1 /* $OpenBSD: sntrup761.c,v 1.6 2023/01/11 02:13:52 djm Exp $ */ 2 3 /* 4 * Public Domain, Authors: 5 * - Daniel J. Bernstein 6 * - Chitchanok Chuengsatiansup 7 * - Tanja Lange 8 * - Christine van Vredendaal 9 */ 10 11 #include "includes.h" 12 13 #ifdef USE_SNTRUP761X25519 14 15 #include <string.h> 16 #include "crypto_api.h" 17 18 #define int8 crypto_int8 19 #define uint8 crypto_uint8 20 #define int16 crypto_int16 21 #define uint16 crypto_uint16 22 #define int32 crypto_int32 23 #define uint32 crypto_uint32 24 #define int64 crypto_int64 25 #define uint64 crypto_uint64 26 27 /* from supercop-20201130/crypto_sort/int32/portable4/int32_minmax.inc */ 28 #define int32_MINMAX(a,b) \ 29 do { \ 30 int64_t ab = (int64_t)b ^ (int64_t)a; \ 31 int64_t c = (int64_t)b - (int64_t)a; \ 32 c ^= ab & (c ^ b); \ 33 c >>= 31; \ 34 c &= ab; \ 35 a ^= c; \ 36 b ^= c; \ 37 } while(0) 38 39 /* from supercop-20201130/crypto_sort/int32/portable4/sort.c */ 40 41 42 static void crypto_sort_int32(void *array,long long n) 43 { 44 long long top,p,q,r,i,j; 45 int32 *x = array; 46 47 if (n < 2) return; 48 top = 1; 49 while (top < n - top) top += top; 50 51 for (p = top;p >= 1;p >>= 1) { 52 i = 0; 53 while (i + 2 * p <= n) { 54 for (j = i;j < i + p;++j) 55 int32_MINMAX(x[j],x[j+p]); 56 i += 2 * p; 57 } 58 for (j = i;j < n - p;++j) 59 int32_MINMAX(x[j],x[j+p]); 60 61 i = 0; 62 j = 0; 63 for (q = top;q > p;q >>= 1) { 64 if (j != i) for (;;) { 65 if (j == n - q) goto done; 66 int32 a = x[j + p]; 67 for (r = q;r > p;r >>= 1) 68 int32_MINMAX(a,x[j + r]); 69 x[j + p] = a; 70 ++j; 71 if (j == i + p) { 72 i += 2 * p; 73 break; 74 } 75 } 76 while (i + p <= n - q) { 77 for (j = i;j < i + p;++j) { 78 int32 a = x[j + p]; 79 for (r = q;r > p;r >>= 1) 80 int32_MINMAX(a,x[j+r]); 81 x[j + p] = a; 82 } 83 i += 2 * p; 84 } 85 /* now i + p > n - q */ 86 j = i; 87 while (j < n - q) { 88 int32 a = x[j + p]; 89 for (r = q;r > p;r >>= 1) 90 int32_MINMAX(a,x[j+r]); 91 x[j + p] = a; 92 ++j; 93 } 94 95 done: ; 96 } 97 } 98 } 99 100 /* from supercop-20201130/crypto_sort/uint32/useint32/sort.c */ 101 102 /* can save time by vectorizing xor loops */ 103 /* can save time by integrating xor loops with int32_sort */ 104 105 static void crypto_sort_uint32(void *array,long long n) 106 { 107 crypto_uint32 *x = array; 108 long long j; 109 for (j = 0;j < n;++j) x[j] ^= 0x80000000; 110 crypto_sort_int32(array,n); 111 for (j = 0;j < n;++j) x[j] ^= 0x80000000; 112 } 113 114 /* from supercop-20201130/crypto_kem/sntrup761/ref/uint32.c */ 115 116 /* 117 CPU division instruction typically takes time depending on x. 118 This software is designed to take time independent of x. 119 Time still varies depending on m; user must ensure that m is constant. 120 Time also varies on CPUs where multiplication is variable-time. 121 There could be more CPU issues. 122 There could also be compiler issues. 123 */ 124 125 static void uint32_divmod_uint14(uint32 *q,uint16 *r,uint32 x,uint16 m) 126 { 127 uint32 v = 0x80000000; 128 uint32 qpart; 129 uint32 mask; 130 131 v /= m; 132 133 /* caller guarantees m > 0 */ 134 /* caller guarantees m < 16384 */ 135 /* vm <= 2^31 <= vm+m-1 */ 136 /* xvm <= 2^31 x <= xvm+x(m-1) */ 137 138 *q = 0; 139 140 qpart = (x*(uint64)v)>>31; 141 /* 2^31 qpart <= xv <= 2^31 qpart + 2^31-1 */ 142 /* 2^31 qpart m <= xvm <= 2^31 qpart m + (2^31-1)m */ 143 /* 2^31 qpart m <= 2^31 x <= 2^31 qpart m + (2^31-1)m + x(m-1) */ 144 /* 0 <= 2^31 newx <= (2^31-1)m + x(m-1) */ 145 /* 0 <= newx <= (1-1/2^31)m + x(m-1)/2^31 */ 146 /* 0 <= newx <= (1-1/2^31)(2^14-1) + (2^32-1)((2^14-1)-1)/2^31 */ 147 148 x -= qpart*m; *q += qpart; 149 /* x <= 49146 */ 150 151 qpart = (x*(uint64)v)>>31; 152 /* 0 <= newx <= (1-1/2^31)m + x(m-1)/2^31 */ 153 /* 0 <= newx <= m + 49146(2^14-1)/2^31 */ 154 /* 0 <= newx <= m + 0.4 */ 155 /* 0 <= newx <= m */ 156 157 x -= qpart*m; *q += qpart; 158 /* x <= m */ 159 160 x -= m; *q += 1; 161 mask = -(x>>31); 162 x += mask&(uint32)m; *q += mask; 163 /* x < m */ 164 165 *r = x; 166 } 167 168 169 static uint16 uint32_mod_uint14(uint32 x,uint16 m) 170 { 171 uint32 q; 172 uint16 r; 173 uint32_divmod_uint14(&q,&r,x,m); 174 return r; 175 } 176 177 /* from supercop-20201130/crypto_kem/sntrup761/ref/int32.c */ 178 179 static void int32_divmod_uint14(int32 *q,uint16 *r,int32 x,uint16 m) 180 { 181 uint32 uq,uq2; 182 uint16 ur,ur2; 183 uint32 mask; 184 185 uint32_divmod_uint14(&uq,&ur,0x80000000+(uint32)x,m); 186 uint32_divmod_uint14(&uq2,&ur2,0x80000000,m); 187 ur -= ur2; uq -= uq2; 188 mask = -(uint32)(ur>>15); 189 ur += mask&m; uq += mask; 190 *r = ur; *q = uq; 191 } 192 193 194 static uint16 int32_mod_uint14(int32 x,uint16 m) 195 { 196 int32 q; 197 uint16 r; 198 int32_divmod_uint14(&q,&r,x,m); 199 return r; 200 } 201 202 /* from supercop-20201130/crypto_kem/sntrup761/ref/paramsmenu.h */ 203 /* pick one of these three: */ 204 #define SIZE761 205 #undef SIZE653 206 #undef SIZE857 207 208 /* pick one of these two: */ 209 #define SNTRUP /* Streamlined NTRU Prime */ 210 #undef LPR /* NTRU LPRime */ 211 212 /* from supercop-20201130/crypto_kem/sntrup761/ref/params.h */ 213 #ifndef params_H 214 #define params_H 215 216 /* menu of parameter choices: */ 217 218 219 /* what the menu means: */ 220 221 #if defined(SIZE761) 222 #define p 761 223 #define q 4591 224 #define Rounded_bytes 1007 225 #ifndef LPR 226 #define Rq_bytes 1158 227 #define w 286 228 #else 229 #define w 250 230 #define tau0 2156 231 #define tau1 114 232 #define tau2 2007 233 #define tau3 287 234 #endif 235 236 #elif defined(SIZE653) 237 #define p 653 238 #define q 4621 239 #define Rounded_bytes 865 240 #ifndef LPR 241 #define Rq_bytes 994 242 #define w 288 243 #else 244 #define w 252 245 #define tau0 2175 246 #define tau1 113 247 #define tau2 2031 248 #define tau3 290 249 #endif 250 251 #elif defined(SIZE857) 252 #define p 857 253 #define q 5167 254 #define Rounded_bytes 1152 255 #ifndef LPR 256 #define Rq_bytes 1322 257 #define w 322 258 #else 259 #define w 281 260 #define tau0 2433 261 #define tau1 101 262 #define tau2 2265 263 #define tau3 324 264 #endif 265 266 #else 267 #error "no parameter set defined" 268 #endif 269 270 #ifdef LPR 271 #define I 256 272 #endif 273 274 #endif 275 276 /* from supercop-20201130/crypto_kem/sntrup761/ref/Decode.h */ 277 #ifndef Decode_H 278 #define Decode_H 279 280 281 /* Decode(R,s,M,len) */ 282 /* assumes 0 < M[i] < 16384 */ 283 /* produces 0 <= R[i] < M[i] */ 284 285 #endif 286 287 /* from supercop-20201130/crypto_kem/sntrup761/ref/Decode.c */ 288 289 static void Decode(uint16 *out,const unsigned char *S,const uint16 *M,long long len) 290 { 291 if (len == 1) { 292 if (M[0] == 1) 293 *out = 0; 294 else if (M[0] <= 256) 295 *out = uint32_mod_uint14(S[0],M[0]); 296 else 297 *out = uint32_mod_uint14(S[0]+(((uint16)S[1])<<8),M[0]); 298 } 299 if (len > 1) { 300 uint16 R2[(len+1)/2]; 301 uint16 M2[(len+1)/2]; 302 uint16 bottomr[len/2]; 303 uint32 bottomt[len/2]; 304 long long i; 305 for (i = 0;i < len-1;i += 2) { 306 uint32 m = M[i]*(uint32) M[i+1]; 307 if (m > 256*16383) { 308 bottomt[i/2] = 256*256; 309 bottomr[i/2] = S[0]+256*S[1]; 310 S += 2; 311 M2[i/2] = (((m+255)>>8)+255)>>8; 312 } else if (m >= 16384) { 313 bottomt[i/2] = 256; 314 bottomr[i/2] = S[0]; 315 S += 1; 316 M2[i/2] = (m+255)>>8; 317 } else { 318 bottomt[i/2] = 1; 319 bottomr[i/2] = 0; 320 M2[i/2] = m; 321 } 322 } 323 if (i < len) 324 M2[i/2] = M[i]; 325 Decode(R2,S,M2,(len+1)/2); 326 for (i = 0;i < len-1;i += 2) { 327 uint32 r = bottomr[i/2]; 328 uint32 r1; 329 uint16 r0; 330 r += bottomt[i/2]*R2[i/2]; 331 uint32_divmod_uint14(&r1,&r0,r,M[i]); 332 r1 = uint32_mod_uint14(r1,M[i+1]); /* only needed for invalid inputs */ 333 *out++ = r0; 334 *out++ = r1; 335 } 336 if (i < len) 337 *out++ = R2[i/2]; 338 } 339 } 340 341 /* from supercop-20201130/crypto_kem/sntrup761/ref/Encode.h */ 342 #ifndef Encode_H 343 #define Encode_H 344 345 346 /* Encode(s,R,M,len) */ 347 /* assumes 0 <= R[i] < M[i] < 16384 */ 348 349 #endif 350 351 /* from supercop-20201130/crypto_kem/sntrup761/ref/Encode.c */ 352 353 /* 0 <= R[i] < M[i] < 16384 */ 354 static void Encode(unsigned char *out,const uint16 *R,const uint16 *M,long long len) 355 { 356 if (len == 1) { 357 uint16 r = R[0]; 358 uint16 m = M[0]; 359 while (m > 1) { 360 *out++ = r; 361 r >>= 8; 362 m = (m+255)>>8; 363 } 364 } 365 if (len > 1) { 366 uint16 R2[(len+1)/2]; 367 uint16 M2[(len+1)/2]; 368 long long i; 369 for (i = 0;i < len-1;i += 2) { 370 uint32 m0 = M[i]; 371 uint32 r = R[i]+R[i+1]*m0; 372 uint32 m = M[i+1]*m0; 373 while (m >= 16384) { 374 *out++ = r; 375 r >>= 8; 376 m = (m+255)>>8; 377 } 378 R2[i/2] = r; 379 M2[i/2] = m; 380 } 381 if (i < len) { 382 R2[i/2] = R[i]; 383 M2[i/2] = M[i]; 384 } 385 Encode(out,R2,M2,(len+1)/2); 386 } 387 } 388 389 /* from supercop-20201130/crypto_kem/sntrup761/ref/kem.c */ 390 391 #ifdef LPR 392 #endif 393 394 395 /* ----- masks */ 396 397 #ifndef LPR 398 399 /* return -1 if x!=0; else return 0 */ 400 static int int16_nonzero_mask(int16 x) 401 { 402 uint16 u = x; /* 0, else 1...65535 */ 403 uint32 v = u; /* 0, else 1...65535 */ 404 v = -v; /* 0, else 2^32-65535...2^32-1 */ 405 v >>= 31; /* 0, else 1 */ 406 return -v; /* 0, else -1 */ 407 } 408 409 #endif 410 411 /* return -1 if x<0; otherwise return 0 */ 412 static int int16_negative_mask(int16 x) 413 { 414 uint16 u = x; 415 u >>= 15; 416 return -(int) u; 417 /* alternative with gcc -fwrapv: */ 418 /* x>>15 compiles to CPU's arithmetic right shift */ 419 } 420 421 /* ----- arithmetic mod 3 */ 422 423 typedef int8 small; 424 425 /* F3 is always represented as -1,0,1 */ 426 /* so ZZ_fromF3 is a no-op */ 427 428 /* x must not be close to top int16 */ 429 static small F3_freeze(int16 x) 430 { 431 return int32_mod_uint14(x+1,3)-1; 432 } 433 434 /* ----- arithmetic mod q */ 435 436 #define q12 ((q-1)/2) 437 typedef int16 Fq; 438 /* always represented as -q12...q12 */ 439 /* so ZZ_fromFq is a no-op */ 440 441 /* x must not be close to top int32 */ 442 static Fq Fq_freeze(int32 x) 443 { 444 return int32_mod_uint14(x+q12,q)-q12; 445 } 446 447 #ifndef LPR 448 449 static Fq Fq_recip(Fq a1) 450 { 451 int i = 1; 452 Fq ai = a1; 453 454 while (i < q-2) { 455 ai = Fq_freeze(a1*(int32)ai); 456 i += 1; 457 } 458 return ai; 459 } 460 461 #endif 462 463 /* ----- Top and Right */ 464 465 #ifdef LPR 466 #define tau 16 467 468 static int8 Top(Fq C) 469 { 470 return (tau1*(int32)(C+tau0)+16384)>>15; 471 } 472 473 static Fq Right(int8 T) 474 { 475 return Fq_freeze(tau3*(int32)T-tau2); 476 } 477 #endif 478 479 /* ----- small polynomials */ 480 481 #ifndef LPR 482 483 /* 0 if Weightw_is(r), else -1 */ 484 static int Weightw_mask(small *r) 485 { 486 int weight = 0; 487 int i; 488 489 for (i = 0;i < p;++i) weight += r[i]&1; 490 return int16_nonzero_mask(weight-w); 491 } 492 493 /* R3_fromR(R_fromRq(r)) */ 494 static void R3_fromRq(small *out,const Fq *r) 495 { 496 int i; 497 for (i = 0;i < p;++i) out[i] = F3_freeze(r[i]); 498 } 499 500 /* h = f*g in the ring R3 */ 501 static void R3_mult(small *h,const small *f,const small *g) 502 { 503 small fg[p+p-1]; 504 small result; 505 int i,j; 506 507 for (i = 0;i < p;++i) { 508 result = 0; 509 for (j = 0;j <= i;++j) result = F3_freeze(result+f[j]*g[i-j]); 510 fg[i] = result; 511 } 512 for (i = p;i < p+p-1;++i) { 513 result = 0; 514 for (j = i-p+1;j < p;++j) result = F3_freeze(result+f[j]*g[i-j]); 515 fg[i] = result; 516 } 517 518 for (i = p+p-2;i >= p;--i) { 519 fg[i-p] = F3_freeze(fg[i-p]+fg[i]); 520 fg[i-p+1] = F3_freeze(fg[i-p+1]+fg[i]); 521 } 522 523 for (i = 0;i < p;++i) h[i] = fg[i]; 524 } 525 526 /* returns 0 if recip succeeded; else -1 */ 527 static int R3_recip(small *out,const small *in) 528 { 529 small f[p+1],g[p+1],v[p+1],r[p+1]; 530 int i,loop,delta; 531 int sign,swap,t; 532 533 for (i = 0;i < p+1;++i) v[i] = 0; 534 for (i = 0;i < p+1;++i) r[i] = 0; 535 r[0] = 1; 536 for (i = 0;i < p;++i) f[i] = 0; 537 f[0] = 1; f[p-1] = f[p] = -1; 538 for (i = 0;i < p;++i) g[p-1-i] = in[i]; 539 g[p] = 0; 540 541 delta = 1; 542 543 for (loop = 0;loop < 2*p-1;++loop) { 544 for (i = p;i > 0;--i) v[i] = v[i-1]; 545 v[0] = 0; 546 547 sign = -g[0]*f[0]; 548 swap = int16_negative_mask(-delta) & int16_nonzero_mask(g[0]); 549 delta ^= swap&(delta^-delta); 550 delta += 1; 551 552 for (i = 0;i < p+1;++i) { 553 t = swap&(f[i]^g[i]); f[i] ^= t; g[i] ^= t; 554 t = swap&(v[i]^r[i]); v[i] ^= t; r[i] ^= t; 555 } 556 557 for (i = 0;i < p+1;++i) g[i] = F3_freeze(g[i]+sign*f[i]); 558 for (i = 0;i < p+1;++i) r[i] = F3_freeze(r[i]+sign*v[i]); 559 560 for (i = 0;i < p;++i) g[i] = g[i+1]; 561 g[p] = 0; 562 } 563 564 sign = f[0]; 565 for (i = 0;i < p;++i) out[i] = sign*v[p-1-i]; 566 567 return int16_nonzero_mask(delta); 568 } 569 570 #endif 571 572 /* ----- polynomials mod q */ 573 574 /* h = f*g in the ring Rq */ 575 static void Rq_mult_small(Fq *h,const Fq *f,const small *g) 576 { 577 Fq fg[p+p-1]; 578 Fq result; 579 int i,j; 580 581 for (i = 0;i < p;++i) { 582 result = 0; 583 for (j = 0;j <= i;++j) result = Fq_freeze(result+f[j]*(int32)g[i-j]); 584 fg[i] = result; 585 } 586 for (i = p;i < p+p-1;++i) { 587 result = 0; 588 for (j = i-p+1;j < p;++j) result = Fq_freeze(result+f[j]*(int32)g[i-j]); 589 fg[i] = result; 590 } 591 592 for (i = p+p-2;i >= p;--i) { 593 fg[i-p] = Fq_freeze(fg[i-p]+fg[i]); 594 fg[i-p+1] = Fq_freeze(fg[i-p+1]+fg[i]); 595 } 596 597 for (i = 0;i < p;++i) h[i] = fg[i]; 598 } 599 600 #ifndef LPR 601 602 /* h = 3f in Rq */ 603 static void Rq_mult3(Fq *h,const Fq *f) 604 { 605 int i; 606 607 for (i = 0;i < p;++i) h[i] = Fq_freeze(3*f[i]); 608 } 609 610 /* out = 1/(3*in) in Rq */ 611 /* returns 0 if recip succeeded; else -1 */ 612 static int Rq_recip3(Fq *out,const small *in) 613 { 614 Fq f[p+1],g[p+1],v[p+1],r[p+1]; 615 int i,loop,delta; 616 int swap,t; 617 int32 f0,g0; 618 Fq scale; 619 620 for (i = 0;i < p+1;++i) v[i] = 0; 621 for (i = 0;i < p+1;++i) r[i] = 0; 622 r[0] = Fq_recip(3); 623 for (i = 0;i < p;++i) f[i] = 0; 624 f[0] = 1; f[p-1] = f[p] = -1; 625 for (i = 0;i < p;++i) g[p-1-i] = in[i]; 626 g[p] = 0; 627 628 delta = 1; 629 630 for (loop = 0;loop < 2*p-1;++loop) { 631 for (i = p;i > 0;--i) v[i] = v[i-1]; 632 v[0] = 0; 633 634 swap = int16_negative_mask(-delta) & int16_nonzero_mask(g[0]); 635 delta ^= swap&(delta^-delta); 636 delta += 1; 637 638 for (i = 0;i < p+1;++i) { 639 t = swap&(f[i]^g[i]); f[i] ^= t; g[i] ^= t; 640 t = swap&(v[i]^r[i]); v[i] ^= t; r[i] ^= t; 641 } 642 643 f0 = f[0]; 644 g0 = g[0]; 645 for (i = 0;i < p+1;++i) g[i] = Fq_freeze(f0*g[i]-g0*f[i]); 646 for (i = 0;i < p+1;++i) r[i] = Fq_freeze(f0*r[i]-g0*v[i]); 647 648 for (i = 0;i < p;++i) g[i] = g[i+1]; 649 g[p] = 0; 650 } 651 652 scale = Fq_recip(f[0]); 653 for (i = 0;i < p;++i) out[i] = Fq_freeze(scale*(int32)v[p-1-i]); 654 655 return int16_nonzero_mask(delta); 656 } 657 658 #endif 659 660 /* ----- rounded polynomials mod q */ 661 662 static void Round(Fq *out,const Fq *a) 663 { 664 int i; 665 for (i = 0;i < p;++i) out[i] = a[i]-F3_freeze(a[i]); 666 } 667 668 /* ----- sorting to generate short polynomial */ 669 670 static void Short_fromlist(small *out,const uint32 *in) 671 { 672 uint32 L[p]; 673 int i; 674 675 for (i = 0;i < w;++i) L[i] = in[i]&(uint32)-2; 676 for (i = w;i < p;++i) L[i] = (in[i]&(uint32)-3)|1; 677 crypto_sort_uint32(L,p); 678 for (i = 0;i < p;++i) out[i] = (L[i]&3)-1; 679 } 680 681 /* ----- underlying hash function */ 682 683 #define Hash_bytes 32 684 685 /* e.g., b = 0 means out = Hash0(in) */ 686 static void Hash_prefix(unsigned char *out,int b,const unsigned char *in,int inlen) 687 { 688 unsigned char x[inlen+1]; 689 unsigned char h[64]; 690 int i; 691 692 x[0] = b; 693 for (i = 0;i < inlen;++i) x[i+1] = in[i]; 694 crypto_hash_sha512(h,x,inlen+1); 695 for (i = 0;i < 32;++i) out[i] = h[i]; 696 } 697 698 /* ----- higher-level randomness */ 699 700 static uint32 urandom32(void) 701 { 702 unsigned char c[4]; 703 uint32 out[4]; 704 705 randombytes(c,4); 706 out[0] = (uint32)c[0]; 707 out[1] = ((uint32)c[1])<<8; 708 out[2] = ((uint32)c[2])<<16; 709 out[3] = ((uint32)c[3])<<24; 710 return out[0]+out[1]+out[2]+out[3]; 711 } 712 713 static void Short_random(small *out) 714 { 715 uint32 L[p]; 716 int i; 717 718 for (i = 0;i < p;++i) L[i] = urandom32(); 719 Short_fromlist(out,L); 720 } 721 722 #ifndef LPR 723 724 static void Small_random(small *out) 725 { 726 int i; 727 728 for (i = 0;i < p;++i) out[i] = (((urandom32()&0x3fffffff)*3)>>30)-1; 729 } 730 731 #endif 732 733 /* ----- Streamlined NTRU Prime Core */ 734 735 #ifndef LPR 736 737 /* h,(f,ginv) = KeyGen() */ 738 static void KeyGen(Fq *h,small *f,small *ginv) 739 { 740 small g[p]; 741 Fq finv[p]; 742 743 for (;;) { 744 Small_random(g); 745 if (R3_recip(ginv,g) == 0) break; 746 } 747 Short_random(f); 748 Rq_recip3(finv,f); /* always works */ 749 Rq_mult_small(h,finv,g); 750 } 751 752 /* c = Encrypt(r,h) */ 753 static void Encrypt(Fq *c,const small *r,const Fq *h) 754 { 755 Fq hr[p]; 756 757 Rq_mult_small(hr,h,r); 758 Round(c,hr); 759 } 760 761 /* r = Decrypt(c,(f,ginv)) */ 762 static void Decrypt(small *r,const Fq *c,const small *f,const small *ginv) 763 { 764 Fq cf[p]; 765 Fq cf3[p]; 766 small e[p]; 767 small ev[p]; 768 int mask; 769 int i; 770 771 Rq_mult_small(cf,c,f); 772 Rq_mult3(cf3,cf); 773 R3_fromRq(e,cf3); 774 R3_mult(ev,e,ginv); 775 776 mask = Weightw_mask(ev); /* 0 if weight w, else -1 */ 777 for (i = 0;i < w;++i) r[i] = ((ev[i]^1)&~mask)^1; 778 for (i = w;i < p;++i) r[i] = ev[i]&~mask; 779 } 780 781 #endif 782 783 /* ----- NTRU LPRime Core */ 784 785 #ifdef LPR 786 787 /* (G,A),a = KeyGen(G); leaves G unchanged */ 788 static void KeyGen(Fq *A,small *a,const Fq *G) 789 { 790 Fq aG[p]; 791 792 Short_random(a); 793 Rq_mult_small(aG,G,a); 794 Round(A,aG); 795 } 796 797 /* B,T = Encrypt(r,(G,A),b) */ 798 static void Encrypt(Fq *B,int8 *T,const int8 *r,const Fq *G,const Fq *A,const small *b) 799 { 800 Fq bG[p]; 801 Fq bA[p]; 802 int i; 803 804 Rq_mult_small(bG,G,b); 805 Round(B,bG); 806 Rq_mult_small(bA,A,b); 807 for (i = 0;i < I;++i) T[i] = Top(Fq_freeze(bA[i]+r[i]*q12)); 808 } 809 810 /* r = Decrypt((B,T),a) */ 811 static void Decrypt(int8 *r,const Fq *B,const int8 *T,const small *a) 812 { 813 Fq aB[p]; 814 int i; 815 816 Rq_mult_small(aB,B,a); 817 for (i = 0;i < I;++i) 818 r[i] = -int16_negative_mask(Fq_freeze(Right(T[i])-aB[i]+4*w+1)); 819 } 820 821 #endif 822 823 /* ----- encoding I-bit inputs */ 824 825 #ifdef LPR 826 827 #define Inputs_bytes (I/8) 828 typedef int8 Inputs[I]; /* passed by reference */ 829 830 static void Inputs_encode(unsigned char *s,const Inputs r) 831 { 832 int i; 833 for (i = 0;i < Inputs_bytes;++i) s[i] = 0; 834 for (i = 0;i < I;++i) s[i>>3] |= r[i]<<(i&7); 835 } 836 837 #endif 838 839 /* ----- Expand */ 840 841 #ifdef LPR 842 843 static const unsigned char aes_nonce[16] = {0}; 844 845 static void Expand(uint32 *L,const unsigned char *k) 846 { 847 int i; 848 crypto_stream_aes256ctr((unsigned char *) L,4*p,aes_nonce,k); 849 for (i = 0;i < p;++i) { 850 uint32 L0 = ((unsigned char *) L)[4*i]; 851 uint32 L1 = ((unsigned char *) L)[4*i+1]; 852 uint32 L2 = ((unsigned char *) L)[4*i+2]; 853 uint32 L3 = ((unsigned char *) L)[4*i+3]; 854 L[i] = L0+(L1<<8)+(L2<<16)+(L3<<24); 855 } 856 } 857 858 #endif 859 860 /* ----- Seeds */ 861 862 #ifdef LPR 863 864 #define Seeds_bytes 32 865 866 static void Seeds_random(unsigned char *s) 867 { 868 randombytes(s,Seeds_bytes); 869 } 870 871 #endif 872 873 /* ----- Generator, HashShort */ 874 875 #ifdef LPR 876 877 /* G = Generator(k) */ 878 static void Generator(Fq *G,const unsigned char *k) 879 { 880 uint32 L[p]; 881 int i; 882 883 Expand(L,k); 884 for (i = 0;i < p;++i) G[i] = uint32_mod_uint14(L[i],q)-q12; 885 } 886 887 /* out = HashShort(r) */ 888 static void HashShort(small *out,const Inputs r) 889 { 890 unsigned char s[Inputs_bytes]; 891 unsigned char h[Hash_bytes]; 892 uint32 L[p]; 893 894 Inputs_encode(s,r); 895 Hash_prefix(h,5,s,sizeof s); 896 Expand(L,h); 897 Short_fromlist(out,L); 898 } 899 900 #endif 901 902 /* ----- NTRU LPRime Expand */ 903 904 #ifdef LPR 905 906 /* (S,A),a = XKeyGen() */ 907 static void XKeyGen(unsigned char *S,Fq *A,small *a) 908 { 909 Fq G[p]; 910 911 Seeds_random(S); 912 Generator(G,S); 913 KeyGen(A,a,G); 914 } 915 916 /* B,T = XEncrypt(r,(S,A)) */ 917 static void XEncrypt(Fq *B,int8 *T,const int8 *r,const unsigned char *S,const Fq *A) 918 { 919 Fq G[p]; 920 small b[p]; 921 922 Generator(G,S); 923 HashShort(b,r); 924 Encrypt(B,T,r,G,A,b); 925 } 926 927 #define XDecrypt Decrypt 928 929 #endif 930 931 /* ----- encoding small polynomials (including short polynomials) */ 932 933 #define Small_bytes ((p+3)/4) 934 935 /* these are the only functions that rely on p mod 4 = 1 */ 936 937 static void Small_encode(unsigned char *s,const small *f) 938 { 939 small x; 940 int i; 941 942 for (i = 0;i < p/4;++i) { 943 x = *f++ + 1; 944 x += (*f++ + 1)<<2; 945 x += (*f++ + 1)<<4; 946 x += (*f++ + 1)<<6; 947 *s++ = x; 948 } 949 x = *f++ + 1; 950 *s++ = x; 951 } 952 953 static void Small_decode(small *f,const unsigned char *s) 954 { 955 unsigned char x; 956 int i; 957 958 for (i = 0;i < p/4;++i) { 959 x = *s++; 960 *f++ = ((small)(x&3))-1; x >>= 2; 961 *f++ = ((small)(x&3))-1; x >>= 2; 962 *f++ = ((small)(x&3))-1; x >>= 2; 963 *f++ = ((small)(x&3))-1; 964 } 965 x = *s++; 966 *f++ = ((small)(x&3))-1; 967 } 968 969 /* ----- encoding general polynomials */ 970 971 #ifndef LPR 972 973 static void Rq_encode(unsigned char *s,const Fq *r) 974 { 975 uint16 R[p],M[p]; 976 int i; 977 978 for (i = 0;i < p;++i) R[i] = r[i]+q12; 979 for (i = 0;i < p;++i) M[i] = q; 980 Encode(s,R,M,p); 981 } 982 983 static void Rq_decode(Fq *r,const unsigned char *s) 984 { 985 uint16 R[p],M[p]; 986 int i; 987 988 for (i = 0;i < p;++i) M[i] = q; 989 Decode(R,s,M,p); 990 for (i = 0;i < p;++i) r[i] = ((Fq)R[i])-q12; 991 } 992 993 #endif 994 995 /* ----- encoding rounded polynomials */ 996 997 static void Rounded_encode(unsigned char *s,const Fq *r) 998 { 999 uint16 R[p],M[p]; 1000 int i; 1001 1002 for (i = 0;i < p;++i) R[i] = ((r[i]+q12)*10923)>>15; 1003 for (i = 0;i < p;++i) M[i] = (q+2)/3; 1004 Encode(s,R,M,p); 1005 } 1006 1007 static void Rounded_decode(Fq *r,const unsigned char *s) 1008 { 1009 uint16 R[p],M[p]; 1010 int i; 1011 1012 for (i = 0;i < p;++i) M[i] = (q+2)/3; 1013 Decode(R,s,M,p); 1014 for (i = 0;i < p;++i) r[i] = R[i]*3-q12; 1015 } 1016 1017 /* ----- encoding top polynomials */ 1018 1019 #ifdef LPR 1020 1021 #define Top_bytes (I/2) 1022 1023 static void Top_encode(unsigned char *s,const int8 *T) 1024 { 1025 int i; 1026 for (i = 0;i < Top_bytes;++i) 1027 s[i] = T[2*i]+(T[2*i+1]<<4); 1028 } 1029 1030 static void Top_decode(int8 *T,const unsigned char *s) 1031 { 1032 int i; 1033 for (i = 0;i < Top_bytes;++i) { 1034 T[2*i] = s[i]&15; 1035 T[2*i+1] = s[i]>>4; 1036 } 1037 } 1038 1039 #endif 1040 1041 /* ----- Streamlined NTRU Prime Core plus encoding */ 1042 1043 #ifndef LPR 1044 1045 typedef small Inputs[p]; /* passed by reference */ 1046 #define Inputs_random Short_random 1047 #define Inputs_encode Small_encode 1048 #define Inputs_bytes Small_bytes 1049 1050 #define Ciphertexts_bytes Rounded_bytes 1051 #define SecretKeys_bytes (2*Small_bytes) 1052 #define PublicKeys_bytes Rq_bytes 1053 1054 /* pk,sk = ZKeyGen() */ 1055 static void ZKeyGen(unsigned char *pk,unsigned char *sk) 1056 { 1057 Fq h[p]; 1058 small f[p],v[p]; 1059 1060 KeyGen(h,f,v); 1061 Rq_encode(pk,h); 1062 Small_encode(sk,f); sk += Small_bytes; 1063 Small_encode(sk,v); 1064 } 1065 1066 /* C = ZEncrypt(r,pk) */ 1067 static void ZEncrypt(unsigned char *C,const Inputs r,const unsigned char *pk) 1068 { 1069 Fq h[p]; 1070 Fq c[p]; 1071 Rq_decode(h,pk); 1072 Encrypt(c,r,h); 1073 Rounded_encode(C,c); 1074 } 1075 1076 /* r = ZDecrypt(C,sk) */ 1077 static void ZDecrypt(Inputs r,const unsigned char *C,const unsigned char *sk) 1078 { 1079 small f[p],v[p]; 1080 Fq c[p]; 1081 1082 Small_decode(f,sk); sk += Small_bytes; 1083 Small_decode(v,sk); 1084 Rounded_decode(c,C); 1085 Decrypt(r,c,f,v); 1086 } 1087 1088 #endif 1089 1090 /* ----- NTRU LPRime Expand plus encoding */ 1091 1092 #ifdef LPR 1093 1094 #define Ciphertexts_bytes (Rounded_bytes+Top_bytes) 1095 #define SecretKeys_bytes Small_bytes 1096 #define PublicKeys_bytes (Seeds_bytes+Rounded_bytes) 1097 1098 static void Inputs_random(Inputs r) 1099 { 1100 unsigned char s[Inputs_bytes]; 1101 int i; 1102 1103 randombytes(s,sizeof s); 1104 for (i = 0;i < I;++i) r[i] = 1&(s[i>>3]>>(i&7)); 1105 } 1106 1107 /* pk,sk = ZKeyGen() */ 1108 static void ZKeyGen(unsigned char *pk,unsigned char *sk) 1109 { 1110 Fq A[p]; 1111 small a[p]; 1112 1113 XKeyGen(pk,A,a); pk += Seeds_bytes; 1114 Rounded_encode(pk,A); 1115 Small_encode(sk,a); 1116 } 1117 1118 /* c = ZEncrypt(r,pk) */ 1119 static void ZEncrypt(unsigned char *c,const Inputs r,const unsigned char *pk) 1120 { 1121 Fq A[p]; 1122 Fq B[p]; 1123 int8 T[I]; 1124 1125 Rounded_decode(A,pk+Seeds_bytes); 1126 XEncrypt(B,T,r,pk,A); 1127 Rounded_encode(c,B); c += Rounded_bytes; 1128 Top_encode(c,T); 1129 } 1130 1131 /* r = ZDecrypt(C,sk) */ 1132 static void ZDecrypt(Inputs r,const unsigned char *c,const unsigned char *sk) 1133 { 1134 small a[p]; 1135 Fq B[p]; 1136 int8 T[I]; 1137 1138 Small_decode(a,sk); 1139 Rounded_decode(B,c); 1140 Top_decode(T,c+Rounded_bytes); 1141 XDecrypt(r,B,T,a); 1142 } 1143 1144 #endif 1145 1146 /* ----- confirmation hash */ 1147 1148 #define Confirm_bytes 32 1149 1150 /* h = HashConfirm(r,pk,cache); cache is Hash4(pk) */ 1151 static void HashConfirm(unsigned char *h,const unsigned char *r,const unsigned char *pk,const unsigned char *cache) 1152 { 1153 #ifndef LPR 1154 unsigned char x[Hash_bytes*2]; 1155 int i; 1156 1157 Hash_prefix(x,3,r,Inputs_bytes); 1158 for (i = 0;i < Hash_bytes;++i) x[Hash_bytes+i] = cache[i]; 1159 #else 1160 unsigned char x[Inputs_bytes+Hash_bytes]; 1161 int i; 1162 1163 for (i = 0;i < Inputs_bytes;++i) x[i] = r[i]; 1164 for (i = 0;i < Hash_bytes;++i) x[Inputs_bytes+i] = cache[i]; 1165 #endif 1166 Hash_prefix(h,2,x,sizeof x); 1167 } 1168 1169 /* ----- session-key hash */ 1170 1171 /* k = HashSession(b,y,z) */ 1172 static void HashSession(unsigned char *k,int b,const unsigned char *y,const unsigned char *z) 1173 { 1174 #ifndef LPR 1175 unsigned char x[Hash_bytes+Ciphertexts_bytes+Confirm_bytes]; 1176 int i; 1177 1178 Hash_prefix(x,3,y,Inputs_bytes); 1179 for (i = 0;i < Ciphertexts_bytes+Confirm_bytes;++i) x[Hash_bytes+i] = z[i]; 1180 #else 1181 unsigned char x[Inputs_bytes+Ciphertexts_bytes+Confirm_bytes]; 1182 int i; 1183 1184 for (i = 0;i < Inputs_bytes;++i) x[i] = y[i]; 1185 for (i = 0;i < Ciphertexts_bytes+Confirm_bytes;++i) x[Inputs_bytes+i] = z[i]; 1186 #endif 1187 Hash_prefix(k,b,x,sizeof x); 1188 } 1189 1190 /* ----- Streamlined NTRU Prime and NTRU LPRime */ 1191 1192 /* pk,sk = KEM_KeyGen() */ 1193 static void KEM_KeyGen(unsigned char *pk,unsigned char *sk) 1194 { 1195 int i; 1196 1197 ZKeyGen(pk,sk); sk += SecretKeys_bytes; 1198 for (i = 0;i < PublicKeys_bytes;++i) *sk++ = pk[i]; 1199 randombytes(sk,Inputs_bytes); sk += Inputs_bytes; 1200 Hash_prefix(sk,4,pk,PublicKeys_bytes); 1201 } 1202 1203 /* c,r_enc = Hide(r,pk,cache); cache is Hash4(pk) */ 1204 static void Hide(unsigned char *c,unsigned char *r_enc,const Inputs r,const unsigned char *pk,const unsigned char *cache) 1205 { 1206 Inputs_encode(r_enc,r); 1207 ZEncrypt(c,r,pk); c += Ciphertexts_bytes; 1208 HashConfirm(c,r_enc,pk,cache); 1209 } 1210 1211 /* c,k = Encap(pk) */ 1212 static void Encap(unsigned char *c,unsigned char *k,const unsigned char *pk) 1213 { 1214 Inputs r; 1215 unsigned char r_enc[Inputs_bytes]; 1216 unsigned char cache[Hash_bytes]; 1217 1218 Hash_prefix(cache,4,pk,PublicKeys_bytes); 1219 Inputs_random(r); 1220 Hide(c,r_enc,r,pk,cache); 1221 HashSession(k,1,r_enc,c); 1222 } 1223 1224 /* 0 if matching ciphertext+confirm, else -1 */ 1225 static int Ciphertexts_diff_mask(const unsigned char *c,const unsigned char *c2) 1226 { 1227 uint16 differentbits = 0; 1228 int len = Ciphertexts_bytes+Confirm_bytes; 1229 1230 while (len-- > 0) differentbits |= (*c++)^(*c2++); 1231 return (1&((differentbits-1)>>8))-1; 1232 } 1233 1234 /* k = Decap(c,sk) */ 1235 static void Decap(unsigned char *k,const unsigned char *c,const unsigned char *sk) 1236 { 1237 const unsigned char *pk = sk + SecretKeys_bytes; 1238 const unsigned char *rho = pk + PublicKeys_bytes; 1239 const unsigned char *cache = rho + Inputs_bytes; 1240 Inputs r; 1241 unsigned char r_enc[Inputs_bytes]; 1242 unsigned char cnew[Ciphertexts_bytes+Confirm_bytes]; 1243 int mask; 1244 int i; 1245 1246 ZDecrypt(r,c,sk); 1247 Hide(cnew,r_enc,r,pk,cache); 1248 mask = Ciphertexts_diff_mask(c,cnew); 1249 for (i = 0;i < Inputs_bytes;++i) r_enc[i] ^= mask&(r_enc[i]^rho[i]); 1250 HashSession(k,1+mask,r_enc,c); 1251 } 1252 1253 /* ----- crypto_kem API */ 1254 1255 1256 int crypto_kem_sntrup761_keypair(unsigned char *pk,unsigned char *sk) 1257 { 1258 KEM_KeyGen(pk,sk); 1259 return 0; 1260 } 1261 1262 int crypto_kem_sntrup761_enc(unsigned char *c,unsigned char *k,const unsigned char *pk) 1263 { 1264 Encap(c,k,pk); 1265 return 0; 1266 } 1267 1268 int crypto_kem_sntrup761_dec(unsigned char *k,const unsigned char *c,const unsigned char *sk) 1269 { 1270 Decap(k,c,sk); 1271 return 0; 1272 } 1273 #endif /* USE_SNTRUP761X25519 */ 1274