xref: /freebsd/crypto/openssh/openbsd-compat/sys-queue.h (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*	$OpenBSD: queue.h,v 1.25 2004/04/08 16:08:21 henning Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 /* OPENBSD ORIGINAL: sys/sys/queue.h */
36 
37 #ifndef	_FAKE_QUEUE_H_
38 #define	_FAKE_QUEUE_H_
39 
40 /*
41  * Require for OS/X and other platforms that have old/broken/incomplete
42  * <sys/queue.h>.
43  */
44 #undef SLIST_HEAD
45 #undef SLIST_HEAD_INITIALIZER
46 #undef SLIST_ENTRY
47 #undef SLIST_FOREACH_PREVPTR
48 #undef SLIST_FIRST
49 #undef SLIST_END
50 #undef SLIST_EMPTY
51 #undef SLIST_NEXT
52 #undef SLIST_FOREACH
53 #undef SLIST_INIT
54 #undef SLIST_INSERT_AFTER
55 #undef SLIST_INSERT_HEAD
56 #undef SLIST_REMOVE_HEAD
57 #undef SLIST_REMOVE
58 #undef SLIST_REMOVE_NEXT
59 #undef LIST_HEAD
60 #undef LIST_HEAD_INITIALIZER
61 #undef LIST_ENTRY
62 #undef LIST_FIRST
63 #undef LIST_END
64 #undef LIST_EMPTY
65 #undef LIST_NEXT
66 #undef LIST_FOREACH
67 #undef LIST_INIT
68 #undef LIST_INSERT_AFTER
69 #undef LIST_INSERT_BEFORE
70 #undef LIST_INSERT_HEAD
71 #undef LIST_REMOVE
72 #undef LIST_REPLACE
73 #undef SIMPLEQ_HEAD
74 #undef SIMPLEQ_HEAD_INITIALIZER
75 #undef SIMPLEQ_ENTRY
76 #undef SIMPLEQ_FIRST
77 #undef SIMPLEQ_END
78 #undef SIMPLEQ_EMPTY
79 #undef SIMPLEQ_NEXT
80 #undef SIMPLEQ_FOREACH
81 #undef SIMPLEQ_INIT
82 #undef SIMPLEQ_INSERT_HEAD
83 #undef SIMPLEQ_INSERT_TAIL
84 #undef SIMPLEQ_INSERT_AFTER
85 #undef SIMPLEQ_REMOVE_HEAD
86 #undef TAILQ_HEAD
87 #undef TAILQ_HEAD_INITIALIZER
88 #undef TAILQ_ENTRY
89 #undef TAILQ_FIRST
90 #undef TAILQ_END
91 #undef TAILQ_NEXT
92 #undef TAILQ_LAST
93 #undef TAILQ_PREV
94 #undef TAILQ_EMPTY
95 #undef TAILQ_FOREACH
96 #undef TAILQ_FOREACH_REVERSE
97 #undef TAILQ_INIT
98 #undef TAILQ_INSERT_HEAD
99 #undef TAILQ_INSERT_TAIL
100 #undef TAILQ_INSERT_AFTER
101 #undef TAILQ_INSERT_BEFORE
102 #undef TAILQ_REMOVE
103 #undef TAILQ_REPLACE
104 #undef CIRCLEQ_HEAD
105 #undef CIRCLEQ_HEAD_INITIALIZER
106 #undef CIRCLEQ_ENTRY
107 #undef CIRCLEQ_FIRST
108 #undef CIRCLEQ_LAST
109 #undef CIRCLEQ_END
110 #undef CIRCLEQ_NEXT
111 #undef CIRCLEQ_PREV
112 #undef CIRCLEQ_EMPTY
113 #undef CIRCLEQ_FOREACH
114 #undef CIRCLEQ_FOREACH_REVERSE
115 #undef CIRCLEQ_INIT
116 #undef CIRCLEQ_INSERT_AFTER
117 #undef CIRCLEQ_INSERT_BEFORE
118 #undef CIRCLEQ_INSERT_HEAD
119 #undef CIRCLEQ_INSERT_TAIL
120 #undef CIRCLEQ_REMOVE
121 #undef CIRCLEQ_REPLACE
122 
123 /*
124  * This file defines five types of data structures: singly-linked lists,
125  * lists, simple queues, tail queues, and circular queues.
126  *
127  *
128  * A singly-linked list is headed by a single forward pointer. The elements
129  * are singly linked for minimum space and pointer manipulation overhead at
130  * the expense of O(n) removal for arbitrary elements. New elements can be
131  * added to the list after an existing element or at the head of the list.
132  * Elements being removed from the head of the list should use the explicit
133  * macro for this purpose for optimum efficiency. A singly-linked list may
134  * only be traversed in the forward direction.  Singly-linked lists are ideal
135  * for applications with large datasets and few or no removals or for
136  * implementing a LIFO queue.
137  *
138  * A list is headed by a single forward pointer (or an array of forward
139  * pointers for a hash table header). The elements are doubly linked
140  * so that an arbitrary element can be removed without a need to
141  * traverse the list. New elements can be added to the list before
142  * or after an existing element or at the head of the list. A list
143  * may only be traversed in the forward direction.
144  *
145  * A simple queue is headed by a pair of pointers, one the head of the
146  * list and the other to the tail of the list. The elements are singly
147  * linked to save space, so elements can only be removed from the
148  * head of the list. New elements can be added to the list before or after
149  * an existing element, at the head of the list, or at the end of the
150  * list. A simple queue may only be traversed in the forward direction.
151  *
152  * A tail queue is headed by a pair of pointers, one to the head of the
153  * list and the other to the tail of the list. The elements are doubly
154  * linked so that an arbitrary element can be removed without a need to
155  * traverse the list. New elements can be added to the list before or
156  * after an existing element, at the head of the list, or at the end of
157  * the list. A tail queue may be traversed in either direction.
158  *
159  * A circle queue is headed by a pair of pointers, one to the head of the
160  * list and the other to the tail of the list. The elements are doubly
161  * linked so that an arbitrary element can be removed without a need to
162  * traverse the list. New elements can be added to the list before or after
163  * an existing element, at the head of the list, or at the end of the list.
164  * A circle queue may be traversed in either direction, but has a more
165  * complex end of list detection.
166  *
167  * For details on the use of these macros, see the queue(3) manual page.
168  */
169 
170 /*
171  * Singly-linked List definitions.
172  */
173 #define SLIST_HEAD(name, type)						\
174 struct name {								\
175 	struct type *slh_first;	/* first element */			\
176 }
177 
178 #define	SLIST_HEAD_INITIALIZER(head)					\
179 	{ NULL }
180 
181 #define SLIST_ENTRY(type)						\
182 struct {								\
183 	struct type *sle_next;	/* next element */			\
184 }
185 
186 /*
187  * Singly-linked List access methods.
188  */
189 #define	SLIST_FIRST(head)	((head)->slh_first)
190 #define	SLIST_END(head)		NULL
191 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
192 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
193 
194 #define	SLIST_FOREACH(var, head, field)					\
195 	for((var) = SLIST_FIRST(head);					\
196 	    (var) != SLIST_END(head);					\
197 	    (var) = SLIST_NEXT(var, field))
198 
199 #define	SLIST_FOREACH_PREVPTR(var, varp, head, field)			\
200 	for ((varp) = &SLIST_FIRST((head));				\
201 	    ((var) = *(varp)) != SLIST_END(head);			\
202 	    (varp) = &SLIST_NEXT((var), field))
203 
204 /*
205  * Singly-linked List functions.
206  */
207 #define	SLIST_INIT(head) {						\
208 	SLIST_FIRST(head) = SLIST_END(head);				\
209 }
210 
211 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
212 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
213 	(slistelm)->field.sle_next = (elm);				\
214 } while (0)
215 
216 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
217 	(elm)->field.sle_next = (head)->slh_first;			\
218 	(head)->slh_first = (elm);					\
219 } while (0)
220 
221 #define	SLIST_REMOVE_NEXT(head, elm, field) do {			\
222 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
223 } while (0)
224 
225 #define	SLIST_REMOVE_HEAD(head, field) do {				\
226 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
227 } while (0)
228 
229 #define SLIST_REMOVE(head, elm, type, field) do {			\
230 	if ((head)->slh_first == (elm)) {				\
231 		SLIST_REMOVE_HEAD((head), field);			\
232 	}								\
233 	else {								\
234 		struct type *curelm = (head)->slh_first;		\
235 		while( curelm->field.sle_next != (elm) )		\
236 			curelm = curelm->field.sle_next;		\
237 		curelm->field.sle_next =				\
238 		    curelm->field.sle_next->field.sle_next;		\
239 	}								\
240 } while (0)
241 
242 /*
243  * List definitions.
244  */
245 #define LIST_HEAD(name, type)						\
246 struct name {								\
247 	struct type *lh_first;	/* first element */			\
248 }
249 
250 #define LIST_HEAD_INITIALIZER(head)					\
251 	{ NULL }
252 
253 #define LIST_ENTRY(type)						\
254 struct {								\
255 	struct type *le_next;	/* next element */			\
256 	struct type **le_prev;	/* address of previous next element */	\
257 }
258 
259 /*
260  * List access methods
261  */
262 #define	LIST_FIRST(head)		((head)->lh_first)
263 #define	LIST_END(head)			NULL
264 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
265 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
266 
267 #define LIST_FOREACH(var, head, field)					\
268 	for((var) = LIST_FIRST(head);					\
269 	    (var)!= LIST_END(head);					\
270 	    (var) = LIST_NEXT(var, field))
271 
272 /*
273  * List functions.
274  */
275 #define	LIST_INIT(head) do {						\
276 	LIST_FIRST(head) = LIST_END(head);				\
277 } while (0)
278 
279 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
280 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
281 		(listelm)->field.le_next->field.le_prev =		\
282 		    &(elm)->field.le_next;				\
283 	(listelm)->field.le_next = (elm);				\
284 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
285 } while (0)
286 
287 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
288 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
289 	(elm)->field.le_next = (listelm);				\
290 	*(listelm)->field.le_prev = (elm);				\
291 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
292 } while (0)
293 
294 #define LIST_INSERT_HEAD(head, elm, field) do {				\
295 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
296 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
297 	(head)->lh_first = (elm);					\
298 	(elm)->field.le_prev = &(head)->lh_first;			\
299 } while (0)
300 
301 #define LIST_REMOVE(elm, field) do {					\
302 	if ((elm)->field.le_next != NULL)				\
303 		(elm)->field.le_next->field.le_prev =			\
304 		    (elm)->field.le_prev;				\
305 	*(elm)->field.le_prev = (elm)->field.le_next;			\
306 } while (0)
307 
308 #define LIST_REPLACE(elm, elm2, field) do {				\
309 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
310 		(elm2)->field.le_next->field.le_prev =			\
311 		    &(elm2)->field.le_next;				\
312 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
313 	*(elm2)->field.le_prev = (elm2);				\
314 } while (0)
315 
316 /*
317  * Simple queue definitions.
318  */
319 #define SIMPLEQ_HEAD(name, type)					\
320 struct name {								\
321 	struct type *sqh_first;	/* first element */			\
322 	struct type **sqh_last;	/* addr of last next element */		\
323 }
324 
325 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
326 	{ NULL, &(head).sqh_first }
327 
328 #define SIMPLEQ_ENTRY(type)						\
329 struct {								\
330 	struct type *sqe_next;	/* next element */			\
331 }
332 
333 /*
334  * Simple queue access methods.
335  */
336 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
337 #define	SIMPLEQ_END(head)	    NULL
338 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
339 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
340 
341 #define SIMPLEQ_FOREACH(var, head, field)				\
342 	for((var) = SIMPLEQ_FIRST(head);				\
343 	    (var) != SIMPLEQ_END(head);					\
344 	    (var) = SIMPLEQ_NEXT(var, field))
345 
346 /*
347  * Simple queue functions.
348  */
349 #define	SIMPLEQ_INIT(head) do {						\
350 	(head)->sqh_first = NULL;					\
351 	(head)->sqh_last = &(head)->sqh_first;				\
352 } while (0)
353 
354 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
355 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
356 		(head)->sqh_last = &(elm)->field.sqe_next;		\
357 	(head)->sqh_first = (elm);					\
358 } while (0)
359 
360 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
361 	(elm)->field.sqe_next = NULL;					\
362 	*(head)->sqh_last = (elm);					\
363 	(head)->sqh_last = &(elm)->field.sqe_next;			\
364 } while (0)
365 
366 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
367 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
368 		(head)->sqh_last = &(elm)->field.sqe_next;		\
369 	(listelm)->field.sqe_next = (elm);				\
370 } while (0)
371 
372 #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do {			\
373 	if (((head)->sqh_first = (elm)->field.sqe_next) == NULL)	\
374 		(head)->sqh_last = &(head)->sqh_first;			\
375 } while (0)
376 
377 /*
378  * Tail queue definitions.
379  */
380 #define TAILQ_HEAD(name, type)						\
381 struct name {								\
382 	struct type *tqh_first;	/* first element */			\
383 	struct type **tqh_last;	/* addr of last next element */		\
384 }
385 
386 #define TAILQ_HEAD_INITIALIZER(head)					\
387 	{ NULL, &(head).tqh_first }
388 
389 #define TAILQ_ENTRY(type)						\
390 struct {								\
391 	struct type *tqe_next;	/* next element */			\
392 	struct type **tqe_prev;	/* address of previous next element */	\
393 }
394 
395 /*
396  * tail queue access methods
397  */
398 #define	TAILQ_FIRST(head)		((head)->tqh_first)
399 #define	TAILQ_END(head)			NULL
400 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
401 #define TAILQ_LAST(head, headname)					\
402 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
403 /* XXX */
404 #define TAILQ_PREV(elm, headname, field)				\
405 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
406 #define	TAILQ_EMPTY(head)						\
407 	(TAILQ_FIRST(head) == TAILQ_END(head))
408 
409 #define TAILQ_FOREACH(var, head, field)					\
410 	for((var) = TAILQ_FIRST(head);					\
411 	    (var) != TAILQ_END(head);					\
412 	    (var) = TAILQ_NEXT(var, field))
413 
414 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
415 	for((var) = TAILQ_LAST(head, headname);				\
416 	    (var) != TAILQ_END(head);					\
417 	    (var) = TAILQ_PREV(var, headname, field))
418 
419 /*
420  * Tail queue functions.
421  */
422 #define	TAILQ_INIT(head) do {						\
423 	(head)->tqh_first = NULL;					\
424 	(head)->tqh_last = &(head)->tqh_first;				\
425 } while (0)
426 
427 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
428 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
429 		(head)->tqh_first->field.tqe_prev =			\
430 		    &(elm)->field.tqe_next;				\
431 	else								\
432 		(head)->tqh_last = &(elm)->field.tqe_next;		\
433 	(head)->tqh_first = (elm);					\
434 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
435 } while (0)
436 
437 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
438 	(elm)->field.tqe_next = NULL;					\
439 	(elm)->field.tqe_prev = (head)->tqh_last;			\
440 	*(head)->tqh_last = (elm);					\
441 	(head)->tqh_last = &(elm)->field.tqe_next;			\
442 } while (0)
443 
444 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
445 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
446 		(elm)->field.tqe_next->field.tqe_prev =			\
447 		    &(elm)->field.tqe_next;				\
448 	else								\
449 		(head)->tqh_last = &(elm)->field.tqe_next;		\
450 	(listelm)->field.tqe_next = (elm);				\
451 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
452 } while (0)
453 
454 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
455 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
456 	(elm)->field.tqe_next = (listelm);				\
457 	*(listelm)->field.tqe_prev = (elm);				\
458 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
459 } while (0)
460 
461 #define TAILQ_REMOVE(head, elm, field) do {				\
462 	if (((elm)->field.tqe_next) != NULL)				\
463 		(elm)->field.tqe_next->field.tqe_prev =			\
464 		    (elm)->field.tqe_prev;				\
465 	else								\
466 		(head)->tqh_last = (elm)->field.tqe_prev;		\
467 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
468 } while (0)
469 
470 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
471 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
472 		(elm2)->field.tqe_next->field.tqe_prev =		\
473 		    &(elm2)->field.tqe_next;				\
474 	else								\
475 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
476 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
477 	*(elm2)->field.tqe_prev = (elm2);				\
478 } while (0)
479 
480 /*
481  * Circular queue definitions.
482  */
483 #define CIRCLEQ_HEAD(name, type)					\
484 struct name {								\
485 	struct type *cqh_first;		/* first element */		\
486 	struct type *cqh_last;		/* last element */		\
487 }
488 
489 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
490 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
491 
492 #define CIRCLEQ_ENTRY(type)						\
493 struct {								\
494 	struct type *cqe_next;		/* next element */		\
495 	struct type *cqe_prev;		/* previous element */		\
496 }
497 
498 /*
499  * Circular queue access methods
500  */
501 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
502 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
503 #define	CIRCLEQ_END(head)		((void *)(head))
504 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
505 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
506 #define	CIRCLEQ_EMPTY(head)						\
507 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
508 
509 #define CIRCLEQ_FOREACH(var, head, field)				\
510 	for((var) = CIRCLEQ_FIRST(head);				\
511 	    (var) != CIRCLEQ_END(head);					\
512 	    (var) = CIRCLEQ_NEXT(var, field))
513 
514 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
515 	for((var) = CIRCLEQ_LAST(head);					\
516 	    (var) != CIRCLEQ_END(head);					\
517 	    (var) = CIRCLEQ_PREV(var, field))
518 
519 /*
520  * Circular queue functions.
521  */
522 #define	CIRCLEQ_INIT(head) do {						\
523 	(head)->cqh_first = CIRCLEQ_END(head);				\
524 	(head)->cqh_last = CIRCLEQ_END(head);				\
525 } while (0)
526 
527 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
528 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
529 	(elm)->field.cqe_prev = (listelm);				\
530 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
531 		(head)->cqh_last = (elm);				\
532 	else								\
533 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
534 	(listelm)->field.cqe_next = (elm);				\
535 } while (0)
536 
537 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
538 	(elm)->field.cqe_next = (listelm);				\
539 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
540 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
541 		(head)->cqh_first = (elm);				\
542 	else								\
543 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
544 	(listelm)->field.cqe_prev = (elm);				\
545 } while (0)
546 
547 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
548 	(elm)->field.cqe_next = (head)->cqh_first;			\
549 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
550 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
551 		(head)->cqh_last = (elm);				\
552 	else								\
553 		(head)->cqh_first->field.cqe_prev = (elm);		\
554 	(head)->cqh_first = (elm);					\
555 } while (0)
556 
557 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
558 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
559 	(elm)->field.cqe_prev = (head)->cqh_last;			\
560 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
561 		(head)->cqh_first = (elm);				\
562 	else								\
563 		(head)->cqh_last->field.cqe_next = (elm);		\
564 	(head)->cqh_last = (elm);					\
565 } while (0)
566 
567 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
568 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
569 		(head)->cqh_last = (elm)->field.cqe_prev;		\
570 	else								\
571 		(elm)->field.cqe_next->field.cqe_prev =			\
572 		    (elm)->field.cqe_prev;				\
573 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
574 		(head)->cqh_first = (elm)->field.cqe_next;		\
575 	else								\
576 		(elm)->field.cqe_prev->field.cqe_next =			\
577 		    (elm)->field.cqe_next;				\
578 } while (0)
579 
580 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
581 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
582 	    CIRCLEQ_END(head))						\
583 		(head).cqh_last = (elm2);				\
584 	else								\
585 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
586 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
587 	    CIRCLEQ_END(head))						\
588 		(head).cqh_first = (elm2);				\
589 	else								\
590 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
591 } while (0)
592 
593 #endif	/* !_FAKE_QUEUE_H_ */
594