xref: /freebsd/crypto/openssh/smult_curve25519_ref.c (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 /* $OpenBSD: smult_curve25519_ref.c,v 1.2 2013/11/02 22:02:14 markus Exp $ */
2 /*
3 version 20081011
4 Matthew Dempsky
5 Public domain.
6 Derived from public domain code by D. J. Bernstein.
7 */
8 
9 int crypto_scalarmult_curve25519(unsigned char *, const unsigned char *, const unsigned char *);
10 
11 static void add(unsigned int out[32],const unsigned int a[32],const unsigned int b[32])
12 {
13   unsigned int j;
14   unsigned int u;
15   u = 0;
16   for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; }
17   u += a[31] + b[31]; out[31] = u;
18 }
19 
20 static void sub(unsigned int out[32],const unsigned int a[32],const unsigned int b[32])
21 {
22   unsigned int j;
23   unsigned int u;
24   u = 218;
25   for (j = 0;j < 31;++j) {
26     u += a[j] + 65280 - b[j];
27     out[j] = u & 255;
28     u >>= 8;
29   }
30   u += a[31] - b[31];
31   out[31] = u;
32 }
33 
34 static void squeeze(unsigned int a[32])
35 {
36   unsigned int j;
37   unsigned int u;
38   u = 0;
39   for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; }
40   u += a[31]; a[31] = u & 127;
41   u = 19 * (u >> 7);
42   for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; }
43   u += a[31]; a[31] = u;
44 }
45 
46 static const unsigned int minusp[32] = {
47  19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128
48 } ;
49 
50 static void freeze(unsigned int a[32])
51 {
52   unsigned int aorig[32];
53   unsigned int j;
54   unsigned int negative;
55 
56   for (j = 0;j < 32;++j) aorig[j] = a[j];
57   add(a,a,minusp);
58   negative = -((a[31] >> 7) & 1);
59   for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]);
60 }
61 
62 static void mult(unsigned int out[32],const unsigned int a[32],const unsigned int b[32])
63 {
64   unsigned int i;
65   unsigned int j;
66   unsigned int u;
67 
68   for (i = 0;i < 32;++i) {
69     u = 0;
70     for (j = 0;j <= i;++j) u += a[j] * b[i - j];
71     for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j];
72     out[i] = u;
73   }
74   squeeze(out);
75 }
76 
77 static void mult121665(unsigned int out[32],const unsigned int a[32])
78 {
79   unsigned int j;
80   unsigned int u;
81 
82   u = 0;
83   for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; }
84   u += 121665 * a[31]; out[31] = u & 127;
85   u = 19 * (u >> 7);
86   for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; }
87   u += out[j]; out[j] = u;
88 }
89 
90 static void square(unsigned int out[32],const unsigned int a[32])
91 {
92   unsigned int i;
93   unsigned int j;
94   unsigned int u;
95 
96   for (i = 0;i < 32;++i) {
97     u = 0;
98     for (j = 0;j < i - j;++j) u += a[j] * a[i - j];
99     for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j];
100     u *= 2;
101     if ((i & 1) == 0) {
102       u += a[i / 2] * a[i / 2];
103       u += 38 * a[i / 2 + 16] * a[i / 2 + 16];
104     }
105     out[i] = u;
106   }
107   squeeze(out);
108 }
109 
110 static void select(unsigned int p[64],unsigned int q[64],const unsigned int r[64],const unsigned int s[64],unsigned int b)
111 {
112   unsigned int j;
113   unsigned int t;
114   unsigned int bminus1;
115 
116   bminus1 = b - 1;
117   for (j = 0;j < 64;++j) {
118     t = bminus1 & (r[j] ^ s[j]);
119     p[j] = s[j] ^ t;
120     q[j] = r[j] ^ t;
121   }
122 }
123 
124 static void mainloop(unsigned int work[64],const unsigned char e[32])
125 {
126   unsigned int xzm1[64];
127   unsigned int xzm[64];
128   unsigned int xzmb[64];
129   unsigned int xzm1b[64];
130   unsigned int xznb[64];
131   unsigned int xzn1b[64];
132   unsigned int a0[64];
133   unsigned int a1[64];
134   unsigned int b0[64];
135   unsigned int b1[64];
136   unsigned int c1[64];
137   unsigned int r[32];
138   unsigned int s[32];
139   unsigned int t[32];
140   unsigned int u[32];
141   unsigned int j;
142   unsigned int b;
143   int pos;
144 
145   for (j = 0;j < 32;++j) xzm1[j] = work[j];
146   xzm1[32] = 1;
147   for (j = 33;j < 64;++j) xzm1[j] = 0;
148 
149   xzm[0] = 1;
150   for (j = 1;j < 64;++j) xzm[j] = 0;
151 
152   for (pos = 254;pos >= 0;--pos) {
153     b = e[pos / 8] >> (pos & 7);
154     b &= 1;
155     select(xzmb,xzm1b,xzm,xzm1,b);
156     add(a0,xzmb,xzmb + 32);
157     sub(a0 + 32,xzmb,xzmb + 32);
158     add(a1,xzm1b,xzm1b + 32);
159     sub(a1 + 32,xzm1b,xzm1b + 32);
160     square(b0,a0);
161     square(b0 + 32,a0 + 32);
162     mult(b1,a1,a0 + 32);
163     mult(b1 + 32,a1 + 32,a0);
164     add(c1,b1,b1 + 32);
165     sub(c1 + 32,b1,b1 + 32);
166     square(r,c1 + 32);
167     sub(s,b0,b0 + 32);
168     mult121665(t,s);
169     add(u,t,b0);
170     mult(xznb,b0,b0 + 32);
171     mult(xznb + 32,s,u);
172     square(xzn1b,c1);
173     mult(xzn1b + 32,r,work);
174     select(xzm,xzm1,xznb,xzn1b,b);
175   }
176 
177   for (j = 0;j < 64;++j) work[j] = xzm[j];
178 }
179 
180 static void recip(unsigned int out[32],const unsigned int z[32])
181 {
182   unsigned int z2[32];
183   unsigned int z9[32];
184   unsigned int z11[32];
185   unsigned int z2_5_0[32];
186   unsigned int z2_10_0[32];
187   unsigned int z2_20_0[32];
188   unsigned int z2_50_0[32];
189   unsigned int z2_100_0[32];
190   unsigned int t0[32];
191   unsigned int t1[32];
192   int i;
193 
194   /* 2 */ square(z2,z);
195   /* 4 */ square(t1,z2);
196   /* 8 */ square(t0,t1);
197   /* 9 */ mult(z9,t0,z);
198   /* 11 */ mult(z11,z9,z2);
199   /* 22 */ square(t0,z11);
200   /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9);
201 
202   /* 2^6 - 2^1 */ square(t0,z2_5_0);
203   /* 2^7 - 2^2 */ square(t1,t0);
204   /* 2^8 - 2^3 */ square(t0,t1);
205   /* 2^9 - 2^4 */ square(t1,t0);
206   /* 2^10 - 2^5 */ square(t0,t1);
207   /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0);
208 
209   /* 2^11 - 2^1 */ square(t0,z2_10_0);
210   /* 2^12 - 2^2 */ square(t1,t0);
211   /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); }
212   /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0);
213 
214   /* 2^21 - 2^1 */ square(t0,z2_20_0);
215   /* 2^22 - 2^2 */ square(t1,t0);
216   /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); }
217   /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0);
218 
219   /* 2^41 - 2^1 */ square(t1,t0);
220   /* 2^42 - 2^2 */ square(t0,t1);
221   /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); }
222   /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0);
223 
224   /* 2^51 - 2^1 */ square(t0,z2_50_0);
225   /* 2^52 - 2^2 */ square(t1,t0);
226   /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); }
227   /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0);
228 
229   /* 2^101 - 2^1 */ square(t1,z2_100_0);
230   /* 2^102 - 2^2 */ square(t0,t1);
231   /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); }
232   /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0);
233 
234   /* 2^201 - 2^1 */ square(t0,t1);
235   /* 2^202 - 2^2 */ square(t1,t0);
236   /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); }
237   /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0);
238 
239   /* 2^251 - 2^1 */ square(t1,t0);
240   /* 2^252 - 2^2 */ square(t0,t1);
241   /* 2^253 - 2^3 */ square(t1,t0);
242   /* 2^254 - 2^4 */ square(t0,t1);
243   /* 2^255 - 2^5 */ square(t1,t0);
244   /* 2^255 - 21 */ mult(out,t1,z11);
245 }
246 
247 int crypto_scalarmult_curve25519(unsigned char *q,
248   const unsigned char *n,
249   const unsigned char *p)
250 {
251   unsigned int work[96];
252   unsigned char e[32];
253   unsigned int i;
254   for (i = 0;i < 32;++i) e[i] = n[i];
255   e[0] &= 248;
256   e[31] &= 127;
257   e[31] |= 64;
258   for (i = 0;i < 32;++i) work[i] = p[i];
259   mainloop(work,e);
260   recip(work + 32,work + 32);
261   mult(work + 64,work,work + 32);
262   freeze(work + 64);
263   for (i = 0;i < 32;++i) q[i] = work[64 + i];
264   return 0;
265 }
266