xref: /freebsd/crypto/openssh/openbsd-compat/sha1.c (revision 1f4bcc459a76b7aa664f3fd557684cd0ba6da352)
1 /*	$OpenBSD: sha1.c,v 1.23 2014/01/08 06:14:57 tedu Exp $	*/
2 
3 /*
4  * SHA-1 in C
5  * By Steve Reid <steve@edmweb.com>
6  * 100% Public Domain
7  *
8  * Test Vectors (from FIPS PUB 180-1)
9  * "abc"
10  *   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
11  * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
12  *   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
13  * A million repetitions of "a"
14  *   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
15  */
16 
17 #include "includes.h"
18 
19 #ifndef WITH_OPENSSL
20 
21 #include <sys/param.h>
22 #include <string.h>
23 
24 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
25 
26 /*
27  * blk0() and blk() perform the initial expand.
28  * I got the idea of expanding during the round function from SSLeay
29  */
30 #if BYTE_ORDER == LITTLE_ENDIAN
31 # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
32     |(rol(block->l[i],8)&0x00FF00FF))
33 #else
34 # define blk0(i) block->l[i]
35 #endif
36 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
37     ^block->l[(i+2)&15]^block->l[i&15],1))
38 
39 /*
40  * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
41  */
42 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
43 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
44 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
45 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
46 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
47 
48 typedef union {
49 	u_int8_t c[64];
50 	u_int32_t l[16];
51 } CHAR64LONG16;
52 
53 /*
54  * Hash a single 512-bit block. This is the core of the algorithm.
55  */
56 void
57 SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
58 {
59 	u_int32_t a, b, c, d, e;
60 	u_int8_t workspace[SHA1_BLOCK_LENGTH];
61 	CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
62 
63 	(void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
64 
65 	/* Copy context->state[] to working vars */
66 	a = state[0];
67 	b = state[1];
68 	c = state[2];
69 	d = state[3];
70 	e = state[4];
71 
72 	/* 4 rounds of 20 operations each. Loop unrolled. */
73 	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
74 	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
75 	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
76 	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
77 	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
78 	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
79 	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
80 	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
81 	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
82 	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
83 	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
84 	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
85 	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
86 	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
87 	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
88 	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
89 	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
90 	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
91 	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
92 	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
93 
94 	/* Add the working vars back into context.state[] */
95 	state[0] += a;
96 	state[1] += b;
97 	state[2] += c;
98 	state[3] += d;
99 	state[4] += e;
100 
101 	/* Wipe variables */
102 	a = b = c = d = e = 0;
103 }
104 
105 
106 /*
107  * SHA1Init - Initialize new context
108  */
109 void
110 SHA1Init(SHA1_CTX *context)
111 {
112 
113 	/* SHA1 initialization constants */
114 	context->count = 0;
115 	context->state[0] = 0x67452301;
116 	context->state[1] = 0xEFCDAB89;
117 	context->state[2] = 0x98BADCFE;
118 	context->state[3] = 0x10325476;
119 	context->state[4] = 0xC3D2E1F0;
120 }
121 
122 
123 /*
124  * Run your data through this.
125  */
126 void
127 SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
128 {
129 	size_t i, j;
130 
131 	j = (size_t)((context->count >> 3) & 63);
132 	context->count += (len << 3);
133 	if ((j + len) > 63) {
134 		(void)memcpy(&context->buffer[j], data, (i = 64-j));
135 		SHA1Transform(context->state, context->buffer);
136 		for ( ; i + 63 < len; i += 64)
137 			SHA1Transform(context->state, (u_int8_t *)&data[i]);
138 		j = 0;
139 	} else {
140 		i = 0;
141 	}
142 	(void)memcpy(&context->buffer[j], &data[i], len - i);
143 }
144 
145 
146 /*
147  * Add padding and return the message digest.
148  */
149 void
150 SHA1Pad(SHA1_CTX *context)
151 {
152 	u_int8_t finalcount[8];
153 	u_int i;
154 
155 	for (i = 0; i < 8; i++) {
156 		finalcount[i] = (u_int8_t)((context->count >>
157 		    ((7 - (i & 7)) * 8)) & 255);	/* Endian independent */
158 	}
159 	SHA1Update(context, (u_int8_t *)"\200", 1);
160 	while ((context->count & 504) != 448)
161 		SHA1Update(context, (u_int8_t *)"\0", 1);
162 	SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
163 }
164 
165 void
166 SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
167 {
168 	u_int i;
169 
170 	SHA1Pad(context);
171 	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
172 		digest[i] = (u_int8_t)
173 		   ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
174 	}
175 	memset(context, 0, sizeof(*context));
176 }
177 #endif /* !WITH_OPENSSL */
178