xref: /freebsd/crypto/openssh/moduli.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /* $OpenBSD: moduli.c,v 1.21 2008/06/26 09:19:40 djm Exp $ */
2 /*
3  * Copyright 1994 Phil Karn <karn@qualcomm.com>
4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Two-step process to generate safe primes for DHGEX
31  *
32  *  Sieve candidates for "safe" primes,
33  *  suitable for use as Diffie-Hellman moduli;
34  *  that is, where q = (p-1)/2 is also prime.
35  *
36  * First step: generate candidate primes (memory intensive)
37  * Second step: test primes' safety (processor intensive)
38  */
39 
40 #include "includes.h"
41 
42 #include <sys/types.h>
43 
44 #include <openssl/bn.h>
45 #include <openssl/dh.h>
46 
47 #include <stdio.h>
48 #include <stdlib.h>
49 #include <string.h>
50 #include <stdarg.h>
51 #include <time.h>
52 
53 #include "xmalloc.h"
54 #include "dh.h"
55 #include "log.h"
56 
57 /*
58  * File output defines
59  */
60 
61 /* need line long enough for largest moduli plus headers */
62 #define QLINESIZE		(100+8192)
63 
64 /*
65  * Size: decimal.
66  * Specifies the number of the most significant bit (0 to M).
67  * WARNING: internally, usually 1 to N.
68  */
69 #define QSIZE_MINIMUM		(511)
70 
71 /*
72  * Prime sieving defines
73  */
74 
75 /* Constant: assuming 8 bit bytes and 32 bit words */
76 #define SHIFT_BIT	(3)
77 #define SHIFT_BYTE	(2)
78 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
79 #define SHIFT_MEGABYTE	(20)
80 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
81 
82 /*
83  * Using virtual memory can cause thrashing.  This should be the largest
84  * number that is supported without a large amount of disk activity --
85  * that would increase the run time from hours to days or weeks!
86  */
87 #define LARGE_MINIMUM	(8UL)	/* megabytes */
88 
89 /*
90  * Do not increase this number beyond the unsigned integer bit size.
91  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
92  */
93 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
94 
95 /*
96  * Constant: when used with 32-bit integers, the largest sieve prime
97  * has to be less than 2**32.
98  */
99 #define SMALL_MAXIMUM	(0xffffffffUL)
100 
101 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
102 #define TINY_NUMBER	(1UL<<16)
103 
104 /* Ensure enough bit space for testing 2*q. */
105 #define TEST_MAXIMUM	(1UL<<16)
106 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
107 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
108 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
109 
110 /* bit operations on 32-bit words */
111 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
112 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
113 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
114 
115 /*
116  * Prime testing defines
117  */
118 
119 /* Minimum number of primality tests to perform */
120 #define TRIAL_MINIMUM	(4)
121 
122 /*
123  * Sieving data (XXX - move to struct)
124  */
125 
126 /* sieve 2**16 */
127 static u_int32_t *TinySieve, tinybits;
128 
129 /* sieve 2**30 in 2**16 parts */
130 static u_int32_t *SmallSieve, smallbits, smallbase;
131 
132 /* sieve relative to the initial value */
133 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
134 static u_int32_t largebits, largememory;	/* megabytes */
135 static BIGNUM *largebase;
136 
137 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
138 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
139 
140 /*
141  * print moduli out in consistent form,
142  */
143 static int
144 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
145     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
146 {
147 	struct tm *gtm;
148 	time_t time_now;
149 	int res;
150 
151 	time(&time_now);
152 	gtm = gmtime(&time_now);
153 
154 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
155 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
156 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
157 	    otype, otests, otries, osize, ogenerator);
158 
159 	if (res < 0)
160 		return (-1);
161 
162 	if (BN_print_fp(ofile, omodulus) < 1)
163 		return (-1);
164 
165 	res = fprintf(ofile, "\n");
166 	fflush(ofile);
167 
168 	return (res > 0 ? 0 : -1);
169 }
170 
171 
172 /*
173  ** Sieve p's and q's with small factors
174  */
175 static void
176 sieve_large(u_int32_t s)
177 {
178 	u_int32_t r, u;
179 
180 	debug3("sieve_large %u", s);
181 	largetries++;
182 	/* r = largebase mod s */
183 	r = BN_mod_word(largebase, s);
184 	if (r == 0)
185 		u = 0; /* s divides into largebase exactly */
186 	else
187 		u = s - r; /* largebase+u is first entry divisible by s */
188 
189 	if (u < largebits * 2) {
190 		/*
191 		 * The sieve omits p's and q's divisible by 2, so ensure that
192 		 * largebase+u is odd. Then, step through the sieve in
193 		 * increments of 2*s
194 		 */
195 		if (u & 0x1)
196 			u += s; /* Make largebase+u odd, and u even */
197 
198 		/* Mark all multiples of 2*s */
199 		for (u /= 2; u < largebits; u += s)
200 			BIT_SET(LargeSieve, u);
201 	}
202 
203 	/* r = p mod s */
204 	r = (2 * r + 1) % s;
205 	if (r == 0)
206 		u = 0; /* s divides p exactly */
207 	else
208 		u = s - r; /* p+u is first entry divisible by s */
209 
210 	if (u < largebits * 4) {
211 		/*
212 		 * The sieve omits p's divisible by 4, so ensure that
213 		 * largebase+u is not. Then, step through the sieve in
214 		 * increments of 4*s
215 		 */
216 		while (u & 0x3) {
217 			if (SMALL_MAXIMUM - u < s)
218 				return;
219 			u += s;
220 		}
221 
222 		/* Mark all multiples of 4*s */
223 		for (u /= 4; u < largebits; u += s)
224 			BIT_SET(LargeSieve, u);
225 	}
226 }
227 
228 /*
229  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
230  * to standard output.
231  * The list is checked against small known primes (less than 2**30).
232  */
233 int
234 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
235 {
236 	BIGNUM *q;
237 	u_int32_t j, r, s, t;
238 	u_int32_t smallwords = TINY_NUMBER >> 6;
239 	u_int32_t tinywords = TINY_NUMBER >> 6;
240 	time_t time_start, time_stop;
241 	u_int32_t i;
242 	int ret = 0;
243 
244 	largememory = memory;
245 
246 	if (memory != 0 &&
247 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
248 		error("Invalid memory amount (min %ld, max %ld)",
249 		    LARGE_MINIMUM, LARGE_MAXIMUM);
250 		return (-1);
251 	}
252 
253 	/*
254 	 * Set power to the length in bits of the prime to be generated.
255 	 * This is changed to 1 less than the desired safe prime moduli p.
256 	 */
257 	if (power > TEST_MAXIMUM) {
258 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
259 		return (-1);
260 	} else if (power < TEST_MINIMUM) {
261 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
262 		return (-1);
263 	}
264 	power--; /* decrement before squaring */
265 
266 	/*
267 	 * The density of ordinary primes is on the order of 1/bits, so the
268 	 * density of safe primes should be about (1/bits)**2. Set test range
269 	 * to something well above bits**2 to be reasonably sure (but not
270 	 * guaranteed) of catching at least one safe prime.
271 	 */
272 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
273 
274 	/*
275 	 * Need idea of how much memory is available. We don't have to use all
276 	 * of it.
277 	 */
278 	if (largememory > LARGE_MAXIMUM) {
279 		logit("Limited memory: %u MB; limit %lu MB",
280 		    largememory, LARGE_MAXIMUM);
281 		largememory = LARGE_MAXIMUM;
282 	}
283 
284 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
285 		logit("Increased memory: %u MB; need %u bytes",
286 		    largememory, (largewords << SHIFT_BYTE));
287 		largewords = (largememory << SHIFT_MEGAWORD);
288 	} else if (largememory > 0) {
289 		logit("Decreased memory: %u MB; want %u bytes",
290 		    largememory, (largewords << SHIFT_BYTE));
291 		largewords = (largememory << SHIFT_MEGAWORD);
292 	}
293 
294 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
295 	tinybits = tinywords << SHIFT_WORD;
296 
297 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
298 	smallbits = smallwords << SHIFT_WORD;
299 
300 	/*
301 	 * dynamically determine available memory
302 	 */
303 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
304 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
305 
306 	largebits = largewords << SHIFT_WORD;
307 	largenumbers = largebits * 2;	/* even numbers excluded */
308 
309 	/* validation check: count the number of primes tried */
310 	largetries = 0;
311 	if ((q = BN_new()) == NULL)
312 		fatal("BN_new failed");
313 
314 	/*
315 	 * Generate random starting point for subprime search, or use
316 	 * specified parameter.
317 	 */
318 	if ((largebase = BN_new()) == NULL)
319 		fatal("BN_new failed");
320 	if (start == NULL) {
321 		if (BN_rand(largebase, power, 1, 1) == 0)
322 			fatal("BN_rand failed");
323 	} else {
324 		if (BN_copy(largebase, start) == NULL)
325 			fatal("BN_copy: failed");
326 	}
327 
328 	/* ensure odd */
329 	if (BN_set_bit(largebase, 0) == 0)
330 		fatal("BN_set_bit: failed");
331 
332 	time(&time_start);
333 
334 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
335 	    largenumbers, power);
336 	debug2("start point: 0x%s", BN_bn2hex(largebase));
337 
338 	/*
339 	 * TinySieve
340 	 */
341 	for (i = 0; i < tinybits; i++) {
342 		if (BIT_TEST(TinySieve, i))
343 			continue; /* 2*i+3 is composite */
344 
345 		/* The next tiny prime */
346 		t = 2 * i + 3;
347 
348 		/* Mark all multiples of t */
349 		for (j = i + t; j < tinybits; j += t)
350 			BIT_SET(TinySieve, j);
351 
352 		sieve_large(t);
353 	}
354 
355 	/*
356 	 * Start the small block search at the next possible prime. To avoid
357 	 * fencepost errors, the last pass is skipped.
358 	 */
359 	for (smallbase = TINY_NUMBER + 3;
360 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
361 	    smallbase += TINY_NUMBER) {
362 		for (i = 0; i < tinybits; i++) {
363 			if (BIT_TEST(TinySieve, i))
364 				continue; /* 2*i+3 is composite */
365 
366 			/* The next tiny prime */
367 			t = 2 * i + 3;
368 			r = smallbase % t;
369 
370 			if (r == 0) {
371 				s = 0; /* t divides into smallbase exactly */
372 			} else {
373 				/* smallbase+s is first entry divisible by t */
374 				s = t - r;
375 			}
376 
377 			/*
378 			 * The sieve omits even numbers, so ensure that
379 			 * smallbase+s is odd. Then, step through the sieve
380 			 * in increments of 2*t
381 			 */
382 			if (s & 1)
383 				s += t; /* Make smallbase+s odd, and s even */
384 
385 			/* Mark all multiples of 2*t */
386 			for (s /= 2; s < smallbits; s += t)
387 				BIT_SET(SmallSieve, s);
388 		}
389 
390 		/*
391 		 * SmallSieve
392 		 */
393 		for (i = 0; i < smallbits; i++) {
394 			if (BIT_TEST(SmallSieve, i))
395 				continue; /* 2*i+smallbase is composite */
396 
397 			/* The next small prime */
398 			sieve_large((2 * i) + smallbase);
399 		}
400 
401 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
402 	}
403 
404 	time(&time_stop);
405 
406 	logit("%.24s Sieved with %u small primes in %ld seconds",
407 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
408 
409 	for (j = r = 0; j < largebits; j++) {
410 		if (BIT_TEST(LargeSieve, j))
411 			continue; /* Definitely composite, skip */
412 
413 		debug2("test q = largebase+%u", 2 * j);
414 		if (BN_set_word(q, 2 * j) == 0)
415 			fatal("BN_set_word failed");
416 		if (BN_add(q, q, largebase) == 0)
417 			fatal("BN_add failed");
418 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
419 		    MODULI_TESTS_SIEVE, largetries,
420 		    (power - 1) /* MSB */, (0), q) == -1) {
421 			ret = -1;
422 			break;
423 		}
424 
425 		r++; /* count q */
426 	}
427 
428 	time(&time_stop);
429 
430 	xfree(LargeSieve);
431 	xfree(SmallSieve);
432 	xfree(TinySieve);
433 
434 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
435 
436 	return (ret);
437 }
438 
439 /*
440  * perform a Miller-Rabin primality test
441  * on the list of candidates
442  * (checking both q and p)
443  * The result is a list of so-call "safe" primes
444  */
445 int
446 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
447 {
448 	BIGNUM *q, *p, *a;
449 	BN_CTX *ctx;
450 	char *cp, *lp;
451 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
452 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
453 	time_t time_start, time_stop;
454 	int res;
455 
456 	if (trials < TRIAL_MINIMUM) {
457 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
458 		return (-1);
459 	}
460 
461 	time(&time_start);
462 
463 	if ((p = BN_new()) == NULL)
464 		fatal("BN_new failed");
465 	if ((q = BN_new()) == NULL)
466 		fatal("BN_new failed");
467 	if ((ctx = BN_CTX_new()) == NULL)
468 		fatal("BN_CTX_new failed");
469 
470 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
471 	    ctime(&time_start), trials, generator_wanted);
472 
473 	res = 0;
474 	lp = xmalloc(QLINESIZE + 1);
475 	while (fgets(lp, QLINESIZE + 1, in) != NULL) {
476 		count_in++;
477 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
478 			debug2("%10u: comment or short line", count_in);
479 			continue;
480 		}
481 
482 		/* XXX - fragile parser */
483 		/* time */
484 		cp = &lp[14];	/* (skip) */
485 
486 		/* type */
487 		in_type = strtoul(cp, &cp, 10);
488 
489 		/* tests */
490 		in_tests = strtoul(cp, &cp, 10);
491 
492 		if (in_tests & MODULI_TESTS_COMPOSITE) {
493 			debug2("%10u: known composite", count_in);
494 			continue;
495 		}
496 
497 		/* tries */
498 		in_tries = strtoul(cp, &cp, 10);
499 
500 		/* size (most significant bit) */
501 		in_size = strtoul(cp, &cp, 10);
502 
503 		/* generator (hex) */
504 		generator_known = strtoul(cp, &cp, 16);
505 
506 		/* Skip white space */
507 		cp += strspn(cp, " ");
508 
509 		/* modulus (hex) */
510 		switch (in_type) {
511 		case MODULI_TYPE_SOPHIE_GERMAIN:
512 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
513 			a = q;
514 			if (BN_hex2bn(&a, cp) == 0)
515 				fatal("BN_hex2bn failed");
516 			/* p = 2*q + 1 */
517 			if (BN_lshift(p, q, 1) == 0)
518 				fatal("BN_lshift failed");
519 			if (BN_add_word(p, 1) == 0)
520 				fatal("BN_add_word failed");
521 			in_size += 1;
522 			generator_known = 0;
523 			break;
524 		case MODULI_TYPE_UNSTRUCTURED:
525 		case MODULI_TYPE_SAFE:
526 		case MODULI_TYPE_SCHNORR:
527 		case MODULI_TYPE_STRONG:
528 		case MODULI_TYPE_UNKNOWN:
529 			debug2("%10u: (%u)", count_in, in_type);
530 			a = p;
531 			if (BN_hex2bn(&a, cp) == 0)
532 				fatal("BN_hex2bn failed");
533 			/* q = (p-1) / 2 */
534 			if (BN_rshift(q, p, 1) == 0)
535 				fatal("BN_rshift failed");
536 			break;
537 		default:
538 			debug2("Unknown prime type");
539 			break;
540 		}
541 
542 		/*
543 		 * due to earlier inconsistencies in interpretation, check
544 		 * the proposed bit size.
545 		 */
546 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
547 			debug2("%10u: bit size %u mismatch", count_in, in_size);
548 			continue;
549 		}
550 		if (in_size < QSIZE_MINIMUM) {
551 			debug2("%10u: bit size %u too short", count_in, in_size);
552 			continue;
553 		}
554 
555 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
556 			in_tries += trials;
557 		else
558 			in_tries = trials;
559 
560 		/*
561 		 * guess unknown generator
562 		 */
563 		if (generator_known == 0) {
564 			if (BN_mod_word(p, 24) == 11)
565 				generator_known = 2;
566 			else if (BN_mod_word(p, 12) == 5)
567 				generator_known = 3;
568 			else {
569 				u_int32_t r = BN_mod_word(p, 10);
570 
571 				if (r == 3 || r == 7)
572 					generator_known = 5;
573 			}
574 		}
575 		/*
576 		 * skip tests when desired generator doesn't match
577 		 */
578 		if (generator_wanted > 0 &&
579 		    generator_wanted != generator_known) {
580 			debug2("%10u: generator %d != %d",
581 			    count_in, generator_known, generator_wanted);
582 			continue;
583 		}
584 
585 		/*
586 		 * Primes with no known generator are useless for DH, so
587 		 * skip those.
588 		 */
589 		if (generator_known == 0) {
590 			debug2("%10u: no known generator", count_in);
591 			continue;
592 		}
593 
594 		count_possible++;
595 
596 		/*
597 		 * The (1/4)^N performance bound on Miller-Rabin is
598 		 * extremely pessimistic, so don't spend a lot of time
599 		 * really verifying that q is prime until after we know
600 		 * that p is also prime. A single pass will weed out the
601 		 * vast majority of composite q's.
602 		 */
603 		if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
604 			debug("%10u: q failed first possible prime test",
605 			    count_in);
606 			continue;
607 		}
608 
609 		/*
610 		 * q is possibly prime, so go ahead and really make sure
611 		 * that p is prime. If it is, then we can go back and do
612 		 * the same for q. If p is composite, chances are that
613 		 * will show up on the first Rabin-Miller iteration so it
614 		 * doesn't hurt to specify a high iteration count.
615 		 */
616 		if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
617 			debug("%10u: p is not prime", count_in);
618 			continue;
619 		}
620 		debug("%10u: p is almost certainly prime", count_in);
621 
622 		/* recheck q more rigorously */
623 		if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
624 			debug("%10u: q is not prime", count_in);
625 			continue;
626 		}
627 		debug("%10u: q is almost certainly prime", count_in);
628 
629 		if (qfileout(out, MODULI_TYPE_SAFE,
630 		    in_tests | MODULI_TESTS_MILLER_RABIN,
631 		    in_tries, in_size, generator_known, p)) {
632 			res = -1;
633 			break;
634 		}
635 
636 		count_out++;
637 	}
638 
639 	time(&time_stop);
640 	xfree(lp);
641 	BN_free(p);
642 	BN_free(q);
643 	BN_CTX_free(ctx);
644 
645 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
646 	    ctime(&time_stop), count_out, count_possible,
647 	    (long) (time_stop - time_start));
648 
649 	return (res);
650 }
651