xref: /freebsd/crypto/libecc/src/nn/nn_mul.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/nn/nn_add.h>
17 #include <libecc/nn/nn.h>
18 /* Use internal API header */
19 #include "nn_mul.h"
20 
21 /*
22  * Compute out = (in1 * in2) & (2^(WORD_BYTES * wlimits) - 1).
23  *
24  * The function is constant time for all sets of parameters of given
25  * lengths.
26  *
27  * Implementation: while most generic library implement some advanced
28  * algorithm (Karatsuba, Toom-Cook, or FFT based algorithms)
29  * which provide a performance advantage for large numbers, the code
30  * below is mainly oriented towards simplicity and readibility. It is
31  * a direct writing of the naive multiplication algorithm one has
32  * learned in school.
33  *
34  * Portability: in order for the code to be portable, all word by
35  * word multiplication are actually performed by an helper macro
36  * on half words.
37  *
38  * Note: 'out' is initialized by the function (caller can omit it)
39  *
40  * Internal use only. Check on input nn left to the caller.
41  *
42  * The function returns 0 on succes, -1 on error.
43  */
44 ATTRIBUTE_WARN_UNUSED_RET static int _nn_mul_low(nn_t out, nn_src_t in1, nn_src_t in2,
45 			u8 wlimit)
46 {
47 	word_t carry, prod_high, prod_low;
48 	u8 i, j, pos;
49 	int ret;
50 
51 	/* We have to check that wlimit does not exceed our NN_MAX_WORD_LEN */
52 	MUST_HAVE(((wlimit * WORD_BYTES) <= NN_MAX_BYTE_LEN), ret, err);
53 
54 	ret = nn_init(out, (u16)(wlimit * WORD_BYTES)); EG(ret, err);
55 
56 	for (i = 0; i < in1->wlen; i++) {
57 		carry = 0;
58 		pos = 0;
59 
60 		for (j = 0; j < in2->wlen; j++) {
61 			pos = (u8)(i + j);
62 
63 			/*
64 			 * size of the result provided by the caller may not
65 			 * be large enough for what multiplication may
66 			 * generate.
67 			 */
68 			if (pos >= wlimit) {
69 				continue;
70 			}
71 
72 			/*
73 			 * Compute the result of the multiplication of
74 			 * two words.
75 			 */
76 			WORD_MUL(prod_high, prod_low,
77 				 in1->val[i], in2->val[j]);
78 			/*
79 			 * And add previous carry.
80 			 */
81 			prod_low  = (word_t)(prod_low + carry);
82 			prod_high = (word_t)(prod_high + (prod_low < carry));
83 
84 			/*
85 			 * Add computed word to what we can currently
86 			 * find at current position in result.
87 			 */
88 			out->val[pos] = (word_t)(out->val[pos] + prod_low);
89 			carry = (word_t)(prod_high + (out->val[pos] < prod_low));
90 		}
91 
92 		/*
93 		 * What remains in acc_high at end of previous loop should
94 		 * be added to next word after pos in result.
95 		 */
96 		if ((pos + 1) < wlimit) {
97 			out->val[pos + 1] = (word_t)(out->val[pos + 1] + carry);
98 		}
99 	}
100 
101 err:
102 	return ret;
103 }
104 
105 /* Aliased version. Internal use only. Check on input nn left to the caller */
106 ATTRIBUTE_WARN_UNUSED_RET static int _nn_mul_low_aliased(nn_t out, nn_src_t in1, nn_src_t in2,
107 			       u8 wlimit)
108 {
109 	nn out_cpy;
110 	int ret;
111 	out_cpy.magic = WORD(0);
112 
113 	ret = _nn_mul_low(&out_cpy, in1, in2, wlimit); EG(ret, err);
114 	ret = nn_init(out, out_cpy.wlen); EG(ret, err);
115 	ret = nn_copy(out, &out_cpy);
116 
117 err:
118 	nn_uninit(&out_cpy);
119 
120 	return ret;
121 }
122 
123 /* Public version supporting aliasing. */
124 int nn_mul_low(nn_t out, nn_src_t in1, nn_src_t in2, u8 wlimit)
125 {
126 	int ret;
127 
128 	ret = nn_check_initialized(in1); EG(ret, err);
129 	ret = nn_check_initialized(in2); EG(ret, err);
130 
131 	/* Handle output aliasing */
132 	if ((out == in1) || (out == in2)) {
133 		ret = _nn_mul_low_aliased(out, in1, in2, wlimit);
134 	} else {
135 		ret = _nn_mul_low(out, in1, in2, wlimit);
136 	}
137 
138 err:
139 	return ret;
140 }
141 
142 /*
143  * Compute out = in1 * in2. 'out' is initialized by the function.
144  * The function returns 0 on success, -1 on error.
145  *
146  * Aliasing supported.
147  */
148 int nn_mul(nn_t out, nn_src_t in1, nn_src_t in2)
149 {
150 	int ret;
151 
152 	ret = nn_check_initialized(in1); EG(ret, err);
153 	ret = nn_check_initialized(in2); EG(ret, err);
154 	ret = nn_mul_low(out, in1, in2, (u8)(in1->wlen + in2->wlen));
155 
156 err:
157 	return ret;
158 }
159 
160 int nn_sqr_low(nn_t out, nn_src_t in, u8 wlimit)
161 {
162 	return nn_mul_low(out, in, in, wlimit);
163 }
164 
165 /*
166  * Compute out = in * in. 'out' is initialized by the function.
167  * The function returns 0 on success, -1 on error.
168  *
169  * Aliasing supported.
170  */
171 int nn_sqr(nn_t out, nn_src_t in)
172 {
173 	return nn_mul(out, in, in);
174 }
175 
176 /*
177  * Multiply a multiprecision number by a word, i.e. out = in * w. The function
178  * returns 0 on success, -1 on error.
179  *
180  * Aliasing supported.
181  */
182 int nn_mul_word(nn_t out, nn_src_t in, word_t w)
183 {
184 	nn w_nn;
185 	int ret;
186 	w_nn.magic = WORD(0);
187 
188 	ret = nn_check_initialized(in); EG(ret, err);
189 	ret = nn_init(&w_nn, WORD_BYTES); EG(ret, err);
190 	w_nn.val[0] = w;
191 	ret = nn_mul(out, in, &w_nn);
192 
193 err:
194 	nn_uninit(&w_nn);
195 
196 	return ret;
197 }
198