xref: /freebsd/crypto/openssh/openbsd-compat/sys-queue.h (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*	$OpenBSD: queue.h,v 1.22 2001/06/23 04:39:35 angelos Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
37  */
38 
39 #ifndef	_FAKE_QUEUE_H_
40 #define	_FAKE_QUEUE_H_
41 
42 /*
43  * Ignore all <sys/queue.h> since older platforms have broken/incomplete
44  * <sys/queue.h> that are too hard to work around.
45  */
46 #undef SLIST_HEAD
47 #undef SLIST_HEAD_INITIALIZER
48 #undef SLIST_ENTRY
49 #undef SLIST_FIRST
50 #undef SLIST_END
51 #undef SLIST_EMPTY
52 #undef SLIST_NEXT
53 #undef SLIST_FOREACH
54 #undef SLIST_INIT
55 #undef SLIST_INSERT_AFTER
56 #undef SLIST_INSERT_HEAD
57 #undef SLIST_REMOVE_HEAD
58 #undef SLIST_REMOVE
59 #undef LIST_HEAD
60 #undef LIST_HEAD_INITIALIZER
61 #undef LIST_ENTRY
62 #undef LIST_FIRST
63 #undef LIST_END
64 #undef LIST_EMPTY
65 #undef LIST_NEXT
66 #undef LIST_FOREACH
67 #undef LIST_INIT
68 #undef LIST_INSERT_AFTER
69 #undef LIST_INSERT_BEFORE
70 #undef LIST_INSERT_HEAD
71 #undef LIST_REMOVE
72 #undef LIST_REPLACE
73 #undef SIMPLEQ_HEAD
74 #undef SIMPLEQ_HEAD_INITIALIZER
75 #undef SIMPLEQ_ENTRY
76 #undef SIMPLEQ_FIRST
77 #undef SIMPLEQ_END
78 #undef SIMPLEQ_EMPTY
79 #undef SIMPLEQ_NEXT
80 #undef SIMPLEQ_FOREACH
81 #undef SIMPLEQ_INIT
82 #undef SIMPLEQ_INSERT_HEAD
83 #undef SIMPLEQ_INSERT_TAIL
84 #undef SIMPLEQ_INSERT_AFTER
85 #undef SIMPLEQ_REMOVE_HEAD
86 #undef TAILQ_HEAD
87 #undef TAILQ_HEAD_INITIALIZER
88 #undef TAILQ_ENTRY
89 #undef TAILQ_FIRST
90 #undef TAILQ_END
91 #undef TAILQ_NEXT
92 #undef TAILQ_LAST
93 #undef TAILQ_PREV
94 #undef TAILQ_EMPTY
95 #undef TAILQ_FOREACH
96 #undef TAILQ_FOREACH_REVERSE
97 #undef TAILQ_INIT
98 #undef TAILQ_INSERT_HEAD
99 #undef TAILQ_INSERT_TAIL
100 #undef TAILQ_INSERT_AFTER
101 #undef TAILQ_INSERT_BEFORE
102 #undef TAILQ_REMOVE
103 #undef TAILQ_REPLACE
104 #undef CIRCLEQ_HEAD
105 #undef CIRCLEQ_HEAD_INITIALIZER
106 #undef CIRCLEQ_ENTRY
107 #undef CIRCLEQ_FIRST
108 #undef CIRCLEQ_LAST
109 #undef CIRCLEQ_END
110 #undef CIRCLEQ_NEXT
111 #undef CIRCLEQ_PREV
112 #undef CIRCLEQ_EMPTY
113 #undef CIRCLEQ_FOREACH
114 #undef CIRCLEQ_FOREACH_REVERSE
115 #undef CIRCLEQ_INIT
116 #undef CIRCLEQ_INSERT_AFTER
117 #undef CIRCLEQ_INSERT_BEFORE
118 #undef CIRCLEQ_INSERT_HEAD
119 #undef CIRCLEQ_INSERT_TAIL
120 #undef CIRCLEQ_REMOVE
121 #undef CIRCLEQ_REPLACE
122 
123 /*
124  * This file defines five types of data structures: singly-linked lists,
125  * lists, simple queues, tail queues, and circular queues.
126  *
127  *
128  * A singly-linked list is headed by a single forward pointer. The elements
129  * are singly linked for minimum space and pointer manipulation overhead at
130  * the expense of O(n) removal for arbitrary elements. New elements can be
131  * added to the list after an existing element or at the head of the list.
132  * Elements being removed from the head of the list should use the explicit
133  * macro for this purpose for optimum efficiency. A singly-linked list may
134  * only be traversed in the forward direction.  Singly-linked lists are ideal
135  * for applications with large datasets and few or no removals or for
136  * implementing a LIFO queue.
137  *
138  * A list is headed by a single forward pointer (or an array of forward
139  * pointers for a hash table header). The elements are doubly linked
140  * so that an arbitrary element can be removed without a need to
141  * traverse the list. New elements can be added to the list before
142  * or after an existing element or at the head of the list. A list
143  * may only be traversed in the forward direction.
144  *
145  * A simple queue is headed by a pair of pointers, one the head of the
146  * list and the other to the tail of the list. The elements are singly
147  * linked to save space, so elements can only be removed from the
148  * head of the list. New elements can be added to the list before or after
149  * an existing element, at the head of the list, or at the end of the
150  * list. A simple queue may only be traversed in the forward direction.
151  *
152  * A tail queue is headed by a pair of pointers, one to the head of the
153  * list and the other to the tail of the list. The elements are doubly
154  * linked so that an arbitrary element can be removed without a need to
155  * traverse the list. New elements can be added to the list before or
156  * after an existing element, at the head of the list, or at the end of
157  * the list. A tail queue may be traversed in either direction.
158  *
159  * A circle queue is headed by a pair of pointers, one to the head of the
160  * list and the other to the tail of the list. The elements are doubly
161  * linked so that an arbitrary element can be removed without a need to
162  * traverse the list. New elements can be added to the list before or after
163  * an existing element, at the head of the list, or at the end of the list.
164  * A circle queue may be traversed in either direction, but has a more
165  * complex end of list detection.
166  *
167  * For details on the use of these macros, see the queue(3) manual page.
168  */
169 
170 /*
171  * Singly-linked List definitions.
172  */
173 #define SLIST_HEAD(name, type)						\
174 struct name {								\
175 	struct type *slh_first;	/* first element */			\
176 }
177 
178 #define	SLIST_HEAD_INITIALIZER(head)					\
179 	{ NULL }
180 
181 #define SLIST_ENTRY(type)						\
182 struct {								\
183 	struct type *sle_next;	/* next element */			\
184 }
185 
186 /*
187  * Singly-linked List access methods.
188  */
189 #define	SLIST_FIRST(head)	((head)->slh_first)
190 #define	SLIST_END(head)		NULL
191 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
192 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
193 
194 #define	SLIST_FOREACH(var, head, field)					\
195 	for((var) = SLIST_FIRST(head);					\
196 	    (var) != SLIST_END(head);					\
197 	    (var) = SLIST_NEXT(var, field))
198 
199 /*
200  * Singly-linked List functions.
201  */
202 #define	SLIST_INIT(head) {						\
203 	SLIST_FIRST(head) = SLIST_END(head);				\
204 }
205 
206 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
207 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
208 	(slistelm)->field.sle_next = (elm);				\
209 } while (0)
210 
211 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
212 	(elm)->field.sle_next = (head)->slh_first;			\
213 	(head)->slh_first = (elm);					\
214 } while (0)
215 
216 #define	SLIST_REMOVE_HEAD(head, field) do {				\
217 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
218 } while (0)
219 
220 #define SLIST_REMOVE(head, elm, type, field) do {			\
221 	if ((head)->slh_first == (elm)) {				\
222 		SLIST_REMOVE_HEAD((head), field);			\
223 	}								\
224 	else {								\
225 		struct type *curelm = (head)->slh_first;		\
226 		while( curelm->field.sle_next != (elm) )		\
227 			curelm = curelm->field.sle_next;		\
228 		curelm->field.sle_next =				\
229 		    curelm->field.sle_next->field.sle_next;		\
230 	}								\
231 } while (0)
232 
233 /*
234  * List definitions.
235  */
236 #define LIST_HEAD(name, type)						\
237 struct name {								\
238 	struct type *lh_first;	/* first element */			\
239 }
240 
241 #define LIST_HEAD_INITIALIZER(head)					\
242 	{ NULL }
243 
244 #define LIST_ENTRY(type)						\
245 struct {								\
246 	struct type *le_next;	/* next element */			\
247 	struct type **le_prev;	/* address of previous next element */	\
248 }
249 
250 /*
251  * List access methods
252  */
253 #define	LIST_FIRST(head)		((head)->lh_first)
254 #define	LIST_END(head)			NULL
255 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
256 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
257 
258 #define LIST_FOREACH(var, head, field)					\
259 	for((var) = LIST_FIRST(head);					\
260 	    (var)!= LIST_END(head);					\
261 	    (var) = LIST_NEXT(var, field))
262 
263 /*
264  * List functions.
265  */
266 #define	LIST_INIT(head) do {						\
267 	LIST_FIRST(head) = LIST_END(head);				\
268 } while (0)
269 
270 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
271 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
272 		(listelm)->field.le_next->field.le_prev =		\
273 		    &(elm)->field.le_next;				\
274 	(listelm)->field.le_next = (elm);				\
275 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
276 } while (0)
277 
278 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
279 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
280 	(elm)->field.le_next = (listelm);				\
281 	*(listelm)->field.le_prev = (elm);				\
282 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
283 } while (0)
284 
285 #define LIST_INSERT_HEAD(head, elm, field) do {				\
286 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
287 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
288 	(head)->lh_first = (elm);					\
289 	(elm)->field.le_prev = &(head)->lh_first;			\
290 } while (0)
291 
292 #define LIST_REMOVE(elm, field) do {					\
293 	if ((elm)->field.le_next != NULL)				\
294 		(elm)->field.le_next->field.le_prev =			\
295 		    (elm)->field.le_prev;				\
296 	*(elm)->field.le_prev = (elm)->field.le_next;			\
297 } while (0)
298 
299 #define LIST_REPLACE(elm, elm2, field) do {				\
300 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
301 		(elm2)->field.le_next->field.le_prev =			\
302 		    &(elm2)->field.le_next;				\
303 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
304 	*(elm2)->field.le_prev = (elm2);				\
305 } while (0)
306 
307 /*
308  * Simple queue definitions.
309  */
310 #define SIMPLEQ_HEAD(name, type)					\
311 struct name {								\
312 	struct type *sqh_first;	/* first element */			\
313 	struct type **sqh_last;	/* addr of last next element */		\
314 }
315 
316 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
317 	{ NULL, &(head).sqh_first }
318 
319 #define SIMPLEQ_ENTRY(type)						\
320 struct {								\
321 	struct type *sqe_next;	/* next element */			\
322 }
323 
324 /*
325  * Simple queue access methods.
326  */
327 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
328 #define	SIMPLEQ_END(head)	    NULL
329 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
330 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
331 
332 #define SIMPLEQ_FOREACH(var, head, field)				\
333 	for((var) = SIMPLEQ_FIRST(head);				\
334 	    (var) != SIMPLEQ_END(head);					\
335 	    (var) = SIMPLEQ_NEXT(var, field))
336 
337 /*
338  * Simple queue functions.
339  */
340 #define	SIMPLEQ_INIT(head) do {						\
341 	(head)->sqh_first = NULL;					\
342 	(head)->sqh_last = &(head)->sqh_first;				\
343 } while (0)
344 
345 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
346 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
347 		(head)->sqh_last = &(elm)->field.sqe_next;		\
348 	(head)->sqh_first = (elm);					\
349 } while (0)
350 
351 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
352 	(elm)->field.sqe_next = NULL;					\
353 	*(head)->sqh_last = (elm);					\
354 	(head)->sqh_last = &(elm)->field.sqe_next;			\
355 } while (0)
356 
357 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
358 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
359 		(head)->sqh_last = &(elm)->field.sqe_next;		\
360 	(listelm)->field.sqe_next = (elm);				\
361 } while (0)
362 
363 #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do {			\
364 	if (((head)->sqh_first = (elm)->field.sqe_next) == NULL)	\
365 		(head)->sqh_last = &(head)->sqh_first;			\
366 } while (0)
367 
368 /*
369  * Tail queue definitions.
370  */
371 #define TAILQ_HEAD(name, type)						\
372 struct name {								\
373 	struct type *tqh_first;	/* first element */			\
374 	struct type **tqh_last;	/* addr of last next element */		\
375 }
376 
377 #define TAILQ_HEAD_INITIALIZER(head)					\
378 	{ NULL, &(head).tqh_first }
379 
380 #define TAILQ_ENTRY(type)						\
381 struct {								\
382 	struct type *tqe_next;	/* next element */			\
383 	struct type **tqe_prev;	/* address of previous next element */	\
384 }
385 
386 /*
387  * tail queue access methods
388  */
389 #define	TAILQ_FIRST(head)		((head)->tqh_first)
390 #define	TAILQ_END(head)			NULL
391 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
392 #define TAILQ_LAST(head, headname)					\
393 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
394 /* XXX */
395 #define TAILQ_PREV(elm, headname, field)				\
396 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
397 #define	TAILQ_EMPTY(head)						\
398 	(TAILQ_FIRST(head) == TAILQ_END(head))
399 
400 #define TAILQ_FOREACH(var, head, field)					\
401 	for((var) = TAILQ_FIRST(head);					\
402 	    (var) != TAILQ_END(head);					\
403 	    (var) = TAILQ_NEXT(var, field))
404 
405 #define TAILQ_FOREACH_REVERSE(var, head, field, headname)		\
406 	for((var) = TAILQ_LAST(head, headname);				\
407 	    (var) != TAILQ_END(head);					\
408 	    (var) = TAILQ_PREV(var, headname, field))
409 
410 /*
411  * Tail queue functions.
412  */
413 #define	TAILQ_INIT(head) do {						\
414 	(head)->tqh_first = NULL;					\
415 	(head)->tqh_last = &(head)->tqh_first;				\
416 } while (0)
417 
418 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
419 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
420 		(head)->tqh_first->field.tqe_prev =			\
421 		    &(elm)->field.tqe_next;				\
422 	else								\
423 		(head)->tqh_last = &(elm)->field.tqe_next;		\
424 	(head)->tqh_first = (elm);					\
425 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
426 } while (0)
427 
428 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
429 	(elm)->field.tqe_next = NULL;					\
430 	(elm)->field.tqe_prev = (head)->tqh_last;			\
431 	*(head)->tqh_last = (elm);					\
432 	(head)->tqh_last = &(elm)->field.tqe_next;			\
433 } while (0)
434 
435 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
436 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
437 		(elm)->field.tqe_next->field.tqe_prev =			\
438 		    &(elm)->field.tqe_next;				\
439 	else								\
440 		(head)->tqh_last = &(elm)->field.tqe_next;		\
441 	(listelm)->field.tqe_next = (elm);				\
442 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
443 } while (0)
444 
445 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
446 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
447 	(elm)->field.tqe_next = (listelm);				\
448 	*(listelm)->field.tqe_prev = (elm);				\
449 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
450 } while (0)
451 
452 #define TAILQ_REMOVE(head, elm, field) do {				\
453 	if (((elm)->field.tqe_next) != NULL)				\
454 		(elm)->field.tqe_next->field.tqe_prev =			\
455 		    (elm)->field.tqe_prev;				\
456 	else								\
457 		(head)->tqh_last = (elm)->field.tqe_prev;		\
458 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
459 } while (0)
460 
461 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
462 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
463 		(elm2)->field.tqe_next->field.tqe_prev =		\
464 		    &(elm2)->field.tqe_next;				\
465 	else								\
466 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
467 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
468 	*(elm2)->field.tqe_prev = (elm2);				\
469 } while (0)
470 
471 /*
472  * Circular queue definitions.
473  */
474 #define CIRCLEQ_HEAD(name, type)					\
475 struct name {								\
476 	struct type *cqh_first;		/* first element */		\
477 	struct type *cqh_last;		/* last element */		\
478 }
479 
480 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
481 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
482 
483 #define CIRCLEQ_ENTRY(type)						\
484 struct {								\
485 	struct type *cqe_next;		/* next element */		\
486 	struct type *cqe_prev;		/* previous element */		\
487 }
488 
489 /*
490  * Circular queue access methods
491  */
492 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
493 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
494 #define	CIRCLEQ_END(head)		((void *)(head))
495 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
496 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
497 #define	CIRCLEQ_EMPTY(head)						\
498 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
499 
500 #define CIRCLEQ_FOREACH(var, head, field)				\
501 	for((var) = CIRCLEQ_FIRST(head);				\
502 	    (var) != CIRCLEQ_END(head);					\
503 	    (var) = CIRCLEQ_NEXT(var, field))
504 
505 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
506 	for((var) = CIRCLEQ_LAST(head);					\
507 	    (var) != CIRCLEQ_END(head);					\
508 	    (var) = CIRCLEQ_PREV(var, field))
509 
510 /*
511  * Circular queue functions.
512  */
513 #define	CIRCLEQ_INIT(head) do {						\
514 	(head)->cqh_first = CIRCLEQ_END(head);				\
515 	(head)->cqh_last = CIRCLEQ_END(head);				\
516 } while (0)
517 
518 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
519 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
520 	(elm)->field.cqe_prev = (listelm);				\
521 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
522 		(head)->cqh_last = (elm);				\
523 	else								\
524 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
525 	(listelm)->field.cqe_next = (elm);				\
526 } while (0)
527 
528 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
529 	(elm)->field.cqe_next = (listelm);				\
530 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
531 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
532 		(head)->cqh_first = (elm);				\
533 	else								\
534 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
535 	(listelm)->field.cqe_prev = (elm);				\
536 } while (0)
537 
538 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
539 	(elm)->field.cqe_next = (head)->cqh_first;			\
540 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
541 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
542 		(head)->cqh_last = (elm);				\
543 	else								\
544 		(head)->cqh_first->field.cqe_prev = (elm);		\
545 	(head)->cqh_first = (elm);					\
546 } while (0)
547 
548 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
549 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
550 	(elm)->field.cqe_prev = (head)->cqh_last;			\
551 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
552 		(head)->cqh_first = (elm);				\
553 	else								\
554 		(head)->cqh_last->field.cqe_next = (elm);		\
555 	(head)->cqh_last = (elm);					\
556 } while (0)
557 
558 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
559 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
560 		(head)->cqh_last = (elm)->field.cqe_prev;		\
561 	else								\
562 		(elm)->field.cqe_next->field.cqe_prev =			\
563 		    (elm)->field.cqe_prev;				\
564 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
565 		(head)->cqh_first = (elm)->field.cqe_next;		\
566 	else								\
567 		(elm)->field.cqe_prev->field.cqe_next =			\
568 		    (elm)->field.cqe_next;				\
569 } while (0)
570 
571 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
572 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
573 	    CIRCLEQ_END(head))						\
574 		(head).cqh_last = (elm2);				\
575 	else								\
576 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
577 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
578 	    CIRCLEQ_END(head))						\
579 		(head).cqh_first = (elm2);				\
580 	else								\
581 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
582 } while (0)
583 
584 #endif	/* !_FAKE_QUEUE_H_ */
585