xref: /freebsd/crypto/openssh/openbsd-compat/sys-queue.h (revision e9b1dc32c9bd2ebae5f9e140bfa0e0321bc366b5)
1 /*	$OpenBSD: queue.h,v 1.36 2012/04/11 13:29:14 naddy Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 /* OPENBSD ORIGINAL: sys/sys/queue.h */
36 
37 #ifndef	_FAKE_QUEUE_H_
38 #define	_FAKE_QUEUE_H_
39 
40 /*
41  * Require for OS/X and other platforms that have old/broken/incomplete
42  * <sys/queue.h>.
43  */
44 #undef SLIST_HEAD
45 #undef SLIST_HEAD_INITIALIZER
46 #undef SLIST_ENTRY
47 #undef SLIST_FOREACH_PREVPTR
48 #undef SLIST_FOREACH_SAFE
49 #undef SLIST_FIRST
50 #undef SLIST_END
51 #undef SLIST_EMPTY
52 #undef SLIST_NEXT
53 #undef SLIST_FOREACH
54 #undef SLIST_INIT
55 #undef SLIST_INSERT_AFTER
56 #undef SLIST_INSERT_HEAD
57 #undef SLIST_REMOVE_HEAD
58 #undef SLIST_REMOVE_AFTER
59 #undef SLIST_REMOVE
60 #undef SLIST_REMOVE_NEXT
61 #undef LIST_HEAD
62 #undef LIST_HEAD_INITIALIZER
63 #undef LIST_ENTRY
64 #undef LIST_FIRST
65 #undef LIST_END
66 #undef LIST_EMPTY
67 #undef LIST_NEXT
68 #undef LIST_FOREACH
69 #undef LIST_FOREACH_SAFE
70 #undef LIST_INIT
71 #undef LIST_INSERT_AFTER
72 #undef LIST_INSERT_BEFORE
73 #undef LIST_INSERT_HEAD
74 #undef LIST_REMOVE
75 #undef LIST_REPLACE
76 #undef SIMPLEQ_HEAD
77 #undef SIMPLEQ_HEAD_INITIALIZER
78 #undef SIMPLEQ_ENTRY
79 #undef SIMPLEQ_FIRST
80 #undef SIMPLEQ_END
81 #undef SIMPLEQ_EMPTY
82 #undef SIMPLEQ_NEXT
83 #undef SIMPLEQ_FOREACH
84 #undef SIMPLEQ_INIT
85 #undef SIMPLEQ_INSERT_HEAD
86 #undef SIMPLEQ_INSERT_TAIL
87 #undef SIMPLEQ_INSERT_AFTER
88 #undef SIMPLEQ_REMOVE_HEAD
89 #undef TAILQ_HEAD
90 #undef TAILQ_HEAD_INITIALIZER
91 #undef TAILQ_ENTRY
92 #undef TAILQ_FIRST
93 #undef TAILQ_END
94 #undef TAILQ_NEXT
95 #undef TAILQ_LAST
96 #undef TAILQ_PREV
97 #undef TAILQ_EMPTY
98 #undef TAILQ_FOREACH
99 #undef TAILQ_FOREACH_REVERSE
100 #undef TAILQ_FOREACH_SAFE
101 #undef TAILQ_FOREACH_REVERSE_SAFE
102 #undef TAILQ_INIT
103 #undef TAILQ_INSERT_HEAD
104 #undef TAILQ_INSERT_TAIL
105 #undef TAILQ_INSERT_AFTER
106 #undef TAILQ_INSERT_BEFORE
107 #undef TAILQ_REMOVE
108 #undef TAILQ_REPLACE
109 #undef CIRCLEQ_HEAD
110 #undef CIRCLEQ_HEAD_INITIALIZER
111 #undef CIRCLEQ_ENTRY
112 #undef CIRCLEQ_FIRST
113 #undef CIRCLEQ_LAST
114 #undef CIRCLEQ_END
115 #undef CIRCLEQ_NEXT
116 #undef CIRCLEQ_PREV
117 #undef CIRCLEQ_EMPTY
118 #undef CIRCLEQ_FOREACH
119 #undef CIRCLEQ_FOREACH_REVERSE
120 #undef CIRCLEQ_INIT
121 #undef CIRCLEQ_INSERT_AFTER
122 #undef CIRCLEQ_INSERT_BEFORE
123 #undef CIRCLEQ_INSERT_HEAD
124 #undef CIRCLEQ_INSERT_TAIL
125 #undef CIRCLEQ_REMOVE
126 #undef CIRCLEQ_REPLACE
127 
128 /*
129  * This file defines five types of data structures: singly-linked lists,
130  * lists, simple queues, tail queues, and circular queues.
131  *
132  *
133  * A singly-linked list is headed by a single forward pointer. The elements
134  * are singly linked for minimum space and pointer manipulation overhead at
135  * the expense of O(n) removal for arbitrary elements. New elements can be
136  * added to the list after an existing element or at the head of the list.
137  * Elements being removed from the head of the list should use the explicit
138  * macro for this purpose for optimum efficiency. A singly-linked list may
139  * only be traversed in the forward direction.  Singly-linked lists are ideal
140  * for applications with large datasets and few or no removals or for
141  * implementing a LIFO queue.
142  *
143  * A list is headed by a single forward pointer (or an array of forward
144  * pointers for a hash table header). The elements are doubly linked
145  * so that an arbitrary element can be removed without a need to
146  * traverse the list. New elements can be added to the list before
147  * or after an existing element or at the head of the list. A list
148  * may only be traversed in the forward direction.
149  *
150  * A simple queue is headed by a pair of pointers, one the head of the
151  * list and the other to the tail of the list. The elements are singly
152  * linked to save space, so elements can only be removed from the
153  * head of the list. New elements can be added to the list before or after
154  * an existing element, at the head of the list, or at the end of the
155  * list. A simple queue may only be traversed in the forward direction.
156  *
157  * A tail queue is headed by a pair of pointers, one to the head of the
158  * list and the other to the tail of the list. The elements are doubly
159  * linked so that an arbitrary element can be removed without a need to
160  * traverse the list. New elements can be added to the list before or
161  * after an existing element, at the head of the list, or at the end of
162  * the list. A tail queue may be traversed in either direction.
163  *
164  * A circle queue is headed by a pair of pointers, one to the head of the
165  * list and the other to the tail of the list. The elements are doubly
166  * linked so that an arbitrary element can be removed without a need to
167  * traverse the list. New elements can be added to the list before or after
168  * an existing element, at the head of the list, or at the end of the list.
169  * A circle queue may be traversed in either direction, but has a more
170  * complex end of list detection.
171  *
172  * For details on the use of these macros, see the queue(3) manual page.
173  */
174 
175 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
176 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
177 #else
178 #define _Q_INVALIDATE(a)
179 #endif
180 
181 /*
182  * Singly-linked List definitions.
183  */
184 #define SLIST_HEAD(name, type)						\
185 struct name {								\
186 	struct type *slh_first;	/* first element */			\
187 }
188 
189 #define	SLIST_HEAD_INITIALIZER(head)					\
190 	{ NULL }
191 
192 #define SLIST_ENTRY(type)						\
193 struct {								\
194 	struct type *sle_next;	/* next element */			\
195 }
196 
197 /*
198  * Singly-linked List access methods.
199  */
200 #define	SLIST_FIRST(head)	((head)->slh_first)
201 #define	SLIST_END(head)		NULL
202 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
203 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
204 
205 #define	SLIST_FOREACH(var, head, field)					\
206 	for((var) = SLIST_FIRST(head);					\
207 	    (var) != SLIST_END(head);					\
208 	    (var) = SLIST_NEXT(var, field))
209 
210 #define	SLIST_FOREACH_SAFE(var, head, field, tvar)			\
211 	for ((var) = SLIST_FIRST(head);				\
212 	    (var) && ((tvar) = SLIST_NEXT(var, field), 1);		\
213 	    (var) = (tvar))
214 
215 /*
216  * Singly-linked List functions.
217  */
218 #define	SLIST_INIT(head) {						\
219 	SLIST_FIRST(head) = SLIST_END(head);				\
220 }
221 
222 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
223 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
224 	(slistelm)->field.sle_next = (elm);				\
225 } while (0)
226 
227 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
228 	(elm)->field.sle_next = (head)->slh_first;			\
229 	(head)->slh_first = (elm);					\
230 } while (0)
231 
232 #define	SLIST_REMOVE_AFTER(elm, field) do {				\
233 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
234 } while (0)
235 
236 #define	SLIST_REMOVE_HEAD(head, field) do {				\
237 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
238 } while (0)
239 
240 #define SLIST_REMOVE(head, elm, type, field) do {			\
241 	if ((head)->slh_first == (elm)) {				\
242 		SLIST_REMOVE_HEAD((head), field);			\
243 	} else {							\
244 		struct type *curelm = (head)->slh_first;		\
245 									\
246 		while (curelm->field.sle_next != (elm))			\
247 			curelm = curelm->field.sle_next;		\
248 		curelm->field.sle_next =				\
249 		    curelm->field.sle_next->field.sle_next;		\
250 		_Q_INVALIDATE((elm)->field.sle_next);			\
251 	}								\
252 } while (0)
253 
254 /*
255  * List definitions.
256  */
257 #define LIST_HEAD(name, type)						\
258 struct name {								\
259 	struct type *lh_first;	/* first element */			\
260 }
261 
262 #define LIST_HEAD_INITIALIZER(head)					\
263 	{ NULL }
264 
265 #define LIST_ENTRY(type)						\
266 struct {								\
267 	struct type *le_next;	/* next element */			\
268 	struct type **le_prev;	/* address of previous next element */	\
269 }
270 
271 /*
272  * List access methods
273  */
274 #define	LIST_FIRST(head)		((head)->lh_first)
275 #define	LIST_END(head)			NULL
276 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
277 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
278 
279 #define LIST_FOREACH(var, head, field)					\
280 	for((var) = LIST_FIRST(head);					\
281 	    (var)!= LIST_END(head);					\
282 	    (var) = LIST_NEXT(var, field))
283 
284 #define	LIST_FOREACH_SAFE(var, head, field, tvar)			\
285 	for ((var) = LIST_FIRST(head);				\
286 	    (var) && ((tvar) = LIST_NEXT(var, field), 1);		\
287 	    (var) = (tvar))
288 
289 /*
290  * List functions.
291  */
292 #define	LIST_INIT(head) do {						\
293 	LIST_FIRST(head) = LIST_END(head);				\
294 } while (0)
295 
296 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
297 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
298 		(listelm)->field.le_next->field.le_prev =		\
299 		    &(elm)->field.le_next;				\
300 	(listelm)->field.le_next = (elm);				\
301 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
302 } while (0)
303 
304 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
305 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
306 	(elm)->field.le_next = (listelm);				\
307 	*(listelm)->field.le_prev = (elm);				\
308 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
309 } while (0)
310 
311 #define LIST_INSERT_HEAD(head, elm, field) do {				\
312 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
313 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
314 	(head)->lh_first = (elm);					\
315 	(elm)->field.le_prev = &(head)->lh_first;			\
316 } while (0)
317 
318 #define LIST_REMOVE(elm, field) do {					\
319 	if ((elm)->field.le_next != NULL)				\
320 		(elm)->field.le_next->field.le_prev =			\
321 		    (elm)->field.le_prev;				\
322 	*(elm)->field.le_prev = (elm)->field.le_next;			\
323 	_Q_INVALIDATE((elm)->field.le_prev);				\
324 	_Q_INVALIDATE((elm)->field.le_next);				\
325 } while (0)
326 
327 #define LIST_REPLACE(elm, elm2, field) do {				\
328 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
329 		(elm2)->field.le_next->field.le_prev =			\
330 		    &(elm2)->field.le_next;				\
331 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
332 	*(elm2)->field.le_prev = (elm2);				\
333 	_Q_INVALIDATE((elm)->field.le_prev);				\
334 	_Q_INVALIDATE((elm)->field.le_next);				\
335 } while (0)
336 
337 /*
338  * Simple queue definitions.
339  */
340 #define SIMPLEQ_HEAD(name, type)					\
341 struct name {								\
342 	struct type *sqh_first;	/* first element */			\
343 	struct type **sqh_last;	/* addr of last next element */		\
344 }
345 
346 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
347 	{ NULL, &(head).sqh_first }
348 
349 #define SIMPLEQ_ENTRY(type)						\
350 struct {								\
351 	struct type *sqe_next;	/* next element */			\
352 }
353 
354 /*
355  * Simple queue access methods.
356  */
357 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
358 #define	SIMPLEQ_END(head)	    NULL
359 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
360 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
361 
362 #define SIMPLEQ_FOREACH(var, head, field)				\
363 	for((var) = SIMPLEQ_FIRST(head);				\
364 	    (var) != SIMPLEQ_END(head);					\
365 	    (var) = SIMPLEQ_NEXT(var, field))
366 
367 #define	SIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
368 	for ((var) = SIMPLEQ_FIRST(head);				\
369 	    (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1);		\
370 	    (var) = (tvar))
371 
372 /*
373  * Simple queue functions.
374  */
375 #define	SIMPLEQ_INIT(head) do {						\
376 	(head)->sqh_first = NULL;					\
377 	(head)->sqh_last = &(head)->sqh_first;				\
378 } while (0)
379 
380 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
381 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
382 		(head)->sqh_last = &(elm)->field.sqe_next;		\
383 	(head)->sqh_first = (elm);					\
384 } while (0)
385 
386 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
387 	(elm)->field.sqe_next = NULL;					\
388 	*(head)->sqh_last = (elm);					\
389 	(head)->sqh_last = &(elm)->field.sqe_next;			\
390 } while (0)
391 
392 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
393 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
394 		(head)->sqh_last = &(elm)->field.sqe_next;		\
395 	(listelm)->field.sqe_next = (elm);				\
396 } while (0)
397 
398 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
399 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
400 		(head)->sqh_last = &(head)->sqh_first;			\
401 } while (0)
402 
403 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
404 	if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
405 	    == NULL)							\
406 		(head)->sqh_last = &(elm)->field.sqe_next;		\
407 } while (0)
408 
409 /*
410  * Tail queue definitions.
411  */
412 #define TAILQ_HEAD(name, type)						\
413 struct name {								\
414 	struct type *tqh_first;	/* first element */			\
415 	struct type **tqh_last;	/* addr of last next element */		\
416 }
417 
418 #define TAILQ_HEAD_INITIALIZER(head)					\
419 	{ NULL, &(head).tqh_first }
420 
421 #define TAILQ_ENTRY(type)						\
422 struct {								\
423 	struct type *tqe_next;	/* next element */			\
424 	struct type **tqe_prev;	/* address of previous next element */	\
425 }
426 
427 /*
428  * tail queue access methods
429  */
430 #define	TAILQ_FIRST(head)		((head)->tqh_first)
431 #define	TAILQ_END(head)			NULL
432 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
433 #define TAILQ_LAST(head, headname)					\
434 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
435 /* XXX */
436 #define TAILQ_PREV(elm, headname, field)				\
437 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
438 #define	TAILQ_EMPTY(head)						\
439 	(TAILQ_FIRST(head) == TAILQ_END(head))
440 
441 #define TAILQ_FOREACH(var, head, field)					\
442 	for((var) = TAILQ_FIRST(head);					\
443 	    (var) != TAILQ_END(head);					\
444 	    (var) = TAILQ_NEXT(var, field))
445 
446 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
447 	for ((var) = TAILQ_FIRST(head);					\
448 	    (var) != TAILQ_END(head) &&					\
449 	    ((tvar) = TAILQ_NEXT(var, field), 1);			\
450 	    (var) = (tvar))
451 
452 
453 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
454 	for((var) = TAILQ_LAST(head, headname);				\
455 	    (var) != TAILQ_END(head);					\
456 	    (var) = TAILQ_PREV(var, headname, field))
457 
458 #define	TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
459 	for ((var) = TAILQ_LAST(head, headname);			\
460 	    (var) != TAILQ_END(head) &&					\
461 	    ((tvar) = TAILQ_PREV(var, headname, field), 1);		\
462 	    (var) = (tvar))
463 
464 /*
465  * Tail queue functions.
466  */
467 #define	TAILQ_INIT(head) do {						\
468 	(head)->tqh_first = NULL;					\
469 	(head)->tqh_last = &(head)->tqh_first;				\
470 } while (0)
471 
472 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
473 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
474 		(head)->tqh_first->field.tqe_prev =			\
475 		    &(elm)->field.tqe_next;				\
476 	else								\
477 		(head)->tqh_last = &(elm)->field.tqe_next;		\
478 	(head)->tqh_first = (elm);					\
479 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
480 } while (0)
481 
482 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
483 	(elm)->field.tqe_next = NULL;					\
484 	(elm)->field.tqe_prev = (head)->tqh_last;			\
485 	*(head)->tqh_last = (elm);					\
486 	(head)->tqh_last = &(elm)->field.tqe_next;			\
487 } while (0)
488 
489 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
490 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
491 		(elm)->field.tqe_next->field.tqe_prev =			\
492 		    &(elm)->field.tqe_next;				\
493 	else								\
494 		(head)->tqh_last = &(elm)->field.tqe_next;		\
495 	(listelm)->field.tqe_next = (elm);				\
496 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
497 } while (0)
498 
499 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
500 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
501 	(elm)->field.tqe_next = (listelm);				\
502 	*(listelm)->field.tqe_prev = (elm);				\
503 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
504 } while (0)
505 
506 #define TAILQ_REMOVE(head, elm, field) do {				\
507 	if (((elm)->field.tqe_next) != NULL)				\
508 		(elm)->field.tqe_next->field.tqe_prev =			\
509 		    (elm)->field.tqe_prev;				\
510 	else								\
511 		(head)->tqh_last = (elm)->field.tqe_prev;		\
512 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
513 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
514 	_Q_INVALIDATE((elm)->field.tqe_next);				\
515 } while (0)
516 
517 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
518 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
519 		(elm2)->field.tqe_next->field.tqe_prev =		\
520 		    &(elm2)->field.tqe_next;				\
521 	else								\
522 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
523 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
524 	*(elm2)->field.tqe_prev = (elm2);				\
525 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
526 	_Q_INVALIDATE((elm)->field.tqe_next);				\
527 } while (0)
528 
529 /*
530  * Circular queue definitions.
531  */
532 #define CIRCLEQ_HEAD(name, type)					\
533 struct name {								\
534 	struct type *cqh_first;		/* first element */		\
535 	struct type *cqh_last;		/* last element */		\
536 }
537 
538 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
539 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
540 
541 #define CIRCLEQ_ENTRY(type)						\
542 struct {								\
543 	struct type *cqe_next;		/* next element */		\
544 	struct type *cqe_prev;		/* previous element */		\
545 }
546 
547 /*
548  * Circular queue access methods
549  */
550 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
551 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
552 #define	CIRCLEQ_END(head)		((void *)(head))
553 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
554 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
555 #define	CIRCLEQ_EMPTY(head)						\
556 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
557 
558 #define CIRCLEQ_FOREACH(var, head, field)				\
559 	for((var) = CIRCLEQ_FIRST(head);				\
560 	    (var) != CIRCLEQ_END(head);					\
561 	    (var) = CIRCLEQ_NEXT(var, field))
562 
563 #define	CIRCLEQ_FOREACH_SAFE(var, head, field, tvar)			\
564 	for ((var) = CIRCLEQ_FIRST(head);				\
565 	    (var) != CIRCLEQ_END(head) &&				\
566 	    ((tvar) = CIRCLEQ_NEXT(var, field), 1);			\
567 	    (var) = (tvar))
568 
569 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
570 	for((var) = CIRCLEQ_LAST(head);					\
571 	    (var) != CIRCLEQ_END(head);					\
572 	    (var) = CIRCLEQ_PREV(var, field))
573 
574 #define	CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
575 	for ((var) = CIRCLEQ_LAST(head, headname);			\
576 	    (var) != CIRCLEQ_END(head) && 				\
577 	    ((tvar) = CIRCLEQ_PREV(var, headname, field), 1);		\
578 	    (var) = (tvar))
579 
580 /*
581  * Circular queue functions.
582  */
583 #define	CIRCLEQ_INIT(head) do {						\
584 	(head)->cqh_first = CIRCLEQ_END(head);				\
585 	(head)->cqh_last = CIRCLEQ_END(head);				\
586 } while (0)
587 
588 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
589 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
590 	(elm)->field.cqe_prev = (listelm);				\
591 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
592 		(head)->cqh_last = (elm);				\
593 	else								\
594 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
595 	(listelm)->field.cqe_next = (elm);				\
596 } while (0)
597 
598 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
599 	(elm)->field.cqe_next = (listelm);				\
600 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
601 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
602 		(head)->cqh_first = (elm);				\
603 	else								\
604 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
605 	(listelm)->field.cqe_prev = (elm);				\
606 } while (0)
607 
608 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
609 	(elm)->field.cqe_next = (head)->cqh_first;			\
610 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
611 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
612 		(head)->cqh_last = (elm);				\
613 	else								\
614 		(head)->cqh_first->field.cqe_prev = (elm);		\
615 	(head)->cqh_first = (elm);					\
616 } while (0)
617 
618 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
619 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
620 	(elm)->field.cqe_prev = (head)->cqh_last;			\
621 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
622 		(head)->cqh_first = (elm);				\
623 	else								\
624 		(head)->cqh_last->field.cqe_next = (elm);		\
625 	(head)->cqh_last = (elm);					\
626 } while (0)
627 
628 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
629 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
630 		(head)->cqh_last = (elm)->field.cqe_prev;		\
631 	else								\
632 		(elm)->field.cqe_next->field.cqe_prev =			\
633 		    (elm)->field.cqe_prev;				\
634 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
635 		(head)->cqh_first = (elm)->field.cqe_next;		\
636 	else								\
637 		(elm)->field.cqe_prev->field.cqe_next =			\
638 		    (elm)->field.cqe_next;				\
639 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
640 	_Q_INVALIDATE((elm)->field.cqe_next);				\
641 } while (0)
642 
643 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
644 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
645 	    CIRCLEQ_END(head))						\
646 		(head).cqh_last = (elm2);				\
647 	else								\
648 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
649 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
650 	    CIRCLEQ_END(head))						\
651 		(head).cqh_first = (elm2);				\
652 	else								\
653 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
654 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
655 	_Q_INVALIDATE((elm)->field.cqe_next);				\
656 } while (0)
657 
658 #endif	/* !_FAKE_QUEUE_H_ */
659