xref: /freebsd/crypto/openssh/rijndael.c (revision 803a60798313b6658e475ebccfc61ef8d8b3294c)
1 /*	$OpenBSD: rijndael.c,v 1.2 2000/10/15 14:14:01 markus Exp $	*/
2 
3 /* This is an independent implementation of the encryption algorithm:   */
4 /*                                                                      */
5 /*         RIJNDAEL by Joan Daemen and Vincent Rijmen                   */
6 /*                                                                      */
7 /* which is a candidate algorithm in the Advanced Encryption Standard   */
8 /* programme of the US National Institute of Standards and Technology.  */
9 /*                                                                      */
10 /* Copyright in this implementation is held by Dr B R Gladman but I     */
11 /* hereby give permission for its free direct or derivative use subject */
12 /* to acknowledgment of its origin and compliance with any conditions   */
13 /* that the originators of the algorithm place on its exploitation.     */
14 /*                                                                      */
15 /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999     */
16 
17 /* Timing data for Rijndael (rijndael.c)
18 
19 Algorithm: rijndael (rijndael.c)
20 
21 128 bit key:
22 Key Setup:    305/1389 cycles (encrypt/decrypt)
23 Encrypt:       374 cycles =    68.4 mbits/sec
24 Decrypt:       352 cycles =    72.7 mbits/sec
25 Mean:          363 cycles =    70.5 mbits/sec
26 
27 192 bit key:
28 Key Setup:    277/1595 cycles (encrypt/decrypt)
29 Encrypt:       439 cycles =    58.3 mbits/sec
30 Decrypt:       425 cycles =    60.2 mbits/sec
31 Mean:          432 cycles =    59.3 mbits/sec
32 
33 256 bit key:
34 Key Setup:    374/1960 cycles (encrypt/decrypt)
35 Encrypt:       502 cycles =    51.0 mbits/sec
36 Decrypt:       498 cycles =    51.4 mbits/sec
37 Mean:          500 cycles =    51.2 mbits/sec
38 
39 */
40 
41 #include <sys/types.h>
42 #include "rijndael.h"
43 
44 void gen_tabs	__P((void));
45 
46 /* 3. Basic macros for speeding up generic operations               */
47 
48 /* Circular rotate of 32 bit values                                 */
49 
50 #define rotr(x,n)   (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
51 #define rotl(x,n)   (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
52 
53 /* Invert byte order in a 32 bit variable                           */
54 
55 #define bswap(x)    (rotl(x, 8) & 0x00ff00ff | rotr(x, 8) & 0xff00ff00)
56 
57 /* Extract byte from a 32 bit quantity (little endian notation)     */
58 
59 #define byte(x,n)   ((u1byte)((x) >> (8 * n)))
60 
61 #if BYTE_ORDER != LITTLE_ENDIAN
62 #define BLOCK_SWAP
63 #endif
64 
65 /* For inverting byte order in input/output 32 bit words if needed  */
66 
67 #ifdef  BLOCK_SWAP
68 #define BYTE_SWAP
69 #define WORD_SWAP
70 #endif
71 
72 #ifdef  BYTE_SWAP
73 #define io_swap(x)  bswap(x)
74 #else
75 #define io_swap(x)  (x)
76 #endif
77 
78 /* For inverting the byte order of input/output blocks if needed    */
79 
80 #ifdef  WORD_SWAP
81 
82 #define get_block(x)                            \
83     ((u4byte*)(x))[0] = io_swap(in_blk[3]);     \
84     ((u4byte*)(x))[1] = io_swap(in_blk[2]);     \
85     ((u4byte*)(x))[2] = io_swap(in_blk[1]);     \
86     ((u4byte*)(x))[3] = io_swap(in_blk[0])
87 
88 #define put_block(x)                            \
89     out_blk[3] = io_swap(((u4byte*)(x))[0]);    \
90     out_blk[2] = io_swap(((u4byte*)(x))[1]);    \
91     out_blk[1] = io_swap(((u4byte*)(x))[2]);    \
92     out_blk[0] = io_swap(((u4byte*)(x))[3])
93 
94 #define get_key(x,len)                          \
95     ((u4byte*)(x))[4] = ((u4byte*)(x))[5] =     \
96     ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0;  \
97     switch((((len) + 63) / 64)) {               \
98     case 2:                                     \
99     ((u4byte*)(x))[0] = io_swap(in_key[3]);     \
100     ((u4byte*)(x))[1] = io_swap(in_key[2]);     \
101     ((u4byte*)(x))[2] = io_swap(in_key[1]);     \
102     ((u4byte*)(x))[3] = io_swap(in_key[0]);     \
103     break;                                      \
104     case 3:                                     \
105     ((u4byte*)(x))[0] = io_swap(in_key[5]);     \
106     ((u4byte*)(x))[1] = io_swap(in_key[4]);     \
107     ((u4byte*)(x))[2] = io_swap(in_key[3]);     \
108     ((u4byte*)(x))[3] = io_swap(in_key[2]);     \
109     ((u4byte*)(x))[4] = io_swap(in_key[1]);     \
110     ((u4byte*)(x))[5] = io_swap(in_key[0]);     \
111     break;                                      \
112     case 4:                                     \
113     ((u4byte*)(x))[0] = io_swap(in_key[7]);     \
114     ((u4byte*)(x))[1] = io_swap(in_key[6]);     \
115     ((u4byte*)(x))[2] = io_swap(in_key[5]);     \
116     ((u4byte*)(x))[3] = io_swap(in_key[4]);     \
117     ((u4byte*)(x))[4] = io_swap(in_key[3]);     \
118     ((u4byte*)(x))[5] = io_swap(in_key[2]);     \
119     ((u4byte*)(x))[6] = io_swap(in_key[1]);     \
120     ((u4byte*)(x))[7] = io_swap(in_key[0]);     \
121     }
122 
123 #else
124 
125 #define get_block(x)                            \
126     ((u4byte*)(x))[0] = io_swap(in_blk[0]);     \
127     ((u4byte*)(x))[1] = io_swap(in_blk[1]);     \
128     ((u4byte*)(x))[2] = io_swap(in_blk[2]);     \
129     ((u4byte*)(x))[3] = io_swap(in_blk[3])
130 
131 #define put_block(x)                            \
132     out_blk[0] = io_swap(((u4byte*)(x))[0]);    \
133     out_blk[1] = io_swap(((u4byte*)(x))[1]);    \
134     out_blk[2] = io_swap(((u4byte*)(x))[2]);    \
135     out_blk[3] = io_swap(((u4byte*)(x))[3])
136 
137 #define get_key(x,len)                          \
138     ((u4byte*)(x))[4] = ((u4byte*)(x))[5] =     \
139     ((u4byte*)(x))[6] = ((u4byte*)(x))[7] = 0;  \
140     switch((((len) + 63) / 64)) {               \
141     case 4:                                     \
142     ((u4byte*)(x))[6] = io_swap(in_key[6]);     \
143     ((u4byte*)(x))[7] = io_swap(in_key[7]);     \
144     case 3:                                     \
145     ((u4byte*)(x))[4] = io_swap(in_key[4]);     \
146     ((u4byte*)(x))[5] = io_swap(in_key[5]);     \
147     case 2:                                     \
148     ((u4byte*)(x))[0] = io_swap(in_key[0]);     \
149     ((u4byte*)(x))[1] = io_swap(in_key[1]);     \
150     ((u4byte*)(x))[2] = io_swap(in_key[2]);     \
151     ((u4byte*)(x))[3] = io_swap(in_key[3]);     \
152     }
153 
154 #endif
155 
156 #define LARGE_TABLES
157 
158 u1byte  pow_tab[256];
159 u1byte  log_tab[256];
160 u1byte  sbx_tab[256];
161 u1byte  isb_tab[256];
162 u4byte  rco_tab[ 10];
163 u4byte  ft_tab[4][256];
164 u4byte  it_tab[4][256];
165 
166 #ifdef  LARGE_TABLES
167   u4byte  fl_tab[4][256];
168   u4byte  il_tab[4][256];
169 #endif
170 
171 u4byte  tab_gen = 0;
172 
173 #define ff_mult(a,b)    (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
174 
175 #define f_rn(bo, bi, n, k)                          \
176     bo[n] =  ft_tab[0][byte(bi[n],0)] ^             \
177              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
178              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
179              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
180 
181 #define i_rn(bo, bi, n, k)                          \
182     bo[n] =  it_tab[0][byte(bi[n],0)] ^             \
183              it_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
184              it_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
185              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
186 
187 #ifdef LARGE_TABLES
188 
189 #define ls_box(x)                \
190     ( fl_tab[0][byte(x, 0)] ^    \
191       fl_tab[1][byte(x, 1)] ^    \
192       fl_tab[2][byte(x, 2)] ^    \
193       fl_tab[3][byte(x, 3)] )
194 
195 #define f_rl(bo, bi, n, k)                          \
196     bo[n] =  fl_tab[0][byte(bi[n],0)] ^             \
197              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
198              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
199              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
200 
201 #define i_rl(bo, bi, n, k)                          \
202     bo[n] =  il_tab[0][byte(bi[n],0)] ^             \
203              il_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
204              il_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
205              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
206 
207 #else
208 
209 #define ls_box(x)                            \
210     ((u4byte)sbx_tab[byte(x, 0)] <<  0) ^    \
211     ((u4byte)sbx_tab[byte(x, 1)] <<  8) ^    \
212     ((u4byte)sbx_tab[byte(x, 2)] << 16) ^    \
213     ((u4byte)sbx_tab[byte(x, 3)] << 24)
214 
215 #define f_rl(bo, bi, n, k)                                      \
216     bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^                    \
217         rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]),  8) ^  \
218         rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
219         rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
220 
221 #define i_rl(bo, bi, n, k)                                      \
222     bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^                    \
223         rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]),  8) ^  \
224         rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
225         rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
226 
227 #endif
228 
229 void
230 gen_tabs(void)
231 {
232 	u4byte  i, t;
233 	u1byte  p, q;
234 
235 	/* log and power tables for GF(2**8) finite field with  */
236 	/* 0x11b as modular polynomial - the simplest prmitive  */
237 	/* root is 0x11, used here to generate the tables       */
238 
239 	for(i = 0,p = 1; i < 256; ++i) {
240 		pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
241 
242 		p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
243 	}
244 
245 	log_tab[1] = 0; p = 1;
246 
247 	for(i = 0; i < 10; ++i) {
248 		rco_tab[i] = p;
249 
250 		p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
251 	}
252 
253 	/* note that the affine byte transformation matrix in   */
254 	/* rijndael specification is in big endian format with  */
255 	/* bit 0 as the most significant bit. In the remainder  */
256 	/* of the specification the bits are numbered from the  */
257 	/* least significant end of a byte.                     */
258 
259 	for(i = 0; i < 256; ++i) {
260 		p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
261 		q = (q >> 7) | (q << 1); p ^= q;
262 		q = (q >> 7) | (q << 1); p ^= q;
263 		q = (q >> 7) | (q << 1); p ^= q;
264 		q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
265 		sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
266 	}
267 
268 	for(i = 0; i < 256; ++i) {
269 		p = sbx_tab[i];
270 
271 #ifdef  LARGE_TABLES
272 
273 		t = p; fl_tab[0][i] = t;
274 		fl_tab[1][i] = rotl(t,  8);
275 		fl_tab[2][i] = rotl(t, 16);
276 		fl_tab[3][i] = rotl(t, 24);
277 #endif
278 		t = ((u4byte)ff_mult(2, p)) |
279 			((u4byte)p <<  8) |
280 			((u4byte)p << 16) |
281 			((u4byte)ff_mult(3, p) << 24);
282 
283 		ft_tab[0][i] = t;
284 		ft_tab[1][i] = rotl(t,  8);
285 		ft_tab[2][i] = rotl(t, 16);
286 		ft_tab[3][i] = rotl(t, 24);
287 
288 		p = isb_tab[i];
289 
290 #ifdef  LARGE_TABLES
291 
292 		t = p; il_tab[0][i] = t;
293 		il_tab[1][i] = rotl(t,  8);
294 		il_tab[2][i] = rotl(t, 16);
295 		il_tab[3][i] = rotl(t, 24);
296 #endif
297 		t = ((u4byte)ff_mult(14, p)) |
298 			((u4byte)ff_mult( 9, p) <<  8) |
299 			((u4byte)ff_mult(13, p) << 16) |
300 			((u4byte)ff_mult(11, p) << 24);
301 
302 		it_tab[0][i] = t;
303 		it_tab[1][i] = rotl(t,  8);
304 		it_tab[2][i] = rotl(t, 16);
305 		it_tab[3][i] = rotl(t, 24);
306 	}
307 
308 	tab_gen = 1;
309 }
310 
311 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
312 
313 #define imix_col(y,x)       \
314     u   = star_x(x);        \
315     v   = star_x(u);        \
316     w   = star_x(v);        \
317     t   = w ^ (x);          \
318    (y)  = u ^ v ^ w;        \
319    (y) ^= rotr(u ^ t,  8) ^ \
320           rotr(v ^ t, 16) ^ \
321           rotr(t,24)
322 
323 /* initialise the key schedule from the user supplied key   */
324 
325 #define loop4(i)                                    \
326 {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
327     t ^= e_key[4 * i];     e_key[4 * i + 4] = t;    \
328     t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;    \
329     t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;    \
330     t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;    \
331 }
332 
333 #define loop6(i)                                    \
334 {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
335     t ^= e_key[6 * i];     e_key[6 * i + 6] = t;    \
336     t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t;    \
337     t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t;    \
338     t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t;    \
339     t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t;   \
340     t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t;   \
341 }
342 
343 #define loop8(i)                                    \
344 {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
345     t ^= e_key[8 * i];     e_key[8 * i + 8] = t;    \
346     t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t;    \
347     t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t;   \
348     t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t;   \
349     t  = e_key[8 * i + 4] ^ ls_box(t);              \
350     e_key[8 * i + 12] = t;                          \
351     t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t;   \
352     t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t;   \
353     t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t;   \
354 }
355 
356 rijndael_ctx *
357 rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
358 		 int encrypt)
359 {
360 	u4byte  i, t, u, v, w;
361 	u4byte *e_key = ctx->e_key;
362 	u4byte *d_key = ctx->d_key;
363 
364 	ctx->decrypt = !encrypt;
365 
366 	if(!tab_gen)
367 		gen_tabs();
368 
369 	ctx->k_len = (key_len + 31) / 32;
370 
371 	e_key[0] = in_key[0]; e_key[1] = in_key[1];
372 	e_key[2] = in_key[2]; e_key[3] = in_key[3];
373 
374 	switch(ctx->k_len) {
375         case 4: t = e_key[3];
376                 for(i = 0; i < 10; ++i)
377 			loop4(i);
378                 break;
379 
380         case 6: e_key[4] = in_key[4]; t = e_key[5] = in_key[5];
381                 for(i = 0; i < 8; ++i)
382 			loop6(i);
383                 break;
384 
385         case 8: e_key[4] = in_key[4]; e_key[5] = in_key[5];
386                 e_key[6] = in_key[6]; t = e_key[7] = in_key[7];
387                 for(i = 0; i < 7; ++i)
388 			loop8(i);
389                 break;
390 	}
391 
392 	if (!encrypt) {
393 		d_key[0] = e_key[0]; d_key[1] = e_key[1];
394 		d_key[2] = e_key[2]; d_key[3] = e_key[3];
395 
396 		for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
397 			imix_col(d_key[i], e_key[i]);
398 		}
399 	}
400 
401 	return ctx;
402 }
403 
404 /* encrypt a block of text  */
405 
406 #define f_nround(bo, bi, k) \
407     f_rn(bo, bi, 0, k);     \
408     f_rn(bo, bi, 1, k);     \
409     f_rn(bo, bi, 2, k);     \
410     f_rn(bo, bi, 3, k);     \
411     k += 4
412 
413 #define f_lround(bo, bi, k) \
414     f_rl(bo, bi, 0, k);     \
415     f_rl(bo, bi, 1, k);     \
416     f_rl(bo, bi, 2, k);     \
417     f_rl(bo, bi, 3, k)
418 
419 void
420 rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
421 {
422 	u4byte k_len = ctx->k_len;
423 	u4byte *e_key = ctx->e_key;
424 	u4byte  b0[4], b1[4], *kp;
425 
426 	b0[0] = in_blk[0] ^ e_key[0]; b0[1] = in_blk[1] ^ e_key[1];
427 	b0[2] = in_blk[2] ^ e_key[2]; b0[3] = in_blk[3] ^ e_key[3];
428 
429 	kp = e_key + 4;
430 
431 	if(k_len > 6) {
432 		f_nround(b1, b0, kp); f_nround(b0, b1, kp);
433 	}
434 
435 	if(k_len > 4) {
436 		f_nround(b1, b0, kp); f_nround(b0, b1, kp);
437 	}
438 
439 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
440 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
441 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
442 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
443 	f_nround(b1, b0, kp); f_lround(b0, b1, kp);
444 
445 	out_blk[0] = b0[0]; out_blk[1] = b0[1];
446 	out_blk[2] = b0[2]; out_blk[3] = b0[3];
447 }
448 
449 /* decrypt a block of text  */
450 
451 #define i_nround(bo, bi, k) \
452     i_rn(bo, bi, 0, k);     \
453     i_rn(bo, bi, 1, k);     \
454     i_rn(bo, bi, 2, k);     \
455     i_rn(bo, bi, 3, k);     \
456     k -= 4
457 
458 #define i_lround(bo, bi, k) \
459     i_rl(bo, bi, 0, k);     \
460     i_rl(bo, bi, 1, k);     \
461     i_rl(bo, bi, 2, k);     \
462     i_rl(bo, bi, 3, k)
463 
464 void
465 rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
466 {
467 	u4byte  b0[4], b1[4], *kp;
468 	u4byte k_len = ctx->k_len;
469 	u4byte *e_key = ctx->e_key;
470 	u4byte *d_key = ctx->d_key;
471 
472 	b0[0] = in_blk[0] ^ e_key[4 * k_len + 24]; b0[1] = in_blk[1] ^ e_key[4 * k_len + 25];
473 	b0[2] = in_blk[2] ^ e_key[4 * k_len + 26]; b0[3] = in_blk[3] ^ e_key[4 * k_len + 27];
474 
475 	kp = d_key + 4 * (k_len + 5);
476 
477 	if(k_len > 6) {
478 		i_nround(b1, b0, kp); i_nround(b0, b1, kp);
479 	}
480 
481 	if(k_len > 4) {
482 		i_nround(b1, b0, kp); i_nround(b0, b1, kp);
483 	}
484 
485 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
486 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
487 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
488 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
489 	i_nround(b1, b0, kp); i_lround(b0, b1, kp);
490 
491 	out_blk[0] = b0[0]; out_blk[1] = b0[1];
492 	out_blk[2] = b0[2]; out_blk[3] = b0[3];
493 }
494