xref: /freebsd/crypto/openssh/moduli.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /* $OpenBSD: moduli.c,v 1.19 2006/11/06 21:25:28 markus Exp $ */
2 /*
3  * Copyright 1994 Phil Karn <karn@qualcomm.com>
4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Two-step process to generate safe primes for DHGEX
31  *
32  *  Sieve candidates for "safe" primes,
33  *  suitable for use as Diffie-Hellman moduli;
34  *  that is, where q = (p-1)/2 is also prime.
35  *
36  * First step: generate candidate primes (memory intensive)
37  * Second step: test primes' safety (processor intensive)
38  */
39 
40 #include "includes.h"
41 
42 #include <sys/types.h>
43 
44 #include <openssl/bn.h>
45 
46 #include <stdio.h>
47 #include <stdlib.h>
48 #include <string.h>
49 #include <stdarg.h>
50 #include <time.h>
51 
52 #include "xmalloc.h"
53 #include "log.h"
54 
55 /*
56  * File output defines
57  */
58 
59 /* need line long enough for largest moduli plus headers */
60 #define QLINESIZE		(100+8192)
61 
62 /* Type: decimal.
63  * Specifies the internal structure of the prime modulus.
64  */
65 #define QTYPE_UNKNOWN		(0)
66 #define QTYPE_UNSTRUCTURED	(1)
67 #define QTYPE_SAFE		(2)
68 #define QTYPE_SCHNORR		(3)
69 #define QTYPE_SOPHIE_GERMAIN	(4)
70 #define QTYPE_STRONG		(5)
71 
72 /* Tests: decimal (bit field).
73  * Specifies the methods used in checking for primality.
74  * Usually, more than one test is used.
75  */
76 #define QTEST_UNTESTED		(0x00)
77 #define QTEST_COMPOSITE		(0x01)
78 #define QTEST_SIEVE		(0x02)
79 #define QTEST_MILLER_RABIN	(0x04)
80 #define QTEST_JACOBI		(0x08)
81 #define QTEST_ELLIPTIC		(0x10)
82 
83 /*
84  * Size: decimal.
85  * Specifies the number of the most significant bit (0 to M).
86  * WARNING: internally, usually 1 to N.
87  */
88 #define QSIZE_MINIMUM		(511)
89 
90 /*
91  * Prime sieving defines
92  */
93 
94 /* Constant: assuming 8 bit bytes and 32 bit words */
95 #define SHIFT_BIT	(3)
96 #define SHIFT_BYTE	(2)
97 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
98 #define SHIFT_MEGABYTE	(20)
99 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
100 
101 /*
102  * Using virtual memory can cause thrashing.  This should be the largest
103  * number that is supported without a large amount of disk activity --
104  * that would increase the run time from hours to days or weeks!
105  */
106 #define LARGE_MINIMUM	(8UL)	/* megabytes */
107 
108 /*
109  * Do not increase this number beyond the unsigned integer bit size.
110  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
111  */
112 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
113 
114 /*
115  * Constant: when used with 32-bit integers, the largest sieve prime
116  * has to be less than 2**32.
117  */
118 #define SMALL_MAXIMUM	(0xffffffffUL)
119 
120 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
121 #define TINY_NUMBER	(1UL<<16)
122 
123 /* Ensure enough bit space for testing 2*q. */
124 #define TEST_MAXIMUM	(1UL<<16)
125 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
126 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
127 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
128 
129 /* bit operations on 32-bit words */
130 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
131 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
132 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
133 
134 /*
135  * Prime testing defines
136  */
137 
138 /* Minimum number of primality tests to perform */
139 #define TRIAL_MINIMUM	(4)
140 
141 /*
142  * Sieving data (XXX - move to struct)
143  */
144 
145 /* sieve 2**16 */
146 static u_int32_t *TinySieve, tinybits;
147 
148 /* sieve 2**30 in 2**16 parts */
149 static u_int32_t *SmallSieve, smallbits, smallbase;
150 
151 /* sieve relative to the initial value */
152 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
153 static u_int32_t largebits, largememory;	/* megabytes */
154 static BIGNUM *largebase;
155 
156 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
157 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
158 
159 /*
160  * print moduli out in consistent form,
161  */
162 static int
163 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
164     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
165 {
166 	struct tm *gtm;
167 	time_t time_now;
168 	int res;
169 
170 	time(&time_now);
171 	gtm = gmtime(&time_now);
172 
173 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
174 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
175 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
176 	    otype, otests, otries, osize, ogenerator);
177 
178 	if (res < 0)
179 		return (-1);
180 
181 	if (BN_print_fp(ofile, omodulus) < 1)
182 		return (-1);
183 
184 	res = fprintf(ofile, "\n");
185 	fflush(ofile);
186 
187 	return (res > 0 ? 0 : -1);
188 }
189 
190 
191 /*
192  ** Sieve p's and q's with small factors
193  */
194 static void
195 sieve_large(u_int32_t s)
196 {
197 	u_int32_t r, u;
198 
199 	debug3("sieve_large %u", s);
200 	largetries++;
201 	/* r = largebase mod s */
202 	r = BN_mod_word(largebase, s);
203 	if (r == 0)
204 		u = 0; /* s divides into largebase exactly */
205 	else
206 		u = s - r; /* largebase+u is first entry divisible by s */
207 
208 	if (u < largebits * 2) {
209 		/*
210 		 * The sieve omits p's and q's divisible by 2, so ensure that
211 		 * largebase+u is odd. Then, step through the sieve in
212 		 * increments of 2*s
213 		 */
214 		if (u & 0x1)
215 			u += s; /* Make largebase+u odd, and u even */
216 
217 		/* Mark all multiples of 2*s */
218 		for (u /= 2; u < largebits; u += s)
219 			BIT_SET(LargeSieve, u);
220 	}
221 
222 	/* r = p mod s */
223 	r = (2 * r + 1) % s;
224 	if (r == 0)
225 		u = 0; /* s divides p exactly */
226 	else
227 		u = s - r; /* p+u is first entry divisible by s */
228 
229 	if (u < largebits * 4) {
230 		/*
231 		 * The sieve omits p's divisible by 4, so ensure that
232 		 * largebase+u is not. Then, step through the sieve in
233 		 * increments of 4*s
234 		 */
235 		while (u & 0x3) {
236 			if (SMALL_MAXIMUM - u < s)
237 				return;
238 			u += s;
239 		}
240 
241 		/* Mark all multiples of 4*s */
242 		for (u /= 4; u < largebits; u += s)
243 			BIT_SET(LargeSieve, u);
244 	}
245 }
246 
247 /*
248  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
249  * to standard output.
250  * The list is checked against small known primes (less than 2**30).
251  */
252 int
253 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
254 {
255 	BIGNUM *q;
256 	u_int32_t j, r, s, t;
257 	u_int32_t smallwords = TINY_NUMBER >> 6;
258 	u_int32_t tinywords = TINY_NUMBER >> 6;
259 	time_t time_start, time_stop;
260 	u_int32_t i;
261 	int ret = 0;
262 
263 	largememory = memory;
264 
265 	if (memory != 0 &&
266 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
267 		error("Invalid memory amount (min %ld, max %ld)",
268 		    LARGE_MINIMUM, LARGE_MAXIMUM);
269 		return (-1);
270 	}
271 
272 	/*
273 	 * Set power to the length in bits of the prime to be generated.
274 	 * This is changed to 1 less than the desired safe prime moduli p.
275 	 */
276 	if (power > TEST_MAXIMUM) {
277 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
278 		return (-1);
279 	} else if (power < TEST_MINIMUM) {
280 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
281 		return (-1);
282 	}
283 	power--; /* decrement before squaring */
284 
285 	/*
286 	 * The density of ordinary primes is on the order of 1/bits, so the
287 	 * density of safe primes should be about (1/bits)**2. Set test range
288 	 * to something well above bits**2 to be reasonably sure (but not
289 	 * guaranteed) of catching at least one safe prime.
290 	 */
291 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
292 
293 	/*
294 	 * Need idea of how much memory is available. We don't have to use all
295 	 * of it.
296 	 */
297 	if (largememory > LARGE_MAXIMUM) {
298 		logit("Limited memory: %u MB; limit %lu MB",
299 		    largememory, LARGE_MAXIMUM);
300 		largememory = LARGE_MAXIMUM;
301 	}
302 
303 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
304 		logit("Increased memory: %u MB; need %u bytes",
305 		    largememory, (largewords << SHIFT_BYTE));
306 		largewords = (largememory << SHIFT_MEGAWORD);
307 	} else if (largememory > 0) {
308 		logit("Decreased memory: %u MB; want %u bytes",
309 		    largememory, (largewords << SHIFT_BYTE));
310 		largewords = (largememory << SHIFT_MEGAWORD);
311 	}
312 
313 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
314 	tinybits = tinywords << SHIFT_WORD;
315 
316 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
317 	smallbits = smallwords << SHIFT_WORD;
318 
319 	/*
320 	 * dynamically determine available memory
321 	 */
322 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
323 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
324 
325 	largebits = largewords << SHIFT_WORD;
326 	largenumbers = largebits * 2;	/* even numbers excluded */
327 
328 	/* validation check: count the number of primes tried */
329 	largetries = 0;
330 	if ((q = BN_new()) == NULL)
331 		fatal("BN_new failed");
332 
333 	/*
334 	 * Generate random starting point for subprime search, or use
335 	 * specified parameter.
336 	 */
337 	if ((largebase = BN_new()) == NULL)
338 		fatal("BN_new failed");
339 	if (start == NULL) {
340 		if (BN_rand(largebase, power, 1, 1) == 0)
341 			fatal("BN_rand failed");
342 	} else {
343 		if (BN_copy(largebase, start) == NULL)
344 			fatal("BN_copy: failed");
345 	}
346 
347 	/* ensure odd */
348 	if (BN_set_bit(largebase, 0) == 0)
349 		fatal("BN_set_bit: failed");
350 
351 	time(&time_start);
352 
353 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
354 	    largenumbers, power);
355 	debug2("start point: 0x%s", BN_bn2hex(largebase));
356 
357 	/*
358 	 * TinySieve
359 	 */
360 	for (i = 0; i < tinybits; i++) {
361 		if (BIT_TEST(TinySieve, i))
362 			continue; /* 2*i+3 is composite */
363 
364 		/* The next tiny prime */
365 		t = 2 * i + 3;
366 
367 		/* Mark all multiples of t */
368 		for (j = i + t; j < tinybits; j += t)
369 			BIT_SET(TinySieve, j);
370 
371 		sieve_large(t);
372 	}
373 
374 	/*
375 	 * Start the small block search at the next possible prime. To avoid
376 	 * fencepost errors, the last pass is skipped.
377 	 */
378 	for (smallbase = TINY_NUMBER + 3;
379 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
380 	    smallbase += TINY_NUMBER) {
381 		for (i = 0; i < tinybits; i++) {
382 			if (BIT_TEST(TinySieve, i))
383 				continue; /* 2*i+3 is composite */
384 
385 			/* The next tiny prime */
386 			t = 2 * i + 3;
387 			r = smallbase % t;
388 
389 			if (r == 0) {
390 				s = 0; /* t divides into smallbase exactly */
391 			} else {
392 				/* smallbase+s is first entry divisible by t */
393 				s = t - r;
394 			}
395 
396 			/*
397 			 * The sieve omits even numbers, so ensure that
398 			 * smallbase+s is odd. Then, step through the sieve
399 			 * in increments of 2*t
400 			 */
401 			if (s & 1)
402 				s += t; /* Make smallbase+s odd, and s even */
403 
404 			/* Mark all multiples of 2*t */
405 			for (s /= 2; s < smallbits; s += t)
406 				BIT_SET(SmallSieve, s);
407 		}
408 
409 		/*
410 		 * SmallSieve
411 		 */
412 		for (i = 0; i < smallbits; i++) {
413 			if (BIT_TEST(SmallSieve, i))
414 				continue; /* 2*i+smallbase is composite */
415 
416 			/* The next small prime */
417 			sieve_large((2 * i) + smallbase);
418 		}
419 
420 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
421 	}
422 
423 	time(&time_stop);
424 
425 	logit("%.24s Sieved with %u small primes in %ld seconds",
426 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
427 
428 	for (j = r = 0; j < largebits; j++) {
429 		if (BIT_TEST(LargeSieve, j))
430 			continue; /* Definitely composite, skip */
431 
432 		debug2("test q = largebase+%u", 2 * j);
433 		if (BN_set_word(q, 2 * j) == 0)
434 			fatal("BN_set_word failed");
435 		if (BN_add(q, q, largebase) == 0)
436 			fatal("BN_add failed");
437 		if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
438 		    largetries, (power - 1) /* MSB */, (0), q) == -1) {
439 			ret = -1;
440 			break;
441 		}
442 
443 		r++; /* count q */
444 	}
445 
446 	time(&time_stop);
447 
448 	xfree(LargeSieve);
449 	xfree(SmallSieve);
450 	xfree(TinySieve);
451 
452 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
453 
454 	return (ret);
455 }
456 
457 /*
458  * perform a Miller-Rabin primality test
459  * on the list of candidates
460  * (checking both q and p)
461  * The result is a list of so-call "safe" primes
462  */
463 int
464 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
465 {
466 	BIGNUM *q, *p, *a;
467 	BN_CTX *ctx;
468 	char *cp, *lp;
469 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
470 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
471 	time_t time_start, time_stop;
472 	int res;
473 
474 	if (trials < TRIAL_MINIMUM) {
475 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
476 		return (-1);
477 	}
478 
479 	time(&time_start);
480 
481 	if ((p = BN_new()) == NULL)
482 		fatal("BN_new failed");
483 	if ((q = BN_new()) == NULL)
484 		fatal("BN_new failed");
485 	if ((ctx = BN_CTX_new()) == NULL)
486 		fatal("BN_CTX_new failed");
487 
488 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
489 	    ctime(&time_start), trials, generator_wanted);
490 
491 	res = 0;
492 	lp = xmalloc(QLINESIZE + 1);
493 	while (fgets(lp, QLINESIZE, in) != NULL) {
494 		int ll = strlen(lp);
495 
496 		count_in++;
497 		if (ll < 14 || *lp == '!' || *lp == '#') {
498 			debug2("%10u: comment or short line", count_in);
499 			continue;
500 		}
501 
502 		/* XXX - fragile parser */
503 		/* time */
504 		cp = &lp[14];	/* (skip) */
505 
506 		/* type */
507 		in_type = strtoul(cp, &cp, 10);
508 
509 		/* tests */
510 		in_tests = strtoul(cp, &cp, 10);
511 
512 		if (in_tests & QTEST_COMPOSITE) {
513 			debug2("%10u: known composite", count_in);
514 			continue;
515 		}
516 
517 		/* tries */
518 		in_tries = strtoul(cp, &cp, 10);
519 
520 		/* size (most significant bit) */
521 		in_size = strtoul(cp, &cp, 10);
522 
523 		/* generator (hex) */
524 		generator_known = strtoul(cp, &cp, 16);
525 
526 		/* Skip white space */
527 		cp += strspn(cp, " ");
528 
529 		/* modulus (hex) */
530 		switch (in_type) {
531 		case QTYPE_SOPHIE_GERMAIN:
532 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
533 			a = q;
534 			if (BN_hex2bn(&a, cp) == 0)
535 				fatal("BN_hex2bn failed");
536 			/* p = 2*q + 1 */
537 			if (BN_lshift(p, q, 1) == 0)
538 				fatal("BN_lshift failed");
539 			if (BN_add_word(p, 1) == 0)
540 				fatal("BN_add_word failed");
541 			in_size += 1;
542 			generator_known = 0;
543 			break;
544 		case QTYPE_UNSTRUCTURED:
545 		case QTYPE_SAFE:
546 		case QTYPE_SCHNORR:
547 		case QTYPE_STRONG:
548 		case QTYPE_UNKNOWN:
549 			debug2("%10u: (%u)", count_in, in_type);
550 			a = p;
551 			if (BN_hex2bn(&a, cp) == 0)
552 				fatal("BN_hex2bn failed");
553 			/* q = (p-1) / 2 */
554 			if (BN_rshift(q, p, 1) == 0)
555 				fatal("BN_rshift failed");
556 			break;
557 		default:
558 			debug2("Unknown prime type");
559 			break;
560 		}
561 
562 		/*
563 		 * due to earlier inconsistencies in interpretation, check
564 		 * the proposed bit size.
565 		 */
566 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
567 			debug2("%10u: bit size %u mismatch", count_in, in_size);
568 			continue;
569 		}
570 		if (in_size < QSIZE_MINIMUM) {
571 			debug2("%10u: bit size %u too short", count_in, in_size);
572 			continue;
573 		}
574 
575 		if (in_tests & QTEST_MILLER_RABIN)
576 			in_tries += trials;
577 		else
578 			in_tries = trials;
579 
580 		/*
581 		 * guess unknown generator
582 		 */
583 		if (generator_known == 0) {
584 			if (BN_mod_word(p, 24) == 11)
585 				generator_known = 2;
586 			else if (BN_mod_word(p, 12) == 5)
587 				generator_known = 3;
588 			else {
589 				u_int32_t r = BN_mod_word(p, 10);
590 
591 				if (r == 3 || r == 7)
592 					generator_known = 5;
593 			}
594 		}
595 		/*
596 		 * skip tests when desired generator doesn't match
597 		 */
598 		if (generator_wanted > 0 &&
599 		    generator_wanted != generator_known) {
600 			debug2("%10u: generator %d != %d",
601 			    count_in, generator_known, generator_wanted);
602 			continue;
603 		}
604 
605 		/*
606 		 * Primes with no known generator are useless for DH, so
607 		 * skip those.
608 		 */
609 		if (generator_known == 0) {
610 			debug2("%10u: no known generator", count_in);
611 			continue;
612 		}
613 
614 		count_possible++;
615 
616 		/*
617 		 * The (1/4)^N performance bound on Miller-Rabin is
618 		 * extremely pessimistic, so don't spend a lot of time
619 		 * really verifying that q is prime until after we know
620 		 * that p is also prime. A single pass will weed out the
621 		 * vast majority of composite q's.
622 		 */
623 		if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
624 			debug("%10u: q failed first possible prime test",
625 			    count_in);
626 			continue;
627 		}
628 
629 		/*
630 		 * q is possibly prime, so go ahead and really make sure
631 		 * that p is prime. If it is, then we can go back and do
632 		 * the same for q. If p is composite, chances are that
633 		 * will show up on the first Rabin-Miller iteration so it
634 		 * doesn't hurt to specify a high iteration count.
635 		 */
636 		if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
637 			debug("%10u: p is not prime", count_in);
638 			continue;
639 		}
640 		debug("%10u: p is almost certainly prime", count_in);
641 
642 		/* recheck q more rigorously */
643 		if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
644 			debug("%10u: q is not prime", count_in);
645 			continue;
646 		}
647 		debug("%10u: q is almost certainly prime", count_in);
648 
649 		if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
650 		    in_tries, in_size, generator_known, p)) {
651 			res = -1;
652 			break;
653 		}
654 
655 		count_out++;
656 	}
657 
658 	time(&time_stop);
659 	xfree(lp);
660 	BN_free(p);
661 	BN_free(q);
662 	BN_CTX_free(ctx);
663 
664 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
665 	    ctime(&time_stop), count_out, count_possible,
666 	    (long) (time_stop - time_start));
667 
668 	return (res);
669 }
670