xref: /freebsd/crypto/openssh/openbsd-compat/sys-queue.h (revision 7d99ab9fd0cc2c1ce2ecef0ed6d0672c2a50b0cb)
1 /*	$OpenBSD: queue.h,v 1.36 2012/04/11 13:29:14 naddy Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 /* OPENBSD ORIGINAL: sys/sys/queue.h */
36 
37 #ifndef	_FAKE_QUEUE_H_
38 #define	_FAKE_QUEUE_H_
39 
40 /*
41  * Require for OS/X and other platforms that have old/broken/incomplete
42  * <sys/queue.h>.
43  */
44 #undef SLIST_HEAD
45 #undef SLIST_HEAD_INITIALIZER
46 #undef SLIST_ENTRY
47 #undef SLIST_FOREACH_PREVPTR
48 #undef SLIST_FIRST
49 #undef SLIST_END
50 #undef SLIST_EMPTY
51 #undef SLIST_NEXT
52 #undef SLIST_FOREACH
53 #undef SLIST_INIT
54 #undef SLIST_INSERT_AFTER
55 #undef SLIST_INSERT_HEAD
56 #undef SLIST_REMOVE_HEAD
57 #undef SLIST_REMOVE
58 #undef SLIST_REMOVE_NEXT
59 #undef LIST_HEAD
60 #undef LIST_HEAD_INITIALIZER
61 #undef LIST_ENTRY
62 #undef LIST_FIRST
63 #undef LIST_END
64 #undef LIST_EMPTY
65 #undef LIST_NEXT
66 #undef LIST_FOREACH
67 #undef LIST_INIT
68 #undef LIST_INSERT_AFTER
69 #undef LIST_INSERT_BEFORE
70 #undef LIST_INSERT_HEAD
71 #undef LIST_REMOVE
72 #undef LIST_REPLACE
73 #undef SIMPLEQ_HEAD
74 #undef SIMPLEQ_HEAD_INITIALIZER
75 #undef SIMPLEQ_ENTRY
76 #undef SIMPLEQ_FIRST
77 #undef SIMPLEQ_END
78 #undef SIMPLEQ_EMPTY
79 #undef SIMPLEQ_NEXT
80 #undef SIMPLEQ_FOREACH
81 #undef SIMPLEQ_INIT
82 #undef SIMPLEQ_INSERT_HEAD
83 #undef SIMPLEQ_INSERT_TAIL
84 #undef SIMPLEQ_INSERT_AFTER
85 #undef SIMPLEQ_REMOVE_HEAD
86 #undef TAILQ_HEAD
87 #undef TAILQ_HEAD_INITIALIZER
88 #undef TAILQ_ENTRY
89 #undef TAILQ_FIRST
90 #undef TAILQ_END
91 #undef TAILQ_NEXT
92 #undef TAILQ_LAST
93 #undef TAILQ_PREV
94 #undef TAILQ_EMPTY
95 #undef TAILQ_FOREACH
96 #undef TAILQ_FOREACH_REVERSE
97 #undef TAILQ_INIT
98 #undef TAILQ_INSERT_HEAD
99 #undef TAILQ_INSERT_TAIL
100 #undef TAILQ_INSERT_AFTER
101 #undef TAILQ_INSERT_BEFORE
102 #undef TAILQ_REMOVE
103 #undef TAILQ_REPLACE
104 #undef CIRCLEQ_HEAD
105 #undef CIRCLEQ_HEAD_INITIALIZER
106 #undef CIRCLEQ_ENTRY
107 #undef CIRCLEQ_FIRST
108 #undef CIRCLEQ_LAST
109 #undef CIRCLEQ_END
110 #undef CIRCLEQ_NEXT
111 #undef CIRCLEQ_PREV
112 #undef CIRCLEQ_EMPTY
113 #undef CIRCLEQ_FOREACH
114 #undef CIRCLEQ_FOREACH_REVERSE
115 #undef CIRCLEQ_INIT
116 #undef CIRCLEQ_INSERT_AFTER
117 #undef CIRCLEQ_INSERT_BEFORE
118 #undef CIRCLEQ_INSERT_HEAD
119 #undef CIRCLEQ_INSERT_TAIL
120 #undef CIRCLEQ_REMOVE
121 #undef CIRCLEQ_REPLACE
122 
123 /*
124  * This file defines five types of data structures: singly-linked lists,
125  * lists, simple queues, tail queues, and circular queues.
126  *
127  *
128  * A singly-linked list is headed by a single forward pointer. The elements
129  * are singly linked for minimum space and pointer manipulation overhead at
130  * the expense of O(n) removal for arbitrary elements. New elements can be
131  * added to the list after an existing element or at the head of the list.
132  * Elements being removed from the head of the list should use the explicit
133  * macro for this purpose for optimum efficiency. A singly-linked list may
134  * only be traversed in the forward direction.  Singly-linked lists are ideal
135  * for applications with large datasets and few or no removals or for
136  * implementing a LIFO queue.
137  *
138  * A list is headed by a single forward pointer (or an array of forward
139  * pointers for a hash table header). The elements are doubly linked
140  * so that an arbitrary element can be removed without a need to
141  * traverse the list. New elements can be added to the list before
142  * or after an existing element or at the head of the list. A list
143  * may only be traversed in the forward direction.
144  *
145  * A simple queue is headed by a pair of pointers, one the head of the
146  * list and the other to the tail of the list. The elements are singly
147  * linked to save space, so elements can only be removed from the
148  * head of the list. New elements can be added to the list before or after
149  * an existing element, at the head of the list, or at the end of the
150  * list. A simple queue may only be traversed in the forward direction.
151  *
152  * A tail queue is headed by a pair of pointers, one to the head of the
153  * list and the other to the tail of the list. The elements are doubly
154  * linked so that an arbitrary element can be removed without a need to
155  * traverse the list. New elements can be added to the list before or
156  * after an existing element, at the head of the list, or at the end of
157  * the list. A tail queue may be traversed in either direction.
158  *
159  * A circle queue is headed by a pair of pointers, one to the head of the
160  * list and the other to the tail of the list. The elements are doubly
161  * linked so that an arbitrary element can be removed without a need to
162  * traverse the list. New elements can be added to the list before or after
163  * an existing element, at the head of the list, or at the end of the list.
164  * A circle queue may be traversed in either direction, but has a more
165  * complex end of list detection.
166  *
167  * For details on the use of these macros, see the queue(3) manual page.
168  */
169 
170 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
171 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
172 #else
173 #define _Q_INVALIDATE(a)
174 #endif
175 
176 /*
177  * Singly-linked List definitions.
178  */
179 #define SLIST_HEAD(name, type)						\
180 struct name {								\
181 	struct type *slh_first;	/* first element */			\
182 }
183 
184 #define	SLIST_HEAD_INITIALIZER(head)					\
185 	{ NULL }
186 
187 #define SLIST_ENTRY(type)						\
188 struct {								\
189 	struct type *sle_next;	/* next element */			\
190 }
191 
192 /*
193  * Singly-linked List access methods.
194  */
195 #define	SLIST_FIRST(head)	((head)->slh_first)
196 #define	SLIST_END(head)		NULL
197 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
198 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
199 
200 #define	SLIST_FOREACH(var, head, field)					\
201 	for((var) = SLIST_FIRST(head);					\
202 	    (var) != SLIST_END(head);					\
203 	    (var) = SLIST_NEXT(var, field))
204 
205 #define	SLIST_FOREACH_SAFE(var, head, field, tvar)			\
206 	for ((var) = SLIST_FIRST(head);				\
207 	    (var) && ((tvar) = SLIST_NEXT(var, field), 1);		\
208 	    (var) = (tvar))
209 
210 /*
211  * Singly-linked List functions.
212  */
213 #define	SLIST_INIT(head) {						\
214 	SLIST_FIRST(head) = SLIST_END(head);				\
215 }
216 
217 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
218 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
219 	(slistelm)->field.sle_next = (elm);				\
220 } while (0)
221 
222 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
223 	(elm)->field.sle_next = (head)->slh_first;			\
224 	(head)->slh_first = (elm);					\
225 } while (0)
226 
227 #define	SLIST_REMOVE_AFTER(elm, field) do {				\
228 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
229 } while (0)
230 
231 #define	SLIST_REMOVE_HEAD(head, field) do {				\
232 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
233 } while (0)
234 
235 #define SLIST_REMOVE(head, elm, type, field) do {			\
236 	if ((head)->slh_first == (elm)) {				\
237 		SLIST_REMOVE_HEAD((head), field);			\
238 	} else {							\
239 		struct type *curelm = (head)->slh_first;		\
240 									\
241 		while (curelm->field.sle_next != (elm))			\
242 			curelm = curelm->field.sle_next;		\
243 		curelm->field.sle_next =				\
244 		    curelm->field.sle_next->field.sle_next;		\
245 		_Q_INVALIDATE((elm)->field.sle_next);			\
246 	}								\
247 } while (0)
248 
249 /*
250  * List definitions.
251  */
252 #define LIST_HEAD(name, type)						\
253 struct name {								\
254 	struct type *lh_first;	/* first element */			\
255 }
256 
257 #define LIST_HEAD_INITIALIZER(head)					\
258 	{ NULL }
259 
260 #define LIST_ENTRY(type)						\
261 struct {								\
262 	struct type *le_next;	/* next element */			\
263 	struct type **le_prev;	/* address of previous next element */	\
264 }
265 
266 /*
267  * List access methods
268  */
269 #define	LIST_FIRST(head)		((head)->lh_first)
270 #define	LIST_END(head)			NULL
271 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
272 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
273 
274 #define LIST_FOREACH(var, head, field)					\
275 	for((var) = LIST_FIRST(head);					\
276 	    (var)!= LIST_END(head);					\
277 	    (var) = LIST_NEXT(var, field))
278 
279 #define	LIST_FOREACH_SAFE(var, head, field, tvar)			\
280 	for ((var) = LIST_FIRST(head);				\
281 	    (var) && ((tvar) = LIST_NEXT(var, field), 1);		\
282 	    (var) = (tvar))
283 
284 /*
285  * List functions.
286  */
287 #define	LIST_INIT(head) do {						\
288 	LIST_FIRST(head) = LIST_END(head);				\
289 } while (0)
290 
291 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
292 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
293 		(listelm)->field.le_next->field.le_prev =		\
294 		    &(elm)->field.le_next;				\
295 	(listelm)->field.le_next = (elm);				\
296 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
297 } while (0)
298 
299 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
300 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
301 	(elm)->field.le_next = (listelm);				\
302 	*(listelm)->field.le_prev = (elm);				\
303 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
304 } while (0)
305 
306 #define LIST_INSERT_HEAD(head, elm, field) do {				\
307 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
308 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
309 	(head)->lh_first = (elm);					\
310 	(elm)->field.le_prev = &(head)->lh_first;			\
311 } while (0)
312 
313 #define LIST_REMOVE(elm, field) do {					\
314 	if ((elm)->field.le_next != NULL)				\
315 		(elm)->field.le_next->field.le_prev =			\
316 		    (elm)->field.le_prev;				\
317 	*(elm)->field.le_prev = (elm)->field.le_next;			\
318 	_Q_INVALIDATE((elm)->field.le_prev);				\
319 	_Q_INVALIDATE((elm)->field.le_next);				\
320 } while (0)
321 
322 #define LIST_REPLACE(elm, elm2, field) do {				\
323 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
324 		(elm2)->field.le_next->field.le_prev =			\
325 		    &(elm2)->field.le_next;				\
326 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
327 	*(elm2)->field.le_prev = (elm2);				\
328 	_Q_INVALIDATE((elm)->field.le_prev);				\
329 	_Q_INVALIDATE((elm)->field.le_next);				\
330 } while (0)
331 
332 /*
333  * Simple queue definitions.
334  */
335 #define SIMPLEQ_HEAD(name, type)					\
336 struct name {								\
337 	struct type *sqh_first;	/* first element */			\
338 	struct type **sqh_last;	/* addr of last next element */		\
339 }
340 
341 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
342 	{ NULL, &(head).sqh_first }
343 
344 #define SIMPLEQ_ENTRY(type)						\
345 struct {								\
346 	struct type *sqe_next;	/* next element */			\
347 }
348 
349 /*
350  * Simple queue access methods.
351  */
352 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
353 #define	SIMPLEQ_END(head)	    NULL
354 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
355 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
356 
357 #define SIMPLEQ_FOREACH(var, head, field)				\
358 	for((var) = SIMPLEQ_FIRST(head);				\
359 	    (var) != SIMPLEQ_END(head);					\
360 	    (var) = SIMPLEQ_NEXT(var, field))
361 
362 #define	SIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
363 	for ((var) = SIMPLEQ_FIRST(head);				\
364 	    (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1);		\
365 	    (var) = (tvar))
366 
367 /*
368  * Simple queue functions.
369  */
370 #define	SIMPLEQ_INIT(head) do {						\
371 	(head)->sqh_first = NULL;					\
372 	(head)->sqh_last = &(head)->sqh_first;				\
373 } while (0)
374 
375 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
376 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
377 		(head)->sqh_last = &(elm)->field.sqe_next;		\
378 	(head)->sqh_first = (elm);					\
379 } while (0)
380 
381 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
382 	(elm)->field.sqe_next = NULL;					\
383 	*(head)->sqh_last = (elm);					\
384 	(head)->sqh_last = &(elm)->field.sqe_next;			\
385 } while (0)
386 
387 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
388 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
389 		(head)->sqh_last = &(elm)->field.sqe_next;		\
390 	(listelm)->field.sqe_next = (elm);				\
391 } while (0)
392 
393 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
394 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
395 		(head)->sqh_last = &(head)->sqh_first;			\
396 } while (0)
397 
398 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
399 	if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
400 	    == NULL)							\
401 		(head)->sqh_last = &(elm)->field.sqe_next;		\
402 } while (0)
403 
404 /*
405  * Tail queue definitions.
406  */
407 #define TAILQ_HEAD(name, type)						\
408 struct name {								\
409 	struct type *tqh_first;	/* first element */			\
410 	struct type **tqh_last;	/* addr of last next element */		\
411 }
412 
413 #define TAILQ_HEAD_INITIALIZER(head)					\
414 	{ NULL, &(head).tqh_first }
415 
416 #define TAILQ_ENTRY(type)						\
417 struct {								\
418 	struct type *tqe_next;	/* next element */			\
419 	struct type **tqe_prev;	/* address of previous next element */	\
420 }
421 
422 /*
423  * tail queue access methods
424  */
425 #define	TAILQ_FIRST(head)		((head)->tqh_first)
426 #define	TAILQ_END(head)			NULL
427 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
428 #define TAILQ_LAST(head, headname)					\
429 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
430 /* XXX */
431 #define TAILQ_PREV(elm, headname, field)				\
432 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
433 #define	TAILQ_EMPTY(head)						\
434 	(TAILQ_FIRST(head) == TAILQ_END(head))
435 
436 #define TAILQ_FOREACH(var, head, field)					\
437 	for((var) = TAILQ_FIRST(head);					\
438 	    (var) != TAILQ_END(head);					\
439 	    (var) = TAILQ_NEXT(var, field))
440 
441 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
442 	for ((var) = TAILQ_FIRST(head);					\
443 	    (var) != TAILQ_END(head) &&					\
444 	    ((tvar) = TAILQ_NEXT(var, field), 1);			\
445 	    (var) = (tvar))
446 
447 
448 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
449 	for((var) = TAILQ_LAST(head, headname);				\
450 	    (var) != TAILQ_END(head);					\
451 	    (var) = TAILQ_PREV(var, headname, field))
452 
453 #define	TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
454 	for ((var) = TAILQ_LAST(head, headname);			\
455 	    (var) != TAILQ_END(head) &&					\
456 	    ((tvar) = TAILQ_PREV(var, headname, field), 1);		\
457 	    (var) = (tvar))
458 
459 /*
460  * Tail queue functions.
461  */
462 #define	TAILQ_INIT(head) do {						\
463 	(head)->tqh_first = NULL;					\
464 	(head)->tqh_last = &(head)->tqh_first;				\
465 } while (0)
466 
467 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
468 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
469 		(head)->tqh_first->field.tqe_prev =			\
470 		    &(elm)->field.tqe_next;				\
471 	else								\
472 		(head)->tqh_last = &(elm)->field.tqe_next;		\
473 	(head)->tqh_first = (elm);					\
474 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
475 } while (0)
476 
477 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
478 	(elm)->field.tqe_next = NULL;					\
479 	(elm)->field.tqe_prev = (head)->tqh_last;			\
480 	*(head)->tqh_last = (elm);					\
481 	(head)->tqh_last = &(elm)->field.tqe_next;			\
482 } while (0)
483 
484 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
485 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
486 		(elm)->field.tqe_next->field.tqe_prev =			\
487 		    &(elm)->field.tqe_next;				\
488 	else								\
489 		(head)->tqh_last = &(elm)->field.tqe_next;		\
490 	(listelm)->field.tqe_next = (elm);				\
491 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
492 } while (0)
493 
494 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
495 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
496 	(elm)->field.tqe_next = (listelm);				\
497 	*(listelm)->field.tqe_prev = (elm);				\
498 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
499 } while (0)
500 
501 #define TAILQ_REMOVE(head, elm, field) do {				\
502 	if (((elm)->field.tqe_next) != NULL)				\
503 		(elm)->field.tqe_next->field.tqe_prev =			\
504 		    (elm)->field.tqe_prev;				\
505 	else								\
506 		(head)->tqh_last = (elm)->field.tqe_prev;		\
507 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
508 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
509 	_Q_INVALIDATE((elm)->field.tqe_next);				\
510 } while (0)
511 
512 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
513 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
514 		(elm2)->field.tqe_next->field.tqe_prev =		\
515 		    &(elm2)->field.tqe_next;				\
516 	else								\
517 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
518 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
519 	*(elm2)->field.tqe_prev = (elm2);				\
520 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
521 	_Q_INVALIDATE((elm)->field.tqe_next);				\
522 } while (0)
523 
524 /*
525  * Circular queue definitions.
526  */
527 #define CIRCLEQ_HEAD(name, type)					\
528 struct name {								\
529 	struct type *cqh_first;		/* first element */		\
530 	struct type *cqh_last;		/* last element */		\
531 }
532 
533 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
534 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
535 
536 #define CIRCLEQ_ENTRY(type)						\
537 struct {								\
538 	struct type *cqe_next;		/* next element */		\
539 	struct type *cqe_prev;		/* previous element */		\
540 }
541 
542 /*
543  * Circular queue access methods
544  */
545 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
546 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
547 #define	CIRCLEQ_END(head)		((void *)(head))
548 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
549 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
550 #define	CIRCLEQ_EMPTY(head)						\
551 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
552 
553 #define CIRCLEQ_FOREACH(var, head, field)				\
554 	for((var) = CIRCLEQ_FIRST(head);				\
555 	    (var) != CIRCLEQ_END(head);					\
556 	    (var) = CIRCLEQ_NEXT(var, field))
557 
558 #define	CIRCLEQ_FOREACH_SAFE(var, head, field, tvar)			\
559 	for ((var) = CIRCLEQ_FIRST(head);				\
560 	    (var) != CIRCLEQ_END(head) &&				\
561 	    ((tvar) = CIRCLEQ_NEXT(var, field), 1);			\
562 	    (var) = (tvar))
563 
564 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
565 	for((var) = CIRCLEQ_LAST(head);					\
566 	    (var) != CIRCLEQ_END(head);					\
567 	    (var) = CIRCLEQ_PREV(var, field))
568 
569 #define	CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
570 	for ((var) = CIRCLEQ_LAST(head, headname);			\
571 	    (var) != CIRCLEQ_END(head) && 				\
572 	    ((tvar) = CIRCLEQ_PREV(var, headname, field), 1);		\
573 	    (var) = (tvar))
574 
575 /*
576  * Circular queue functions.
577  */
578 #define	CIRCLEQ_INIT(head) do {						\
579 	(head)->cqh_first = CIRCLEQ_END(head);				\
580 	(head)->cqh_last = CIRCLEQ_END(head);				\
581 } while (0)
582 
583 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
584 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
585 	(elm)->field.cqe_prev = (listelm);				\
586 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
587 		(head)->cqh_last = (elm);				\
588 	else								\
589 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
590 	(listelm)->field.cqe_next = (elm);				\
591 } while (0)
592 
593 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
594 	(elm)->field.cqe_next = (listelm);				\
595 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
596 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
597 		(head)->cqh_first = (elm);				\
598 	else								\
599 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
600 	(listelm)->field.cqe_prev = (elm);				\
601 } while (0)
602 
603 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
604 	(elm)->field.cqe_next = (head)->cqh_first;			\
605 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
606 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
607 		(head)->cqh_last = (elm);				\
608 	else								\
609 		(head)->cqh_first->field.cqe_prev = (elm);		\
610 	(head)->cqh_first = (elm);					\
611 } while (0)
612 
613 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
614 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
615 	(elm)->field.cqe_prev = (head)->cqh_last;			\
616 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
617 		(head)->cqh_first = (elm);				\
618 	else								\
619 		(head)->cqh_last->field.cqe_next = (elm);		\
620 	(head)->cqh_last = (elm);					\
621 } while (0)
622 
623 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
624 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
625 		(head)->cqh_last = (elm)->field.cqe_prev;		\
626 	else								\
627 		(elm)->field.cqe_next->field.cqe_prev =			\
628 		    (elm)->field.cqe_prev;				\
629 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
630 		(head)->cqh_first = (elm)->field.cqe_next;		\
631 	else								\
632 		(elm)->field.cqe_prev->field.cqe_next =			\
633 		    (elm)->field.cqe_next;				\
634 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
635 	_Q_INVALIDATE((elm)->field.cqe_next);				\
636 } while (0)
637 
638 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
639 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
640 	    CIRCLEQ_END(head))						\
641 		(head).cqh_last = (elm2);				\
642 	else								\
643 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
644 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
645 	    CIRCLEQ_END(head))						\
646 		(head).cqh_first = (elm2);				\
647 	else								\
648 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
649 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
650 	_Q_INVALIDATE((elm)->field.cqe_next);				\
651 } while (0)
652 
653 #endif	/* !_FAKE_QUEUE_H_ */
654