_t UINT64; /* 8 bytes */ 92 typedef unsigned int UWORD; /* Register */ 93 94 /* ---------------------------------------------------------------------- */ 95 /* --- Constants -------------------------------------------------------- */ 96 /* ---------------------------------------------------------------------- */ 97 98 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ 99 100 /* Message "words" are read from memory in an endian-specific manner. */ 101 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ 102 /* be set true if the host computer is little-endian. */ 103 104 #if BYTE_ORDER == LITTLE_ENDIAN 105 #define __LITTLE_ENDIAN__ 1 106 #else 107 #define __LITTLE_ENDIAN__ 0 108 #endif 109 110 /* ---------------------------------------------------------------------- */ 111 /* ---------------------------------------------------------------------- */ 112 /* ----- Architecture Specific ------------------------------------------ */ 113 /* ---------------------------------------------------------------------- */ 114 /* ---------------------------------------------------------------------- */ 115 116 117 /* ---------------------------------------------------------------------- */ 118 /* ---------------------------------------------------------------------- */ 119 /* ----- Primitive Routines --------------------------------------------- */ 120 /* ---------------------------------------------------------------------- */ 121 /* ---------------------------------------------------------------------- */ 122 123 124 /* ---------------------------------------------------------------------- */ 125 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ 126 /* ---------------------------------------------------------------------- */ 127 128 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) 129 130 /* ---------------------------------------------------------------------- */ 131 /* --- Endian Conversion --- Forcing assembly on some platforms */ 132 /* ---------------------------------------------------------------------- */ 133 134 #if HAVE_SWAP32 135 #define LOAD_UINT32_REVERSED(p) (swap32(*(const UINT32 *)(p))) 136 #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v)) 137 #else /* HAVE_SWAP32 */ 138 139 static UINT32 LOAD_UINT32_REVERSED(const void *ptr) 140 { 141 UINT32 temp = *(const UINT32 *)ptr; 142 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 ) 143 | ((temp & 0x0000FF00) << 8 ) | (temp << 24); 144 return (UINT32)temp; 145 } 146 147 # if (__LITTLE_ENDIAN__) 148 static void STORE_UINT32_REVERSED(void *ptr, UINT32 x) 149 { 150 UINT32 i = (UINT32)x; 151 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 ) 152 | ((i & 0x0000FF00) << 8 ) | (i << 24); 153 } 154 # endif /* __LITTLE_ENDIAN */ 155 #endif /* HAVE_SWAP32 */ 156 157 /* The following definitions use the above reversal-primitives to do the right 158 * thing on endian specific load and stores. 159 */ 160 161 #if (__LITTLE_ENDIAN__) 162 #define LOAD_UINT32_LITTLE(ptr) (*(const UINT32 *)(ptr)) 163 #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x) 164 #else 165 #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr) 166 #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x)) 167 #endif 168 169 /* ---------------------------------------------------------------------- */ 170 /* ---------------------------------------------------------------------- */ 171 /* ----- Begin KDF & PDF Section ---------------------------------------- */ 172 /* ---------------------------------------------------------------------- */ 173 /* ---------------------------------------------------------------------- */ 174 175 /* UMAC uses AES with 16 byte block and key lengths */ 176 #define AES_BLOCK_LEN 16 177 178 /* OpenSSL's AES */ 179 #include "openbsd-compat/openssl-compat.h" 180 #ifndef USE_BUILTIN_RIJNDAEL 181 # include <openssl/aes.h> 182 #endif 183 typedef AES_KEY aes_int_key[1]; 184 #define aes_encryption(in,out,int_key) \ 185 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) 186 #define aes_key_setup(key,int_key) \ 187 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key) 188 189 /* The user-supplied UMAC key is stretched using AES in a counter 190 * mode to supply all random bits needed by UMAC. The kdf function takes 191 * an AES internal key representation 'key' and writes a stream of 192 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct 193 * 'ndx' causes a distinct byte stream. 194 */ 195 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes) 196 { 197 UINT8 in_buf[AES_BLOCK_LEN] = {0}; 198 UINT8 out_buf[AES_BLOCK_LEN]; 199 UINT8 *dst_buf = (UINT8 *)bufp; 200 int i; 201 202 /* Setup the initial value */ 203 in_buf[AES_BLOCK_LEN-9] = ndx; 204 in_buf[AES_BLOCK_LEN-1] = i = 1; 205 206 while (nbytes >= AES_BLOCK_LEN) { 207 aes_encryption(in_buf, out_buf, key); 208 memcpy(dst_buf,out_buf,AES_BLOCK_LEN); 209 in_buf[AES_BLOCK_LEN-1] = ++i; 210 nbytes -= AES_BLOCK_LEN; 211 dst_buf += AES_BLOCK_LEN; 212 } 213 if (nbytes) { 214 aes_encryption(in_buf, out_buf, key); 215 memcpy(dst_buf,out_buf,nbytes); 216 } 217 } 218 219 /* The final UHASH result is XOR'd with the output of a pseudorandom 220 * function. Here, we use AES to generate random output and 221 * xor the appropriate bytes depending on the last bits of nonce. 222 * This scheme is optimized for sequential, increasing big-endian nonces. 223 */ 224 225 typedef struct { 226 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ 227 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ 228 aes_int_key prf_key; /* Expanded AES key for PDF */ 229 } pdf_ctx; 230 231 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) 232 { 233 UINT8 buf[UMAC_KEY_LEN]; 234 235 kdf(buf, prf_key, 0, UMAC_KEY_LEN); 236 aes_key_setup(buf, pc->prf_key); 237 238 /* Initialize pdf and cache */ 239 memset(pc->nonce, 0, sizeof(pc->nonce)); 240 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 241 } 242 243 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8]) 244 { 245 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes 246 * of the AES output. If last time around we returned the ndx-1st 247 * element, then we may have the result in the cache already. 248 */ 249 250 #if (UMAC_OUTPUT_LEN == 4) 251 #define LOW_BIT_MASK 3 252 #elif (UMAC_OUTPUT_LEN == 8) 253 #define LOW_BIT_MASK 1 254 #elif (UMAC_OUTPUT_LEN > 8) 255 #define LOW_BIT_MASK 0 256 #endif 257 union { 258 UINT8 tmp_nonce_lo[4]; 259 UINT32 align; 260 } t; 261 #if LOW_BIT_MASK != 0 262 int ndx = nonce[7] & LOW_BIT_MASK; 263 #endif 264 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; 265 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ 266 267 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || 268 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) 269 { 270 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; 271 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; 272 aes_encryption(pc->nonce, pc->cache, pc->prf_key); 273 } 274 275 #if (UMAC_OUTPUT_LEN == 4) 276 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; 277 #elif (UMAC_OUTPUT_LEN == 8) 278 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; 279 #elif (UMAC_OUTPUT_LEN == 12) 280 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 281 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; 282 #elif (UMAC_OUTPUT_LEN == 16) 283 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; 284 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; 285 #endif 286 } 287 288 /* ---------------------------------------------------------------------- */ 289 /* ---------------------------------------------------------------------- */ 290 /* ----- Begin NH Hash Section ------------------------------------------ */ 291 /* ---------------------------------------------------------------------- */ 292 /* ---------------------------------------------------------------------- */ 293 294 /* The NH-based hash functions used in UMAC are described in the UMAC paper 295 * and specification, both of which can be found at the UMAC website. 296 * The interface to this implementation has two 297 * versions, one expects the entire message being hashed to be passed 298 * in a single buffer and returns the hash result immediately. The second 299 * allows the message to be passed in a sequence of buffers. In the 300 * muliple-buffer interface, the client calls the routine nh_update() as 301 * many times as necessary. When there is no more data to be fed to the 302 * hash, the client calls nh_final() which calculates the hash output. 303 * Before beginning another hash calculation the nh_reset() routine 304 * must be called. The single-buffer routine, nh(), is equivalent to 305 * the sequence of calls nh_update() and nh_final(); however it is 306 * optimized and should be prefered whenever the multiple-buffer interface 307 * is not necessary. When using either interface, it is the client's 308 * responsability to pass no more than L1_KEY_LEN bytes per hash result. 309 * 310 * The routine nh_init() initializes the nh_ctx data structure and 311 * must be called once, before any other PDF routine. 312 */ 313 314 /* The "nh_aux" routines do the actual NH hashing work. They 315 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines 316 * produce output for all STREAMS NH iterations in one call, 317 * allowing the parallel implementation of the streams. 318 */ 319 320 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ 321 #define L1_KEY_LEN 1024 /* Internal key bytes */ 322 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ 323 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ 324 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ 325 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ 326 327 typedef struct { 328 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ 329 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */ 330 int next_data_empty; /* Bookeeping variable for data buffer. */ 331 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ 332 UINT64 state[STREAMS]; /* on-line state */ 333 } nh_ctx; 334 335 336 #if (UMAC_OUTPUT_LEN == 4) 337 338 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 339 /* NH hashing primitive. Previous (partial) hash result is loaded and 340 * then stored via hp pointer. The length of the data pointed at by "dp", 341 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key 342 * is expected to be endian compensated in memory at key setup. 343 */ 344 { 345 UINT64 h; 346 UWORD c = dlen / 32; 347 UINT32 *k = (UINT32 *)kp; 348 const UINT32 *d = (const UINT32 *)dp; 349 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 350 UINT32 k0,k1,k2,k3,k4,k5,k6,k7; 351 352 h = *((UINT64 *)hp); 353 do { 354 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 355 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 356 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 357 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 358 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 359 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 360 h += MUL64((k0 + d0), (k4 + d4)); 361 h += MUL64((k1 + d1), (k5 + d5)); 362 h += MUL64((k2 + d2), (k6 + d6)); 363 h += MUL64((k3 + d3), (k7 + d7)); 364 365 d += 8; 366 k += 8; 367 } while (--c); 368 *((UINT64 *)hp) = h; 369 } 370 371 #elif (UMAC_OUTPUT_LEN == 8) 372 373 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 374 /* Same as previous nh_aux, but two streams are handled in one pass, 375 * reading and writing 16 bytes of hash-state per call. 376 */ 377 { 378 UINT64 h1,h2; 379 UWORD c = dlen / 32; 380 UINT32 *k = (UINT32 *)kp; 381 const UINT32 *d = (const UINT32 *)dp; 382 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 383 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 384 k8,k9,k10,k11; 385 386 h1 = *((UINT64 *)hp); 387 h2 = *((UINT64 *)hp + 1); 388 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 389 do { 390 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 391 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 392 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 393 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 394 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 395 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 396 397 h1 += MUL64((k0 + d0), (k4 + d4)); 398 h2 += MUL64((k4 + d0), (k8 + d4)); 399 400 h1 += MUL64((k1 + d1), (k5 + d5)); 401 h2 += MUL64((k5 + d1), (k9 + d5)); 402 403 h1 += MUL64((k2 + d2), (k6 + d6)); 404 h2 += MUL64((k6 + d2), (k10 + d6)); 405 406 h1 += MUL64((k3 + d3), (k7 + d7)); 407 h2 += MUL64((k7 + d3), (k11 + d7)); 408 409 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 410 411 d += 8; 412 k += 8; 413 } while (--c); 414 ((UINT64 *)hp)[0] = h1; 415 ((UINT64 *)hp)[1] = h2; 416 } 417 418 #elif (UMAC_OUTPUT_LEN == 12) 419 420 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 421 /* Same as previous nh_aux, but two streams are handled in one pass, 422 * reading and writing 24 bytes of hash-state per call. 423 */ 424 { 425 UINT64 h1,h2,h3; 426 UWORD c = dlen / 32; 427 UINT32 *k = (UINT32 *)kp; 428 const UINT32 *d = (const UINT32 *)dp; 429 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 430 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 431 k8,k9,k10,k11,k12,k13,k14,k15; 432 433 h1 = *((UINT64 *)hp); 434 h2 = *((UINT64 *)hp + 1); 435 h3 = *((UINT64 *)hp + 2); 436 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 437 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 438 do { 439 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 440 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 441 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 442 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 443 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 444 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 445 446 h1 += MUL64((k0 + d0), (k4 + d4)); 447 h2 += MUL64((k4 + d0), (k8 + d4)); 448 h3 += MUL64((k8 + d0), (k12 + d4)); 449 450 h1 += MUL64((k1 + d1), (k5 + d5)); 451 h2 += MUL64((k5 + d1), (k9 + d5)); 452 h3 += MUL64((k9 + d1), (k13 + d5)); 453 454 h1 += MUL64((k2 + d2), (k6 + d6)); 455 h2 += MUL64((k6 + d2), (k10 + d6)); 456 h3 += MUL64((k10 + d2), (k14 + d6)); 457 458 h1 += MUL64((k3 + d3), (k7 + d7)); 459 h2 += MUL64((k7 + d3), (k11 + d7)); 460 h3 += MUL64((k11 + d3), (k15 + d7)); 461 462 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 463 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 464 465 d += 8; 466 k += 8; 467 } while (--c); 468 ((UINT64 *)hp)[0] = h1; 469 ((UINT64 *)hp)[1] = h2; 470 ((UINT64 *)hp)[2] = h3; 471 } 472 473 #elif (UMAC_OUTPUT_LEN == 16) 474 475 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) 476 /* Same as previous nh_aux, but two streams are handled in one pass, 477 * reading and writing 24 bytes of hash-state per call. 478 */ 479 { 480 UINT64 h1,h2,h3,h4; 481 UWORD c = dlen / 32; 482 UINT32 *k = (UINT32 *)kp; 483 const UINT32 *d = (const UINT32 *)dp; 484 UINT32 d0,d1,d2,d3,d4,d5,d6,d7; 485 UINT32 k0,k1,k2,k3,k4,k5,k6,k7, 486 k8,k9,k10,k11,k12,k13,k14,k15, 487 k16,k17,k18,k19; 488 489 h1 = *((UINT64 *)hp); 490 h2 = *((UINT64 *)hp + 1); 491 h3 = *((UINT64 *)hp + 2); 492 h4 = *((UINT64 *)hp + 3); 493 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); 494 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); 495 do { 496 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); 497 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); 498 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); 499 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); 500 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); 501 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); 502 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); 503 504 h1 += MUL64((k0 + d0), (k4 + d4)); 505 h2 += MUL64((k4 + d0), (k8 + d4)); 506 h3 += MUL64((k8 + d0), (k12 + d4)); 507 h4 += MUL64((k12 + d0), (k16 + d4)); 508 509 h1 += MUL64((k1 + d1), (k5 + d5)); 510 h2 += MUL64((k5 + d1), (k9 + d5)); 511 h3 += MUL64((k9 + d1), (k13 + d5)); 512 h4 += MUL64((k13 + d1), (k17 + d5)); 513 514 h1 += MUL64((k2 + d2), (k6 + d6)); 515 h2 += MUL64((k6 + d2), (k10 + d6)); 516 h3 += MUL64((k10 + d2), (k14 + d6)); 517 h4 += MUL64((k14 + d2), (k18 + d6)); 518 519 h1 += MUL64((k3 + d3), (k7 + d7)); 520 h2 += MUL64((k7 + d3), (k11 + d7)); 521 h3 += MUL64((k11 + d3), (k15 + d7)); 522 h4 += MUL64((k15 + d3), (k19 + d7)); 523 524 k0 = k8; k1 = k9; k2 = k10; k3 = k11; 525 k4 = k12; k5 = k13; k6 = k14; k7 = k15; 526 k8 = k16; k9 = k17; k10 = k18; k11 = k19; 527 528 d += 8; 529 k += 8; 530 } while (--c); 531 ((UINT64 *)hp)[0] = h1; 532 ((UINT64 *)hp)[1] = h2; 533 ((UINT64 *)hp)[2] = h3; 534 ((UINT64 *)hp)[3] = h4; 535 } 536 537 /* ---------------------------------------------------------------------- */ 538 #endif /* UMAC_OUTPUT_LENGTH */ 539 /* ---------------------------------------------------------------------- */ 540 541 542 /* ---------------------------------------------------------------------- */ 543 544 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 545 /* This function is a wrapper for the primitive NH hash functions. It takes 546 * as argument "hc" the current hash context and a buffer which must be a 547 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset 548 * appropriately according to how much message has been hashed already. 549 */ 550 { 551 UINT8 *key; 552 553 key = hc->nh_key + hc->bytes_hashed; 554 nh_aux(key, buf, hc->state, nbytes); 555 } 556 557 /* ---------------------------------------------------------------------- */ 558 559 #if (__LITTLE_ENDIAN__) 560 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) 561 /* We endian convert the keys on little-endian computers to */ 562 /* compensate for the lack of big-endian memory reads during hashing. */ 563 { 564 UWORD iters = num_bytes / bpw; 565 if (bpw == 4) { 566 UINT32 *p = (UINT32 *)buf; 567 do { 568 *p = LOAD_UINT32_REVERSED(p); 569 p++; 570 } while (--iters); 571 } else if (bpw == 8) { 572 UINT32 *p = (UINT32 *)buf; 573 UINT32 t; 574 do { 575 t = LOAD_UINT32_REVERSED(p+1); 576 p[1] = LOAD_UINT32_REVERSED(p); 577 p[0] = t; 578 p += 2; 579 } while (--iters); 580 } 581 } 582 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) 583 #else 584 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ 585 #endif 586 587 /* ---------------------------------------------------------------------- */ 588 589 static void nh_reset(nh_ctx *hc) 590 /* Reset nh_ctx to ready for hashing of new data */ 591 { 592 hc->bytes_hashed = 0; 593 hc->next_data_empty = 0; 594 hc->state[0] = 0; 595 #if (UMAC_OUTPUT_LEN >= 8) 596 hc->state[1] = 0; 597 #endif 598 #if (UMAC_OUTPUT_LEN >= 12) 599 hc->state[2] = 0; 600 #endif 601 #if (UMAC_OUTPUT_LEN == 16) 602 hc->state[3] = 0; 603 #endif 604 605 } 606 607 /* ---------------------------------------------------------------------- */ 608 609 static void nh_init(nh_ctx *hc, aes_int_key prf_key) 610 /* Generate nh_key, endian convert and reset to be ready for hashing. */ 611 { 612 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); 613 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); 614 nh_reset(hc); 615 } 616 617 /* ---------------------------------------------------------------------- */ 618 619 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) 620 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ 621 /* even multiple of HASH_BUF_BYTES. */ 622 { 623 UINT32 i,j; 624 625 j = hc->next_data_empty; 626 if ((j + nbytes) >= HASH_BUF_BYTES) { 627 if (j) { 628 i = HASH_BUF_BYTES - j; 629 memcpy(hc->data+j, buf, i); 630 nh_transform(hc,hc->data,HASH_BUF_BYTES); 631 nbytes -= i; 632 buf += i; 633 hc->bytes_hashed += HASH_BUF_BYTES; 634 } 635 if (nbytes >= HASH_BUF_BYTES) { 636 i = nbytes & ~(HASH_BUF_BYTES - 1); 637 nh_transform(hc, buf, i); 638 nbytes -= i; 639 buf += i; 640 hc->bytes_hashed += i; 641 } 642 j = 0; 643 } 644 memcpy(hc->data + j, buf, nbytes); 645 hc->next_data_empty = j + nbytes; 646 } 647 648 /* ---------------------------------------------------------------------- */ 649 650 static void zero_pad(UINT8 *p, int nbytes) 651 { 652 /* Write "nbytes" of zeroes, beginning at "p" */ 653 if (nbytes >= (int)sizeof(UWORD)) { 654 while ((ptrdiff_t)p % sizeof(UWORD)) { 655 *p = 0; 656 nbytes--; 657 p++; 658 } 659 while (nbytes >= (int)sizeof(UWORD)) { 660 *(UWORD *)p = 0; 661 nbytes -= sizeof(UWORD); 662 p += sizeof(UWORD); 663 } 664 } 665 while (nbytes) { 666 *p = 0; 667 nbytes--; 668 p++; 669 } 670 } 671 672 /* ---------------------------------------------------------------------- */ 673 674 static void nh_final(nh_ctx *hc, UINT8 *result) 675 /* After passing some number of data buffers to nh_update() for integration 676 * into an NH context, nh_final is called to produce a hash result. If any 677 * bytes are in the buffer hc->data, incorporate them into the 678 * NH context. Finally, add into the NH accumulation "state" the total number 679 * of bits hashed. The resulting numbers are written to the buffer "result". 680 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. 681 */ 682 { 683 int nh_len, nbits; 684 685 if (hc->next_data_empty != 0) { 686 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & 687 ~(L1_PAD_BOUNDARY - 1)); 688 zero_pad(hc->data + hc->next_data_empty, 689 nh_len - hc->next_data_empty); 690 nh_transform(hc, hc->data, nh_len); 691 hc->bytes_hashed += hc->next_data_empty; 692 } else if (hc->bytes_hashed == 0) { 693 nh_len = L1_PAD_BOUNDARY; 694 zero_pad(hc->data, L1_PAD_BOUNDARY); 695 nh_transform(hc, hc->data, nh_len); 696 } 697 698 nbits = (hc->bytes_hashed << 3); 699 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; 700 #if (UMAC_OUTPUT_LEN >= 8) 701 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; 702 #endif 703 #if (UMAC_OUTPUT_LEN >= 12) 704 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; 705 #endif 706 #if (UMAC_OUTPUT_LEN == 16) 707 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; 708 #endif 709 nh_reset(hc); 710 } 711 712 /* ---------------------------------------------------------------------- */ 713 714 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, 715 UINT32 unpadded_len, UINT8 *result) 716 /* All-in-one nh_update() and nh_final() equivalent. 717 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is 718 * well aligned 719 */ 720 { 721 UINT32 nbits; 722 723 /* Initialize the hash state */ 724 nbits = (unpadded_len << 3); 725 726 ((UINT64 *)result)[0] = nbits; 727 #if (UMAC_OUTPUT_LEN >= 8) 728 ((UINT64 *)result)[1] = nbits; 729 #endif 730 #if (UMAC_OUTPUT_LEN >= 12) 731 ((UINT64 *)result)[2] = nbits; 732 #endif 733 #if (UMAC_OUTPUT_LEN == 16) 734 ((UINT64 *)result)[3] = nbits; 735 #endif 736 737 nh_aux(hc->nh_key, buf, result, padded_len); 738 } 739 740 /* ---------------------------------------------------------------------- */ 741 /* ---------------------------------------------------------------------- */ 742 /* ----- Begin UHASH Section -------------------------------------------- */ 743 /* ---------------------------------------------------------------------- */ 744 /* ---------------------------------------------------------------------- */ 745 746 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first 747 * hashed by NH. The NH output is then hashed by a polynomial-hash layer 748 * unless the initial data to be hashed is short. After the polynomial- 749 * layer, an inner-product hash is used to produce the final UHASH output. 750 * 751 * UHASH provides two interfaces, one all-at-once and another where data 752 * buffers are presented sequentially. In the sequential interface, the 753 * UHASH client calls the routine uhash_update() as many times as necessary. 754 * When there is no more data to be fed to UHASH, the client calls 755 * uhash_final() which 756 * calculates the UHASH output. Before beginning another UHASH calculation 757 * the uhash_reset() routine must be called. The all-at-once UHASH routine, 758 * uhash(), is equivalent to the sequence of calls uhash_update() and 759 * uhash_final(); however it is optimized and should be 760 * used whenever the sequential interface is not necessary. 761 * 762 * The routine uhash_init() initializes the uhash_ctx data structure and 763 * must be called once, before any other UHASH routine. 764 */ 765 766 /* ---------------------------------------------------------------------- */ 767 /* ----- Constants and uhash_ctx ---------------------------------------- */ 768 /* ---------------------------------------------------------------------- */ 769 770 /* ---------------------------------------------------------------------- */ 771 /* ----- Poly hash and Inner-Product hash Constants --------------------- */ 772 /* ---------------------------------------------------------------------- */ 773 774 /* Primes and masks */ 775 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ 776 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ 777 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ 778 779 780 /* ---------------------------------------------------------------------- */ 781 782 typedef struct uhash_ctx { 783 nh_ctx hash; /* Hash context for L1 NH hash */ 784 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ 785 UINT64 poly_accum[STREAMS]; /* poly hash result */ 786 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ 787 UINT32 ip_trans[STREAMS]; /* Inner-product translation */ 788 UINT32 msg_len; /* Total length of data passed */ 789 /* to uhash */ 790 } uhash_ctx; 791 typedef struct uhash_ctx *uhash_ctx_t; 792 793 /* ---------------------------------------------------------------------- */ 794 795 796 /* The polynomial hashes use Horner's rule to evaluate a polynomial one 797 * word at a time. As described in the specification, poly32 and poly64 798 * require keys from special domains. The following implementations exploit 799 * the special domains to avoid overflow. The results are not guaranteed to 800 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation 801 * patches any errant values. 802 */ 803 804 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) 805 { 806 UINT32 key_hi = (UINT32)(key >> 32), 807 key_lo = (UINT32)key, 808 cur_hi = (UINT32)(cur >> 32), 809 cur_lo = (UINT32)cur, 810 x_lo, 811 x_hi; 812 UINT64 X,T,res; 813 814 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); 815 x_lo = (UINT32)X; 816 x_hi = (UINT32)(X >> 32); 817 818 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); 819 820 T = ((UINT64)x_lo << 32); 821 res += T; 822 if (res < T) 823 res += 59; 824 825 res += data; 826 if (res < data) 827 res += 59; 828 829 return res; 830 } 831 832 833 /* Although UMAC is specified to use a ramped polynomial hash scheme, this 834 * implementation does not handle all ramp levels. Because we don't handle 835 * the ramp up to p128 modulus in this implementation, we are limited to 836 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 837 * bytes input to UMAC per tag, ie. 16MB). 838 */ 839 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) 840 { 841 int i; 842 UINT64 *data=(UINT64*)data_in; 843 844 for (i = 0; i < STREAMS; i++) { 845 if ((UINT32)(data[i] >> 32) == 0xfffffffful) { 846 hc->poly_accum[i] = poly64(hc->poly_accum[i], 847 hc->poly_key_8[i], p64 - 1); 848 hc->poly_accum[i] = poly64(hc->poly_accum[i], 849 hc->poly_key_8[i], (data[i] - 59)); 850 } else { 851 hc->poly_accum[i] = poly64(hc->poly_accum[i], 852 hc->poly_key_8[i], data[i]); 853 } 854 } 855 } 856 857 858 /* ---------------------------------------------------------------------- */ 859 860 861 /* The final step in UHASH is an inner-product hash. The poly hash 862 * produces a result not neccesarily WORD_LEN bytes long. The inner- 863 * product hash breaks the polyhash output into 16-bit chunks and 864 * multiplies each with a 36 bit key. 865 */ 866 867 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) 868 { 869 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); 870 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); 871 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); 872 t = t + ipkp[3] * (UINT64)(UINT16)(data); 873 874 return t; 875 } 876 877 static UINT32 ip_reduce_p36(UINT64 t) 878 { 879 /* Divisionless modular reduction */ 880 UINT64 ret; 881 882 ret = (t & m36) + 5 * (t >> 36); 883 if (ret >= p36) 884 ret -= p36; 885 886 /* return least significant 32 bits */ 887 return (UINT32)(ret); 888 } 889 890 891 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then 892 * the polyhash stage is skipped and ip_short is applied directly to the 893 * NH output. 894 */ 895 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) 896 { 897 UINT64 t; 898 UINT64 *nhp = (UINT64 *)nh_res; 899 900 t = ip_aux(0,ahc->ip_keys, nhp[0]); 901 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); 902 #if (UMAC_OUTPUT_LEN >= 8) 903 t = ip_aux(0,ahc->ip_keys+4, nhp[1]); 904 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); 905 #endif 906 #if (UMAC_OUTPUT_LEN >= 12) 907 t = ip_aux(0,ahc->ip_keys+8, nhp[2]); 908 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); 909 #endif 910 #if (UMAC_OUTPUT_LEN == 16) 911 t = ip_aux(0,ahc->ip_keys+12, nhp[3]); 912 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); 913 #endif 914 } 915 916 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then 917 * the polyhash stage is not skipped and ip_long is applied to the 918 * polyhash output. 919 */ 920 static void ip_long(uhash_ctx_t ahc, u_char *res) 921 { 922 int i; 923 UINT64 t; 924 925 for (i = 0; i < STREAMS; i++) { 926 /* fix polyhash output not in Z_p64 */ 927 if (ahc->poly_accum[i] >= p64) 928 ahc->poly_accum[i] -= p64; 929 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); 930 STORE_UINT32_BIG((UINT32 *)res+i, 931 ip_reduce_p36(t) ^ ahc->ip_trans[i]); 932 } 933 } 934 935 936 /* ---------------------------------------------------------------------- */ 937 938 /* ---------------------------------------------------------------------- */ 939 940 /* Reset uhash context for next hash session */ 941 static int uhash_reset(uhash_ctx_t pc) 942 { 943 nh_reset(&pc->hash); 944 pc->msg_len = 0; 945 pc->poly_accum[0] = 1; 946 #if (UMAC_OUTPUT_LEN >= 8) 947 pc->poly_accum[1] = 1; 948 #endif 949 #if (UMAC_OUTPUT_LEN >= 12) 950 pc->poly_accum[2] = 1; 951 #endif 952 #if (UMAC_OUTPUT_LEN == 16) 953 pc->poly_accum[3] = 1; 954 #endif 955 return 1; 956 } 957 958 /* ---------------------------------------------------------------------- */ 959 960 /* Given a pointer to the internal key needed by kdf() and a uhash context, 961 * initialize the NH context and generate keys needed for poly and inner- 962 * product hashing. All keys are endian adjusted in memory so that native 963 * loads cause correct keys to be in registers during calculation. 964 */ 965 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) 966 { 967 int i; 968 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; 969 970 /* Zero the entire uhash context */ 971 memset(ahc, 0, sizeof(uhash_ctx)); 972 973 /* Initialize the L1 hash */ 974 nh_init(&ahc->hash, prf_key); 975 976 /* Setup L2 hash variables */ 977 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ 978 for (i = 0; i < STREAMS; i++) { 979 /* Fill keys from the buffer, skipping bytes in the buffer not 980 * used by this implementation. Endian reverse the keys if on a 981 * little-endian computer. 982 */ 983 memcpy(ahc->poly_key_8+i, buf+24*i, 8); 984 endian_convert_if_le(ahc->poly_key_8+i, 8, 8); 985 /* Mask the 64-bit keys to their special domain */ 986 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; 987 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ 988 } 989 990 /* Setup L3-1 hash variables */ 991 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ 992 for (i = 0; i < STREAMS; i++) 993 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), 994 4*sizeof(UINT64)); 995 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 996 sizeof(ahc->ip_keys)); 997 for (i = 0; i < STREAMS*4; i++) 998 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ 999 1000 /* Setup L3-2 hash variables */ 1001 /* Fill buffer with index 4 key */ 1002 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); 1003 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), 1004 STREAMS * sizeof(UINT32)); 1005 } 1006 1007 /* ---------------------------------------------------------------------- */ 1008 1009 #if 0 1010 static uhash_ctx_t uhash_alloc(u_char key[]) 1011 { 1012 /* Allocate memory and force to a 16-byte boundary. */ 1013 uhash_ctx_t ctx; 1014 u_char bytes_to_add; 1015 aes_int_key prf_key; 1016 1017 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); 1018 if (ctx) { 1019 if (ALLOC_BOUNDARY) { 1020 bytes_to_add = ALLOC_BOUNDARY - 1021 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); 1022 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); 1023 *((u_char *)ctx - 1) = bytes_to_add; 1024 } 1025 aes_key_setup(key,prf_key); 1026 uhash_init(ctx, prf_key); 1027 } 1028 return (ctx); 1029 } 1030 #endif 1031 1032 /* ---------------------------------------------------------------------- */ 1033 1034 #if 0 1035 static int uhash_free(uhash_ctx_t ctx) 1036 { 1037 /* Free memory allocated by uhash_alloc */ 1038 u_char bytes_to_sub; 1039 1040 if (ctx) { 1041 if (ALLOC_BOUNDARY) { 1042 bytes_to_sub = *((u_char *)ctx - 1); 1043 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); 1044 } 1045 free(ctx); 1046 } 1047 return (1); 1048 } 1049 #endif 1050 /* ---------------------------------------------------------------------- */ 1051 1052 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) 1053 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and 1054 * hash each one with NH, calling the polyhash on each NH output. 1055 */ 1056 { 1057 UWORD bytes_hashed, bytes_remaining; 1058 UINT64 result_buf[STREAMS]; 1059 UINT8 *nh_result = (UINT8 *)&result_buf; 1060 1061 if (ctx->msg_len + len <= L1_KEY_LEN) { 1062 nh_update(&ctx->hash, (const UINT8 *)input, len); 1063 ctx->msg_len += len; 1064 } else { 1065 1066 bytes_hashed = ctx->msg_len % L1_KEY_LEN; 1067 if (ctx->msg_len == L1_KEY_LEN) 1068 bytes_hashed = L1_KEY_LEN; 1069 1070 if (bytes_hashed + len >= L1_KEY_LEN) { 1071 1072 /* If some bytes have been passed to the hash function */ 1073 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ 1074 /* bytes to complete the current nh_block. */ 1075 if (bytes_hashed) { 1076 bytes_remaining = (L1_KEY_LEN - bytes_hashed); 1077 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); 1078 nh_final(&ctx->hash, nh_result); 1079 ctx->msg_len += bytes_remaining; 1080 poly_hash(ctx,(UINT32 *)nh_result); 1081 len -= bytes_remaining; 1082 input += bytes_remaining; 1083 } 1084 1085 /* Hash directly from input stream if enough bytes */ 1086 while (len >= L1_KEY_LEN) { 1087 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN, 1088 L1_KEY_LEN, nh_result); 1089 ctx->msg_len += L1_KEY_LEN; 1090 len -= L1_KEY_LEN; 1091 input += L1_KEY_LEN; 1092 poly_hash(ctx,(UINT32 *)nh_result); 1093 } 1094 } 1095 1096 /* pass remaining < L1_KEY_LEN bytes of input data to NH */ 1097 if (len) { 1098 nh_update(&ctx->hash, (const UINT8 *)input, len); 1099 ctx->msg_len += len; 1100 } 1101 } 1102 1103 return (1); 1104 } 1105 1106 /* ---------------------------------------------------------------------- */ 1107 1108 static int uhash_final(uhash_ctx_t ctx, u_char *res) 1109 /* Incorporate any pending data, pad, and generate tag */ 1110 { 1111 UINT64 result_buf[STREAMS]; 1112 UINT8 *nh_result = (UINT8 *)&result_buf; 1113 1114 if (ctx->msg_len > L1_KEY_LEN) { 1115 if (ctx->msg_len % L1_KEY_LEN) { 1116 nh_final(&ctx->hash, nh_result); 1117 poly_hash(ctx,(UINT32 *)nh_result); 1118 } 1119 ip_long(ctx, res); 1120 } else { 1121 nh_final(&ctx->hash, nh_result); 1122 ip_short(ctx,nh_result, res); 1123 } 1124 uhash_reset(ctx); 1125 return (1); 1126 } 1127 1128 /* ---------------------------------------------------------------------- */ 1129 1130 #if 0 1131 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) 1132 /* assumes that msg is in a writable buffer of length divisible by */ 1133 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ 1134 { 1135 UINT8 nh_result[STREAMS*sizeof(UINT64)]; 1136 UINT32 nh_len; 1137 int extra_zeroes_needed; 1138 1139 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip 1140 * the polyhash. 1141 */ 1142 if (len <= L1_KEY_LEN) { 1143 if (len == 0) /* If zero length messages will not */ 1144 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ 1145 else 1146 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1147 extra_zeroes_needed = nh_len - len; 1148 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1149 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1150 ip_short(ahc,nh_result, res); 1151 } else { 1152 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH 1153 * output to poly_hash(). 1154 */ 1155 do { 1156 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); 1157 poly_hash(ahc,(UINT32 *)nh_result); 1158 len -= L1_KEY_LEN; 1159 msg += L1_KEY_LEN; 1160 } while (len >= L1_KEY_LEN); 1161 if (len) { 1162 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); 1163 extra_zeroes_needed = nh_len - len; 1164 zero_pad((UINT8 *)msg + len, extra_zeroes_needed); 1165 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); 1166 poly_hash(ahc,(UINT32 *)nh_result); 1167 } 1168 1169 ip_long(ahc, res); 1170 } 1171 1172 uhash_reset(ahc); 1173 return 1; 1174 } 1175 #endif 1176 1177 /* ---------------------------------------------------------------------- */ 1178 /* ---------------------------------------------------------------------- */ 1179 /* ----- Begin UMAC Section --------------------------------------------- */ 1180 /* ---------------------------------------------------------------------- */ 1181 /* ---------------------------------------------------------------------- */ 1182 1183 /* The UMAC interface has two interfaces, an all-at-once interface where 1184 * the entire message to be authenticated is passed to UMAC in one buffer, 1185 * and a sequential interface where the message is presented a little at a 1186 * time. The all-at-once is more optimaized than the sequential version and 1187 * should be preferred when the sequential interface is not required. 1188 */ 1189 struct umac_ctx { 1190 uhash_ctx hash; /* Hash function for message compression */ 1191 pdf_ctx pdf; /* PDF for hashed output */ 1192 void *free_ptr; /* Address to free this struct via */ 1193 } umac_ctx; 1194 1195 /* ---------------------------------------------------------------------- */ 1196 1197 #if 0 1198 int umac_reset(struct umac_ctx *ctx) 1199 /* Reset the hash function to begin a new authentication. */ 1200 { 1201 uhash_reset(&ctx->hash); 1202 return (1); 1203 } 1204 #endif 1205 1206 /* ---------------------------------------------------------------------- */ 1207 1208 int umac_delete(struct umac_ctx *ctx) 1209 /* Deallocate the ctx structure */ 1210 { 1211 if (ctx) { 1212 if (ALLOC_BOUNDARY) 1213 ctx = (struct umac_ctx *)ctx->free_ptr; 1214 free(ctx); 1215 } 1216 return (1); 1217 } 1218 1219 /* ---------------------------------------------------------------------- */ 1220 1221 struct umac_ctx *umac_new(const u_char key[]) 1222 /* Dynamically allocate a umac_ctx struct, initialize variables, 1223 * generate subkeys from key. Align to 16-byte boundary. 1224 */ 1225 { 1226 struct umac_ctx *ctx, *octx; 1227 size_t bytes_to_add; 1228 aes_int_key prf_key; 1229 1230 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY); 1231 if (ctx) { 1232 if (ALLOC_BOUNDARY) { 1233 bytes_to_add = ALLOC_BOUNDARY - 1234 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); 1235 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); 1236 } 1237 ctx->free_ptr = octx; 1238 aes_key_setup(key, prf_key); 1239 pdf_init(&ctx->pdf, prf_key); 1240 uhash_init(&ctx->hash, prf_key); 1241 } 1242 1243 return (ctx); 1244 } 1245 1246 /* ---------------------------------------------------------------------- */ 1247 1248 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8]) 1249 /* Incorporate any pending data, pad, and generate tag */ 1250 { 1251 uhash_final(&ctx->hash, (u_char *)tag); 1252 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); 1253 1254 return (1); 1255 } 1256 1257 /* ---------------------------------------------------------------------- */ 1258 1259 int umac_update(struct umac_ctx *ctx, const u_char *input, long len) 1260 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ 1261 /* hash each one, calling the PDF on the hashed output whenever the hash- */ 1262 /* output buffer is full. */ 1263 { 1264 uhash_update(&ctx->hash, input, len); 1265 return (1); 1266 } 1267 1268 /* ---------------------------------------------------------------------- */ 1269 1270 #if 0 1271 int umac(struct umac_ctx *ctx, u_char *input, 1272 long len, u_char tag[], 1273 u_char nonce[8]) 1274 /* All-in-one version simply calls umac_update() and umac_final(). */ 1275 { 1276 uhash(&ctx->hash, input, len, (u_char *)tag); 1277 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); 1278 1279 return (1); 1280 } 1281 #endif 1282 1283 /* ---------------------------------------------------------------------- */ 1284 /* ---------------------------------------------------------------------- */ 1285 /* ----- End UMAC Section ----------------------------------------------- */ 1286 /* ---------------------------------------------------------------------- */ 1287 /* ---------------------------------------------------------------------- */ 1288