xref: /freebsd/crypto/openssh/rijndael.c (revision 1e8db6e2f63ea90b361b3bbc9ebe9990660cb596)
1 /*	$OpenBSD: rijndael.c,v 1.7 2001/02/04 15:32:24 stevesk Exp $	*/
2 
3 /* This is an independent implementation of the encryption algorithm:   */
4 /*                                                                      */
5 /*         RIJNDAEL by Joan Daemen and Vincent Rijmen                   */
6 /*                                                                      */
7 /* which is a candidate algorithm in the Advanced Encryption Standard   */
8 /* programme of the US National Institute of Standards and Technology.  */
9 /*                                                                      */
10 /* Copyright in this implementation is held by Dr B R Gladman but I     */
11 /* hereby give permission for its free direct or derivative use subject */
12 /* to acknowledgment of its origin and compliance with any conditions   */
13 /* that the originators of the algorithm place on its exploitation.     */
14 /*                                                                      */
15 /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999     */
16 
17 /* Timing data for Rijndael (rijndael.c)
18 
19 Algorithm: rijndael (rijndael.c)
20 
21 128 bit key:
22 Key Setup:    305/1389 cycles (encrypt/decrypt)
23 Encrypt:       374 cycles =    68.4 mbits/sec
24 Decrypt:       352 cycles =    72.7 mbits/sec
25 Mean:          363 cycles =    70.5 mbits/sec
26 
27 192 bit key:
28 Key Setup:    277/1595 cycles (encrypt/decrypt)
29 Encrypt:       439 cycles =    58.3 mbits/sec
30 Decrypt:       425 cycles =    60.2 mbits/sec
31 Mean:          432 cycles =    59.3 mbits/sec
32 
33 256 bit key:
34 Key Setup:    374/1960 cycles (encrypt/decrypt)
35 Encrypt:       502 cycles =    51.0 mbits/sec
36 Decrypt:       498 cycles =    51.4 mbits/sec
37 Mean:          500 cycles =    51.2 mbits/sec
38 
39 */
40 
41 #include <sys/types.h>
42 #include "rijndael.h"
43 
44 void gen_tabs	__P((void));
45 
46 /* 3. Basic macros for speeding up generic operations               */
47 
48 /* Circular rotate of 32 bit values                                 */
49 
50 #define rotr(x,n)   (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
51 #define rotl(x,n)   (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
52 
53 /* Invert byte order in a 32 bit variable                           */
54 
55 #define bswap(x)    ((rotl(x, 8) & 0x00ff00ff) | (rotr(x, 8) & 0xff00ff00))
56 
57 /* Extract byte from a 32 bit quantity (little endian notation)     */
58 
59 #define byte(x,n)   ((u1byte)((x) >> (8 * n)))
60 
61 #if BYTE_ORDER != LITTLE_ENDIAN
62 #define BYTE_SWAP
63 #endif
64 
65 #ifdef  BYTE_SWAP
66 #define io_swap(x)  bswap(x)
67 #else
68 #define io_swap(x)  (x)
69 #endif
70 
71 #define LARGE_TABLES
72 
73 u1byte  pow_tab[256];
74 u1byte  log_tab[256];
75 u1byte  sbx_tab[256];
76 u1byte  isb_tab[256];
77 u4byte  rco_tab[ 10];
78 u4byte  ft_tab[4][256];
79 u4byte  it_tab[4][256];
80 
81 #ifdef  LARGE_TABLES
82   u4byte  fl_tab[4][256];
83   u4byte  il_tab[4][256];
84 #endif
85 
86 u4byte  tab_gen = 0;
87 
88 #define ff_mult(a,b)    (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
89 
90 #define f_rn(bo, bi, n, k)                          \
91     bo[n] =  ft_tab[0][byte(bi[n],0)] ^             \
92 	     ft_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
93 	     ft_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
94 	     ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
95 
96 #define i_rn(bo, bi, n, k)                          \
97     bo[n] =  it_tab[0][byte(bi[n],0)] ^             \
98 	     it_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
99 	     it_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
100 	     it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
101 
102 #ifdef LARGE_TABLES
103 
104 #define ls_box(x)                \
105     ( fl_tab[0][byte(x, 0)] ^    \
106       fl_tab[1][byte(x, 1)] ^    \
107       fl_tab[2][byte(x, 2)] ^    \
108       fl_tab[3][byte(x, 3)] )
109 
110 #define f_rl(bo, bi, n, k)                          \
111     bo[n] =  fl_tab[0][byte(bi[n],0)] ^             \
112 	     fl_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
113 	     fl_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
114 	     fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
115 
116 #define i_rl(bo, bi, n, k)                          \
117     bo[n] =  il_tab[0][byte(bi[n],0)] ^             \
118 	     il_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
119 	     il_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
120 	     il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
121 
122 #else
123 
124 #define ls_box(x)                            \
125     ((u4byte)sbx_tab[byte(x, 0)] <<  0) ^    \
126     ((u4byte)sbx_tab[byte(x, 1)] <<  8) ^    \
127     ((u4byte)sbx_tab[byte(x, 2)] << 16) ^    \
128     ((u4byte)sbx_tab[byte(x, 3)] << 24)
129 
130 #define f_rl(bo, bi, n, k)                                      \
131     bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^                    \
132 	rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]),  8) ^  \
133 	rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
134 	rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
135 
136 #define i_rl(bo, bi, n, k)                                      \
137     bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^                    \
138 	rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]),  8) ^  \
139 	rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
140 	rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
141 
142 #endif
143 
144 void
145 gen_tabs(void)
146 {
147 	u4byte  i, t;
148 	u1byte  p, q;
149 
150 	/* log and power tables for GF(2**8) finite field with  */
151 	/* 0x11b as modular polynomial - the simplest prmitive  */
152 	/* root is 0x11, used here to generate the tables       */
153 
154 	for(i = 0,p = 1; i < 256; ++i) {
155 		pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
156 
157 		p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
158 	}
159 
160 	log_tab[1] = 0; p = 1;
161 
162 	for(i = 0; i < 10; ++i) {
163 		rco_tab[i] = p;
164 
165 		p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
166 	}
167 
168 	/* note that the affine byte transformation matrix in   */
169 	/* rijndael specification is in big endian format with  */
170 	/* bit 0 as the most significant bit. In the remainder  */
171 	/* of the specification the bits are numbered from the  */
172 	/* least significant end of a byte.                     */
173 
174 	for(i = 0; i < 256; ++i) {
175 		p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p;
176 		q = (q >> 7) | (q << 1); p ^= q;
177 		q = (q >> 7) | (q << 1); p ^= q;
178 		q = (q >> 7) | (q << 1); p ^= q;
179 		q = (q >> 7) | (q << 1); p ^= q ^ 0x63;
180 		sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
181 	}
182 
183 	for(i = 0; i < 256; ++i) {
184 		p = sbx_tab[i];
185 
186 #ifdef  LARGE_TABLES
187 
188 		t = p; fl_tab[0][i] = t;
189 		fl_tab[1][i] = rotl(t,  8);
190 		fl_tab[2][i] = rotl(t, 16);
191 		fl_tab[3][i] = rotl(t, 24);
192 #endif
193 		t = ((u4byte)ff_mult(2, p)) |
194 			((u4byte)p <<  8) |
195 			((u4byte)p << 16) |
196 			((u4byte)ff_mult(3, p) << 24);
197 
198 		ft_tab[0][i] = t;
199 		ft_tab[1][i] = rotl(t,  8);
200 		ft_tab[2][i] = rotl(t, 16);
201 		ft_tab[3][i] = rotl(t, 24);
202 
203 		p = isb_tab[i];
204 
205 #ifdef  LARGE_TABLES
206 
207 		t = p; il_tab[0][i] = t;
208 		il_tab[1][i] = rotl(t,  8);
209 		il_tab[2][i] = rotl(t, 16);
210 		il_tab[3][i] = rotl(t, 24);
211 #endif
212 		t = ((u4byte)ff_mult(14, p)) |
213 			((u4byte)ff_mult( 9, p) <<  8) |
214 			((u4byte)ff_mult(13, p) << 16) |
215 			((u4byte)ff_mult(11, p) << 24);
216 
217 		it_tab[0][i] = t;
218 		it_tab[1][i] = rotl(t,  8);
219 		it_tab[2][i] = rotl(t, 16);
220 		it_tab[3][i] = rotl(t, 24);
221 	}
222 
223 	tab_gen = 1;
224 }
225 
226 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
227 
228 #define imix_col(y,x)       \
229     u   = star_x(x);        \
230     v   = star_x(u);        \
231     w   = star_x(v);        \
232     t   = w ^ (x);          \
233    (y)  = u ^ v ^ w;        \
234    (y) ^= rotr(u ^ t,  8) ^ \
235 	  rotr(v ^ t, 16) ^ \
236 	  rotr(t,24)
237 
238 /* initialise the key schedule from the user supplied key   */
239 
240 #define loop4(i)                                    \
241 {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
242     t ^= e_key[4 * i];     e_key[4 * i + 4] = t;    \
243     t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;    \
244     t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;    \
245     t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;    \
246 }
247 
248 #define loop6(i)                                    \
249 {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
250     t ^= e_key[6 * i];     e_key[6 * i + 6] = t;    \
251     t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t;    \
252     t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t;    \
253     t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t;    \
254     t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t;   \
255     t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t;   \
256 }
257 
258 #define loop8(i)                                    \
259 {   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
260     t ^= e_key[8 * i];     e_key[8 * i + 8] = t;    \
261     t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t;    \
262     t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t;   \
263     t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t;   \
264     t  = e_key[8 * i + 4] ^ ls_box(t);              \
265     e_key[8 * i + 12] = t;                          \
266     t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t;   \
267     t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t;   \
268     t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t;   \
269 }
270 
271 rijndael_ctx *
272 rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
273 		 int encrypt)
274 {
275 	u4byte  i, t, u, v, w;
276 	u4byte *e_key = ctx->e_key;
277 	u4byte *d_key = ctx->d_key;
278 
279 	ctx->decrypt = !encrypt;
280 
281 	if(!tab_gen)
282 		gen_tabs();
283 
284 	ctx->k_len = (key_len + 31) / 32;
285 
286 	e_key[0] = io_swap(in_key[0]); e_key[1] = io_swap(in_key[1]);
287 	e_key[2] = io_swap(in_key[2]); e_key[3] = io_swap(in_key[3]);
288 
289 	switch(ctx->k_len) {
290 	case 4: t = e_key[3];
291 		for(i = 0; i < 10; ++i)
292 			loop4(i);
293 		break;
294 
295 	case 6: e_key[4] = io_swap(in_key[4]); t = e_key[5] = io_swap(in_key[5]);
296 		for(i = 0; i < 8; ++i)
297 			loop6(i);
298 		break;
299 
300 	case 8: e_key[4] = io_swap(in_key[4]); e_key[5] = io_swap(in_key[5]);
301 		e_key[6] = io_swap(in_key[6]); t = e_key[7] = io_swap(in_key[7]);
302 		for(i = 0; i < 7; ++i)
303 			loop8(i);
304 		break;
305 	}
306 
307 	if (!encrypt) {
308 		d_key[0] = e_key[0]; d_key[1] = e_key[1];
309 		d_key[2] = e_key[2]; d_key[3] = e_key[3];
310 
311 		for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
312 			imix_col(d_key[i], e_key[i]);
313 		}
314 	}
315 
316 	return ctx;
317 }
318 
319 /* encrypt a block of text  */
320 
321 #define f_nround(bo, bi, k) \
322     f_rn(bo, bi, 0, k);     \
323     f_rn(bo, bi, 1, k);     \
324     f_rn(bo, bi, 2, k);     \
325     f_rn(bo, bi, 3, k);     \
326     k += 4
327 
328 #define f_lround(bo, bi, k) \
329     f_rl(bo, bi, 0, k);     \
330     f_rl(bo, bi, 1, k);     \
331     f_rl(bo, bi, 2, k);     \
332     f_rl(bo, bi, 3, k)
333 
334 void
335 rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
336 {
337 	u4byte k_len = ctx->k_len;
338 	u4byte *e_key = ctx->e_key;
339 	u4byte  b0[4], b1[4], *kp;
340 
341 	b0[0] = io_swap(in_blk[0]) ^ e_key[0];
342 	b0[1] = io_swap(in_blk[1]) ^ e_key[1];
343 	b0[2] = io_swap(in_blk[2]) ^ e_key[2];
344 	b0[3] = io_swap(in_blk[3]) ^ e_key[3];
345 
346 	kp = e_key + 4;
347 
348 	if(k_len > 6) {
349 		f_nround(b1, b0, kp); f_nround(b0, b1, kp);
350 	}
351 
352 	if(k_len > 4) {
353 		f_nround(b1, b0, kp); f_nround(b0, b1, kp);
354 	}
355 
356 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
357 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
358 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
359 	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
360 	f_nround(b1, b0, kp); f_lround(b0, b1, kp);
361 
362 	out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
363 	out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
364 }
365 
366 /* decrypt a block of text  */
367 
368 #define i_nround(bo, bi, k) \
369     i_rn(bo, bi, 0, k);     \
370     i_rn(bo, bi, 1, k);     \
371     i_rn(bo, bi, 2, k);     \
372     i_rn(bo, bi, 3, k);     \
373     k -= 4
374 
375 #define i_lround(bo, bi, k) \
376     i_rl(bo, bi, 0, k);     \
377     i_rl(bo, bi, 1, k);     \
378     i_rl(bo, bi, 2, k);     \
379     i_rl(bo, bi, 3, k)
380 
381 void
382 rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
383 {
384 	u4byte  b0[4], b1[4], *kp;
385 	u4byte k_len = ctx->k_len;
386 	u4byte *e_key = ctx->e_key;
387 	u4byte *d_key = ctx->d_key;
388 
389 	b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
390 	b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
391 	b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
392 	b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
393 
394 	kp = d_key + 4 * (k_len + 5);
395 
396 	if(k_len > 6) {
397 		i_nround(b1, b0, kp); i_nround(b0, b1, kp);
398 	}
399 
400 	if(k_len > 4) {
401 		i_nround(b1, b0, kp); i_nround(b0, b1, kp);
402 	}
403 
404 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
405 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
406 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
407 	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
408 	i_nround(b1, b0, kp); i_lround(b0, b1, kp);
409 
410 	out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
411 	out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
412 }
413