xref: /freebsd/crypto/openssh/openbsd-compat/sha2.c (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 /*	$OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $	*/
2 
3 /*
4  * FILE:	sha2.c
5  * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  */
36 
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38 
39 #include "includes.h"
40 
41 #if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
42     !defined(HAVE_SHA512UPDATE)
43 
44 /* no-op out, similar to DEF_WEAK but only needed here */
45 #define MAKE_CLONE(x, y)	void __ssh_compat_make_clone_##x_##y(void)
46 
47 #include <string.h>
48 #include "openbsd-compat/sha2.h"
49 
50 /*
51  * UNROLLED TRANSFORM LOOP NOTE:
52  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
53  * loop version for the hash transform rounds (defined using macros
54  * later in this file).  Either define on the command line, for example:
55  *
56  *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
57  *
58  * or define below:
59  *
60  *   #define SHA2_UNROLL_TRANSFORM
61  *
62  */
63 #ifndef SHA2_SMALL
64 #if defined(__amd64__) || defined(__i386__)
65 #define SHA2_UNROLL_TRANSFORM
66 #endif
67 #endif
68 
69 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
70 /*
71  * BYTE_ORDER NOTE:
72  *
73  * Please make sure that your system defines BYTE_ORDER.  If your
74  * architecture is little-endian, make sure it also defines
75  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76  * equivalent.
77  *
78  * If your system does not define the above, then you can do so by
79  * hand like this:
80  *
81  *   #define LITTLE_ENDIAN 1234
82  *   #define BIG_ENDIAN    4321
83  *
84  * And for little-endian machines, add:
85  *
86  *   #define BYTE_ORDER LITTLE_ENDIAN
87  *
88  * Or for big-endian machines:
89  *
90  *   #define BYTE_ORDER BIG_ENDIAN
91  *
92  * The FreeBSD machine this was written on defines BYTE_ORDER
93  * appropriately by including <sys/types.h> (which in turn includes
94  * <machine/endian.h> where the appropriate definitions are actually
95  * made).
96  */
97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99 #endif
100 
101 
102 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
103 /* NOTE: Most of these are in sha2.h */
104 #define SHA224_SHORT_BLOCK_LENGTH	(SHA224_BLOCK_LENGTH - 8)
105 #define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
106 #define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
107 #define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
108 
109 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
110 #define BE_8_TO_32(dst, cp) do {					\
111 	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
112 	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
113 } while(0)
114 
115 #define BE_8_TO_64(dst, cp) do {					\
116 	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
117 	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
118 	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
119 	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
120 } while (0)
121 
122 #define BE_64_TO_8(cp, src) do {					\
123 	(cp)[0] = (src) >> 56;						\
124         (cp)[1] = (src) >> 48;						\
125 	(cp)[2] = (src) >> 40;						\
126 	(cp)[3] = (src) >> 32;						\
127 	(cp)[4] = (src) >> 24;						\
128 	(cp)[5] = (src) >> 16;						\
129 	(cp)[6] = (src) >> 8;						\
130 	(cp)[7] = (src);						\
131 } while (0)
132 
133 #define BE_32_TO_8(cp, src) do {					\
134 	(cp)[0] = (src) >> 24;						\
135 	(cp)[1] = (src) >> 16;						\
136 	(cp)[2] = (src) >> 8;						\
137 	(cp)[3] = (src);						\
138 } while (0)
139 
140 /*
141  * Macro for incrementally adding the unsigned 64-bit integer n to the
142  * unsigned 128-bit integer (represented using a two-element array of
143  * 64-bit words):
144  */
145 #define ADDINC128(w,n) do {						\
146 	(w)[0] += (u_int64_t)(n);					\
147 	if ((w)[0] < (n)) {						\
148 		(w)[1]++;						\
149 	}								\
150 } while (0)
151 
152 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
153 /*
154  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
155  *
156  *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
157  *   S is a ROTATION) because the SHA-224/256/384/512 description document
158  *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
159  *   same "backwards" definition.
160  */
161 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
162 #define R(b,x)		((x) >> (b))
163 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
164 #define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
165 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
166 #define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
167 
168 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
169 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
170 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
171 
172 /* Four of six logical functions used in SHA-224 and SHA-256: */
173 #define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
174 #define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
175 #define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
176 #define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
177 
178 /* Four of six logical functions used in SHA-384 and SHA-512: */
179 #define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
180 #define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
181 #define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
182 #define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
183 
184 
185 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
186 /* Hash constant words K for SHA-224 and SHA-256: */
187 static const u_int32_t K256[64] = {
188 	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
189 	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
190 	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
191 	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
192 	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
193 	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
194 	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
195 	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
196 	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
197 	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
198 	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
199 	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
200 	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
201 	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
202 	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
203 	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
204 };
205 
206 /* Initial hash value H for SHA-256: */
207 static const u_int32_t sha256_initial_hash_value[8] = {
208 	0x6a09e667UL,
209 	0xbb67ae85UL,
210 	0x3c6ef372UL,
211 	0xa54ff53aUL,
212 	0x510e527fUL,
213 	0x9b05688cUL,
214 	0x1f83d9abUL,
215 	0x5be0cd19UL
216 };
217 
218 /* Hash constant words K for SHA-384 and SHA-512: */
219 static const u_int64_t K512[80] = {
220 	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
221 	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
222 	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
223 	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
224 	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
225 	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
226 	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
227 	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
228 	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
229 	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
230 	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
231 	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
232 	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
233 	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
234 	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
235 	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
236 	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
237 	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
238 	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
239 	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
240 	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
241 	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
242 	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
243 	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
244 	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
245 	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
246 	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
247 	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
248 	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
249 	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
250 	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
251 	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
252 	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
253 	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
254 	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
255 	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
256 	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
257 	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
258 	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
259 	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
260 };
261 
262 /* Initial hash value H for SHA-512 */
263 static const u_int64_t sha512_initial_hash_value[8] = {
264 	0x6a09e667f3bcc908ULL,
265 	0xbb67ae8584caa73bULL,
266 	0x3c6ef372fe94f82bULL,
267 	0xa54ff53a5f1d36f1ULL,
268 	0x510e527fade682d1ULL,
269 	0x9b05688c2b3e6c1fULL,
270 	0x1f83d9abfb41bd6bULL,
271 	0x5be0cd19137e2179ULL
272 };
273 
274 #if !defined(SHA2_SMALL)
275 #if 0
276 /* Initial hash value H for SHA-224: */
277 static const u_int32_t sha224_initial_hash_value[8] = {
278 	0xc1059ed8UL,
279 	0x367cd507UL,
280 	0x3070dd17UL,
281 	0xf70e5939UL,
282 	0xffc00b31UL,
283 	0x68581511UL,
284 	0x64f98fa7UL,
285 	0xbefa4fa4UL
286 };
287 #endif /* 0 */
288 
289 /* Initial hash value H for SHA-384 */
290 static const u_int64_t sha384_initial_hash_value[8] = {
291 	0xcbbb9d5dc1059ed8ULL,
292 	0x629a292a367cd507ULL,
293 	0x9159015a3070dd17ULL,
294 	0x152fecd8f70e5939ULL,
295 	0x67332667ffc00b31ULL,
296 	0x8eb44a8768581511ULL,
297 	0xdb0c2e0d64f98fa7ULL,
298 	0x47b5481dbefa4fa4ULL
299 };
300 
301 #if 0
302 /* Initial hash value H for SHA-512-256 */
303 static const u_int64_t sha512_256_initial_hash_value[8] = {
304 	0x22312194fc2bf72cULL,
305 	0x9f555fa3c84c64c2ULL,
306 	0x2393b86b6f53b151ULL,
307 	0x963877195940eabdULL,
308 	0x96283ee2a88effe3ULL,
309 	0xbe5e1e2553863992ULL,
310 	0x2b0199fc2c85b8aaULL,
311 	0x0eb72ddc81c52ca2ULL
312 };
313 
314 /*** SHA-224: *********************************************************/
315 void
316 SHA224Init(SHA2_CTX *context)
317 {
318 	memcpy(context->state.st32, sha224_initial_hash_value,
319 	    sizeof(sha224_initial_hash_value));
320 	memset(context->buffer, 0, sizeof(context->buffer));
321 	context->bitcount[0] = 0;
322 }
323 DEF_WEAK(SHA224Init);
324 
325 MAKE_CLONE(SHA224Transform, SHA256Transform);
326 MAKE_CLONE(SHA224Update, SHA256Update);
327 MAKE_CLONE(SHA224Pad, SHA256Pad);
328 DEF_WEAK(SHA224Transform);
329 DEF_WEAK(SHA224Update);
330 DEF_WEAK(SHA224Pad);
331 
332 void
333 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
334 {
335 	SHA224Pad(context);
336 
337 #if BYTE_ORDER == LITTLE_ENDIAN
338 	int	i;
339 
340 	/* Convert TO host byte order */
341 	for (i = 0; i < 7; i++)
342 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
343 #else
344 	memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
345 #endif
346 	explicit_bzero(context, sizeof(*context));
347 }
348 DEF_WEAK(SHA224Final);
349 #endif /* !defined(SHA2_SMALL) */
350 #endif /* 0 */
351 
352 /*** SHA-256: *********************************************************/
353 void
354 SHA256Init(SHA2_CTX *context)
355 {
356 	memcpy(context->state.st32, sha256_initial_hash_value,
357 	    sizeof(sha256_initial_hash_value));
358 	memset(context->buffer, 0, sizeof(context->buffer));
359 	context->bitcount[0] = 0;
360 }
361 DEF_WEAK(SHA256Init);
362 
363 #ifdef SHA2_UNROLL_TRANSFORM
364 
365 /* Unrolled SHA-256 round macros: */
366 
367 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
368 	BE_8_TO_32(W256[j], data);					    \
369 	data += 4;							    \
370 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
371 	(d) += T1;							    \
372 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
373 	j++;								    \
374 } while(0)
375 
376 #define ROUND256(a,b,c,d,e,f,g,h) do {					    \
377 	s0 = W256[(j+1)&0x0f];						    \
378 	s0 = sigma0_256(s0);						    \
379 	s1 = W256[(j+14)&0x0f];						    \
380 	s1 = sigma1_256(s1);						    \
381 	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
382 	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
383 	(d) += T1;							    \
384 	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
385 	j++;								    \
386 } while(0)
387 
388 void
389 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
390 {
391 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
392 	u_int32_t	T1, W256[16];
393 	int		j;
394 
395 	/* Initialize registers with the prev. intermediate value */
396 	a = state[0];
397 	b = state[1];
398 	c = state[2];
399 	d = state[3];
400 	e = state[4];
401 	f = state[5];
402 	g = state[6];
403 	h = state[7];
404 
405 	j = 0;
406 	do {
407 		/* Rounds 0 to 15 (unrolled): */
408 		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
409 		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
410 		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
411 		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
412 		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
413 		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
414 		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
415 		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
416 	} while (j < 16);
417 
418 	/* Now for the remaining rounds up to 63: */
419 	do {
420 		ROUND256(a,b,c,d,e,f,g,h);
421 		ROUND256(h,a,b,c,d,e,f,g);
422 		ROUND256(g,h,a,b,c,d,e,f);
423 		ROUND256(f,g,h,a,b,c,d,e);
424 		ROUND256(e,f,g,h,a,b,c,d);
425 		ROUND256(d,e,f,g,h,a,b,c);
426 		ROUND256(c,d,e,f,g,h,a,b);
427 		ROUND256(b,c,d,e,f,g,h,a);
428 	} while (j < 64);
429 
430 	/* Compute the current intermediate hash value */
431 	state[0] += a;
432 	state[1] += b;
433 	state[2] += c;
434 	state[3] += d;
435 	state[4] += e;
436 	state[5] += f;
437 	state[6] += g;
438 	state[7] += h;
439 
440 	/* Clean up */
441 	a = b = c = d = e = f = g = h = T1 = 0;
442 }
443 
444 #else /* SHA2_UNROLL_TRANSFORM */
445 
446 void
447 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
448 {
449 	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
450 	u_int32_t	T1, T2, W256[16];
451 	int		j;
452 
453 	/* Initialize registers with the prev. intermediate value */
454 	a = state[0];
455 	b = state[1];
456 	c = state[2];
457 	d = state[3];
458 	e = state[4];
459 	f = state[5];
460 	g = state[6];
461 	h = state[7];
462 
463 	j = 0;
464 	do {
465 		BE_8_TO_32(W256[j], data);
466 		data += 4;
467 		/* Apply the SHA-256 compression function to update a..h */
468 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
469 		T2 = Sigma0_256(a) + Maj(a, b, c);
470 		h = g;
471 		g = f;
472 		f = e;
473 		e = d + T1;
474 		d = c;
475 		c = b;
476 		b = a;
477 		a = T1 + T2;
478 
479 		j++;
480 	} while (j < 16);
481 
482 	do {
483 		/* Part of the message block expansion: */
484 		s0 = W256[(j+1)&0x0f];
485 		s0 = sigma0_256(s0);
486 		s1 = W256[(j+14)&0x0f];
487 		s1 = sigma1_256(s1);
488 
489 		/* Apply the SHA-256 compression function to update a..h */
490 		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
491 		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
492 		T2 = Sigma0_256(a) + Maj(a, b, c);
493 		h = g;
494 		g = f;
495 		f = e;
496 		e = d + T1;
497 		d = c;
498 		c = b;
499 		b = a;
500 		a = T1 + T2;
501 
502 		j++;
503 	} while (j < 64);
504 
505 	/* Compute the current intermediate hash value */
506 	state[0] += a;
507 	state[1] += b;
508 	state[2] += c;
509 	state[3] += d;
510 	state[4] += e;
511 	state[5] += f;
512 	state[6] += g;
513 	state[7] += h;
514 
515 	/* Clean up */
516 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
517 }
518 
519 #endif /* SHA2_UNROLL_TRANSFORM */
520 DEF_WEAK(SHA256Transform);
521 
522 void
523 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
524 {
525 	u_int64_t	freespace, usedspace;
526 
527 	/* Calling with no data is valid (we do nothing) */
528 	if (len == 0)
529 		return;
530 
531 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
532 	if (usedspace > 0) {
533 		/* Calculate how much free space is available in the buffer */
534 		freespace = SHA256_BLOCK_LENGTH - usedspace;
535 
536 		if (len >= freespace) {
537 			/* Fill the buffer completely and process it */
538 			memcpy(&context->buffer[usedspace], data, freespace);
539 			context->bitcount[0] += freespace << 3;
540 			len -= freespace;
541 			data += freespace;
542 			SHA256Transform(context->state.st32, context->buffer);
543 		} else {
544 			/* The buffer is not yet full */
545 			memcpy(&context->buffer[usedspace], data, len);
546 			context->bitcount[0] += (u_int64_t)len << 3;
547 			/* Clean up: */
548 			usedspace = freespace = 0;
549 			return;
550 		}
551 	}
552 	while (len >= SHA256_BLOCK_LENGTH) {
553 		/* Process as many complete blocks as we can */
554 		SHA256Transform(context->state.st32, data);
555 		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
556 		len -= SHA256_BLOCK_LENGTH;
557 		data += SHA256_BLOCK_LENGTH;
558 	}
559 	if (len > 0) {
560 		/* There's left-overs, so save 'em */
561 		memcpy(context->buffer, data, len);
562 		context->bitcount[0] += len << 3;
563 	}
564 	/* Clean up: */
565 	usedspace = freespace = 0;
566 }
567 DEF_WEAK(SHA256Update);
568 
569 void
570 SHA256Pad(SHA2_CTX *context)
571 {
572 	unsigned int	usedspace;
573 
574 	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
575 	if (usedspace > 0) {
576 		/* Begin padding with a 1 bit: */
577 		context->buffer[usedspace++] = 0x80;
578 
579 		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
580 			/* Set-up for the last transform: */
581 			memset(&context->buffer[usedspace], 0,
582 			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
583 		} else {
584 			if (usedspace < SHA256_BLOCK_LENGTH) {
585 				memset(&context->buffer[usedspace], 0,
586 				    SHA256_BLOCK_LENGTH - usedspace);
587 			}
588 			/* Do second-to-last transform: */
589 			SHA256Transform(context->state.st32, context->buffer);
590 
591 			/* Prepare for last transform: */
592 			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
593 		}
594 	} else {
595 		/* Set-up for the last transform: */
596 		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
597 
598 		/* Begin padding with a 1 bit: */
599 		*context->buffer = 0x80;
600 	}
601 	/* Store the length of input data (in bits) in big endian format: */
602 	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
603 	    context->bitcount[0]);
604 
605 	/* Final transform: */
606 	SHA256Transform(context->state.st32, context->buffer);
607 
608 	/* Clean up: */
609 	usedspace = 0;
610 }
611 DEF_WEAK(SHA256Pad);
612 
613 void
614 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
615 {
616 	SHA256Pad(context);
617 
618 #if BYTE_ORDER == LITTLE_ENDIAN
619 	int	i;
620 
621 	/* Convert TO host byte order */
622 	for (i = 0; i < 8; i++)
623 		BE_32_TO_8(digest + i * 4, context->state.st32[i]);
624 #else
625 	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
626 #endif
627 	explicit_bzero(context, sizeof(*context));
628 }
629 DEF_WEAK(SHA256Final);
630 
631 
632 /*** SHA-512: *********************************************************/
633 void
634 SHA512Init(SHA2_CTX *context)
635 {
636 	memcpy(context->state.st64, sha512_initial_hash_value,
637 	    sizeof(sha512_initial_hash_value));
638 	memset(context->buffer, 0, sizeof(context->buffer));
639 	context->bitcount[0] = context->bitcount[1] =  0;
640 }
641 DEF_WEAK(SHA512Init);
642 
643 #ifdef SHA2_UNROLL_TRANSFORM
644 
645 /* Unrolled SHA-512 round macros: */
646 
647 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
648 	BE_8_TO_64(W512[j], data);					    \
649 	data += 8;							    \
650 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
651 	(d) += T1;							    \
652 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
653 	j++;								    \
654 } while(0)
655 
656 
657 #define ROUND512(a,b,c,d,e,f,g,h) do {					    \
658 	s0 = W512[(j+1)&0x0f];						    \
659 	s0 = sigma0_512(s0);						    \
660 	s1 = W512[(j+14)&0x0f];						    \
661 	s1 = sigma1_512(s1);						    \
662 	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
663              (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
664 	(d) += T1;							    \
665 	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
666 	j++;								    \
667 } while(0)
668 
669 void
670 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
671 {
672 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
673 	u_int64_t	T1, W512[16];
674 	int		j;
675 
676 	/* Initialize registers with the prev. intermediate value */
677 	a = state[0];
678 	b = state[1];
679 	c = state[2];
680 	d = state[3];
681 	e = state[4];
682 	f = state[5];
683 	g = state[6];
684 	h = state[7];
685 
686 	j = 0;
687 	do {
688 		/* Rounds 0 to 15 (unrolled): */
689 		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
690 		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
691 		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
692 		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
693 		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
694 		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
695 		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
696 		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
697 	} while (j < 16);
698 
699 	/* Now for the remaining rounds up to 79: */
700 	do {
701 		ROUND512(a,b,c,d,e,f,g,h);
702 		ROUND512(h,a,b,c,d,e,f,g);
703 		ROUND512(g,h,a,b,c,d,e,f);
704 		ROUND512(f,g,h,a,b,c,d,e);
705 		ROUND512(e,f,g,h,a,b,c,d);
706 		ROUND512(d,e,f,g,h,a,b,c);
707 		ROUND512(c,d,e,f,g,h,a,b);
708 		ROUND512(b,c,d,e,f,g,h,a);
709 	} while (j < 80);
710 
711 	/* Compute the current intermediate hash value */
712 	state[0] += a;
713 	state[1] += b;
714 	state[2] += c;
715 	state[3] += d;
716 	state[4] += e;
717 	state[5] += f;
718 	state[6] += g;
719 	state[7] += h;
720 
721 	/* Clean up */
722 	a = b = c = d = e = f = g = h = T1 = 0;
723 }
724 
725 #else /* SHA2_UNROLL_TRANSFORM */
726 
727 void
728 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
729 {
730 	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
731 	u_int64_t	T1, T2, W512[16];
732 	int		j;
733 
734 	/* Initialize registers with the prev. intermediate value */
735 	a = state[0];
736 	b = state[1];
737 	c = state[2];
738 	d = state[3];
739 	e = state[4];
740 	f = state[5];
741 	g = state[6];
742 	h = state[7];
743 
744 	j = 0;
745 	do {
746 		BE_8_TO_64(W512[j], data);
747 		data += 8;
748 		/* Apply the SHA-512 compression function to update a..h */
749 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
750 		T2 = Sigma0_512(a) + Maj(a, b, c);
751 		h = g;
752 		g = f;
753 		f = e;
754 		e = d + T1;
755 		d = c;
756 		c = b;
757 		b = a;
758 		a = T1 + T2;
759 
760 		j++;
761 	} while (j < 16);
762 
763 	do {
764 		/* Part of the message block expansion: */
765 		s0 = W512[(j+1)&0x0f];
766 		s0 = sigma0_512(s0);
767 		s1 = W512[(j+14)&0x0f];
768 		s1 =  sigma1_512(s1);
769 
770 		/* Apply the SHA-512 compression function to update a..h */
771 		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
772 		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
773 		T2 = Sigma0_512(a) + Maj(a, b, c);
774 		h = g;
775 		g = f;
776 		f = e;
777 		e = d + T1;
778 		d = c;
779 		c = b;
780 		b = a;
781 		a = T1 + T2;
782 
783 		j++;
784 	} while (j < 80);
785 
786 	/* Compute the current intermediate hash value */
787 	state[0] += a;
788 	state[1] += b;
789 	state[2] += c;
790 	state[3] += d;
791 	state[4] += e;
792 	state[5] += f;
793 	state[6] += g;
794 	state[7] += h;
795 
796 	/* Clean up */
797 	a = b = c = d = e = f = g = h = T1 = T2 = 0;
798 }
799 
800 #endif /* SHA2_UNROLL_TRANSFORM */
801 DEF_WEAK(SHA512Transform);
802 
803 void
804 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
805 {
806 	size_t	freespace, usedspace;
807 
808 	/* Calling with no data is valid (we do nothing) */
809 	if (len == 0)
810 		return;
811 
812 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
813 	if (usedspace > 0) {
814 		/* Calculate how much free space is available in the buffer */
815 		freespace = SHA512_BLOCK_LENGTH - usedspace;
816 
817 		if (len >= freespace) {
818 			/* Fill the buffer completely and process it */
819 			memcpy(&context->buffer[usedspace], data, freespace);
820 			ADDINC128(context->bitcount, freespace << 3);
821 			len -= freespace;
822 			data += freespace;
823 			SHA512Transform(context->state.st64, context->buffer);
824 		} else {
825 			/* The buffer is not yet full */
826 			memcpy(&context->buffer[usedspace], data, len);
827 			ADDINC128(context->bitcount, len << 3);
828 			/* Clean up: */
829 			usedspace = freespace = 0;
830 			return;
831 		}
832 	}
833 	while (len >= SHA512_BLOCK_LENGTH) {
834 		/* Process as many complete blocks as we can */
835 		SHA512Transform(context->state.st64, data);
836 		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
837 		len -= SHA512_BLOCK_LENGTH;
838 		data += SHA512_BLOCK_LENGTH;
839 	}
840 	if (len > 0) {
841 		/* There's left-overs, so save 'em */
842 		memcpy(context->buffer, data, len);
843 		ADDINC128(context->bitcount, len << 3);
844 	}
845 	/* Clean up: */
846 	usedspace = freespace = 0;
847 }
848 DEF_WEAK(SHA512Update);
849 
850 void
851 SHA512Pad(SHA2_CTX *context)
852 {
853 	unsigned int	usedspace;
854 
855 	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
856 	if (usedspace > 0) {
857 		/* Begin padding with a 1 bit: */
858 		context->buffer[usedspace++] = 0x80;
859 
860 		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
861 			/* Set-up for the last transform: */
862 			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
863 		} else {
864 			if (usedspace < SHA512_BLOCK_LENGTH) {
865 				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
866 			}
867 			/* Do second-to-last transform: */
868 			SHA512Transform(context->state.st64, context->buffer);
869 
870 			/* And set-up for the last transform: */
871 			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
872 		}
873 	} else {
874 		/* Prepare for final transform: */
875 		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
876 
877 		/* Begin padding with a 1 bit: */
878 		*context->buffer = 0x80;
879 	}
880 	/* Store the length of input data (in bits) in big endian format: */
881 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
882 	    context->bitcount[1]);
883 	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
884 	    context->bitcount[0]);
885 
886 	/* Final transform: */
887 	SHA512Transform(context->state.st64, context->buffer);
888 
889 	/* Clean up: */
890 	usedspace = 0;
891 }
892 DEF_WEAK(SHA512Pad);
893 
894 void
895 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
896 {
897 	SHA512Pad(context);
898 
899 #if BYTE_ORDER == LITTLE_ENDIAN
900 	int	i;
901 
902 	/* Convert TO host byte order */
903 	for (i = 0; i < 8; i++)
904 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
905 #else
906 	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
907 #endif
908 	explicit_bzero(context, sizeof(*context));
909 }
910 DEF_WEAK(SHA512Final);
911 
912 #if !defined(SHA2_SMALL)
913 
914 /*** SHA-384: *********************************************************/
915 void
916 SHA384Init(SHA2_CTX *context)
917 {
918 	memcpy(context->state.st64, sha384_initial_hash_value,
919 	    sizeof(sha384_initial_hash_value));
920 	memset(context->buffer, 0, sizeof(context->buffer));
921 	context->bitcount[0] = context->bitcount[1] = 0;
922 }
923 DEF_WEAK(SHA384Init);
924 
925 MAKE_CLONE(SHA384Transform, SHA512Transform);
926 MAKE_CLONE(SHA384Update, SHA512Update);
927 MAKE_CLONE(SHA384Pad, SHA512Pad);
928 DEF_WEAK(SHA384Transform);
929 DEF_WEAK(SHA384Update);
930 DEF_WEAK(SHA384Pad);
931 
932 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
933 void
934 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
935 {
936 	SHA512Transform(state, data);
937 }
938 
939 void
940 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
941 {
942 	SHA512Update(context, data, len);
943 }
944 
945 void
946 SHA384Pad(SHA2_CTX *context)
947 {
948 	SHA512Pad(context);
949 }
950 
951 void
952 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
953 {
954 	SHA384Pad(context);
955 
956 #if BYTE_ORDER == LITTLE_ENDIAN
957 	int	i;
958 
959 	/* Convert TO host byte order */
960 	for (i = 0; i < 6; i++)
961 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
962 #else
963 	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
964 #endif
965 	/* Zero out state data */
966 	explicit_bzero(context, sizeof(*context));
967 }
968 DEF_WEAK(SHA384Final);
969 
970 #if 0
971 /*** SHA-512/256: *********************************************************/
972 void
973 SHA512_256Init(SHA2_CTX *context)
974 {
975 	memcpy(context->state.st64, sha512_256_initial_hash_value,
976 	    sizeof(sha512_256_initial_hash_value));
977 	memset(context->buffer, 0, sizeof(context->buffer));
978 	context->bitcount[0] = context->bitcount[1] = 0;
979 }
980 DEF_WEAK(SHA512_256Init);
981 
982 MAKE_CLONE(SHA512_256Transform, SHA512Transform);
983 MAKE_CLONE(SHA512_256Update, SHA512Update);
984 MAKE_CLONE(SHA512_256Pad, SHA512Pad);
985 DEF_WEAK(SHA512_256Transform);
986 DEF_WEAK(SHA512_256Update);
987 DEF_WEAK(SHA512_256Pad);
988 
989 void
990 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
991 {
992 	SHA512_256Pad(context);
993 
994 #if BYTE_ORDER == LITTLE_ENDIAN
995 	int	i;
996 
997 	/* Convert TO host byte order */
998 	for (i = 0; i < 4; i++)
999 		BE_64_TO_8(digest + i * 8, context->state.st64[i]);
1000 #else
1001 	memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
1002 #endif
1003 	/* Zero out state data */
1004 	explicit_bzero(context, sizeof(*context));
1005 }
1006 DEF_WEAK(SHA512_256Final);
1007 #endif /* !defined(SHA2_SMALL) */
1008 #endif /* 0 */
1009 
1010 #endif /* HAVE_SHA{256,384,512}UPDATE */
1011