xref: /freebsd/crypto/libecc/src/nn/nn_modinv.c (revision 05427f4639bcf2703329a9be9d25ec09bb782742)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/nn/nn_modinv.h>
17 #include <libecc/nn/nn_div_public.h>
18 #include <libecc/nn/nn_logical.h>
19 #include <libecc/nn/nn_add.h>
20 #include <libecc/nn/nn_mod_pow.h>
21 #include <libecc/nn/nn.h>
22 /* Include the "internal" header as we use non public API here */
23 #include "../nn/nn_mul.h"
24 
25 /*
26  * Compute out = x^-1 mod m, i.e. out such that (out * x) = 1 mod m
27  * out is initialized by the function, i.e. caller needs not initialize
28  * it; only provide the associated storage space. Done in *constant
29  * time* if underlying routines are.
30  *
31  * Asserts that m is odd and that x is smaller than m.
32  * This second condition is not strictly necessary,
33  * but it allows to perform all operations on nn's of the same length,
34  * namely the length of m.
35  *
36  * Uses a binary xgcd algorithm,
37  * only keeps track of coefficient for inverting x,
38  * and performs reduction modulo m at each step.
39  *
40  * This does not normalize out on return.
41  *
42  * 0 is returned on success (everything went ok and x has reciprocal), -1
43  * on error or if x has no reciprocal. On error, out is not meaningful.
44  *
45  * The function is an internal helper: caller MUST check params have been
46  * initialized, i.e. this is not done by the function.
47  *
48  */
49 ATTRIBUTE_WARN_UNUSED_RET static int _nn_modinv_odd(nn_t out, nn_src_t x, nn_src_t m)
50 {
51 	int isodd, swap, smaller, ret, cmp, iszero, tmp_isodd;
52 	nn a, b, u, tmp, mp1d2;
53 	nn_t uu = out;
54 	bitcnt_t cnt;
55 	a.magic = b.magic = u.magic = tmp.magic = mp1d2.magic = WORD(0);
56 
57 	ret = nn_init(out, 0); EG(ret, err);
58 	ret = nn_init(&a, (u16)(m->wlen * WORD_BYTES)); EG(ret, err);
59 	ret = nn_init(&b, (u16)(m->wlen * WORD_BYTES)); EG(ret, err);
60 	ret = nn_init(&u, (u16)(m->wlen * WORD_BYTES)); EG(ret, err);
61 	ret = nn_init(&mp1d2, (u16)(m->wlen * WORD_BYTES)); EG(ret, err);
62 	/*
63 	 * Temporary space needed to only deal with positive stuff.
64 	 */
65 	ret = nn_init(&tmp, (u16)(m->wlen * WORD_BYTES)); EG(ret, err);
66 
67 	MUST_HAVE((!nn_isodd(m, &isodd)) && isodd, ret, err);
68 	MUST_HAVE((!nn_cmp(x, m, &cmp)) && (cmp < 0), ret, err);
69 	MUST_HAVE((!nn_iszero(x, &iszero)) && (!iszero), ret, err);
70 
71 	/*
72 	 * Maintain:
73 	 *
74 	 * a = u * x (mod m)
75 	 * b = uu * x (mod m)
76 	 *
77 	 * and b odd at all times. Initially,
78 	 *
79 	 * a = x, u = 1
80 	 * b = m, uu = 0
81 	 */
82 	ret = nn_copy(&a, x); EG(ret, err);
83 	ret = nn_set_wlen(&a, m->wlen); EG(ret, err);
84 	ret = nn_copy(&b, m); EG(ret, err);
85 	ret = nn_one(&u); EG(ret, err);
86 	ret = nn_zero(uu); EG(ret, err);
87 
88 	/*
89 	 * The lengths of u and uu should not affect constant timeness but it
90 	 * does not hurt to set them already.
91 	 * They will always be strictly smaller than m.
92 	 */
93 	ret = nn_set_wlen(&u, m->wlen); EG(ret, err);
94 	ret = nn_set_wlen(uu, m->wlen); EG(ret, err);
95 
96 	/*
97 	 * Precompute inverse of 2 mod m:
98 	 *	2^-1 = (m+1)/2
99 	 * computed as (m >> 1) + 1.
100 	 */
101 	ret = nn_rshift_fixedlen(&mp1d2, m, 1); EG(ret, err);
102 
103 	ret = nn_inc(&mp1d2, &mp1d2); EG(ret, err); /* no carry can occur here
104 						       because of prev. shift */
105 
106 	cnt = (bitcnt_t)((a.wlen + b.wlen) * WORD_BITS);
107 	while (cnt > 0) {
108 		cnt = (bitcnt_t)(cnt - 1);
109 		/*
110 		 * Always maintain b odd. The logic of the iteration is as
111 		 * follows.
112 		 */
113 
114 		/*
115 		 * For a, b:
116 		 *
117 		 * odd = a & 1
118 		 * swap = odd & (a < b)
119 		 * if (swap)
120 		 *      swap(a, b)
121 		 * if (odd)
122 		 *      a -= b
123 		 * a /= 2
124 		 */
125 
126 		MUST_HAVE((!nn_isodd(&b, &tmp_isodd)) && tmp_isodd, ret, err);
127 
128 		ret = nn_isodd(&a, &isodd); EG(ret, err);
129 		ret = nn_cmp(&a, &b, &cmp); EG(ret, err);
130 		swap = isodd & (cmp == -1);
131 
132 		ret = nn_cnd_swap(swap, &a, &b); EG(ret, err);
133 		ret = nn_cnd_sub(isodd, &a, &a, &b); EG(ret, err);
134 
135 		MUST_HAVE((!nn_isodd(&a, &tmp_isodd)) && (!tmp_isodd), ret, err); /* a is now even */
136 
137 		ret = nn_rshift_fixedlen(&a, &a, 1);  EG(ret, err);/* division by 2 */
138 
139 		/*
140 		 * For u, uu:
141 		 *
142 		 * if (swap)
143 		 *      swap u, uu
144 		 * smaller = (u < uu)
145 		 * if (odd)
146 		 *      if (smaller)
147 		 *              u += m - uu
148 		 *      else
149 		 *              u -= uu
150 		 * u >>= 1
151 		 * if (u was odd)
152 		 *      u += (m+1)/2
153 		 */
154 		ret = nn_cnd_swap(swap, &u, uu); EG(ret, err);
155 
156 		/* This parameter is used to avoid handling negative numbers. */
157 		ret = nn_cmp(&u, uu, &cmp); EG(ret, err);
158 		smaller = (cmp == -1);
159 
160 		/* Computation of 'm - uu' can always be performed. */
161 		ret = nn_sub(&tmp, m, uu); EG(ret, err);
162 
163 		/* Selection btw 'm-uu' and '-uu' is made by the following function calls. */
164 		ret = nn_cnd_add(isodd & smaller, &u, &u, &tmp); EG(ret, err); /* no carry can occur as 'u+(m-uu) = m-(uu-u) < m' */
165 		ret = nn_cnd_sub(isodd & (!smaller), &u, &u, uu); EG(ret, err);
166 
167 		/* Divide u by 2 */
168 		ret = nn_isodd(&u, &isodd); EG(ret, err);
169 		ret = nn_rshift_fixedlen(&u, &u, 1); EG(ret, err);
170 		ret = nn_cnd_add(isodd, &u, &u, &mp1d2); EG(ret, err); /* no carry can occur as u=1+u' with u'<m-1 and u' even so u'/2+(m+1)/2<(m-1)/2+(m+1)/2=m */
171 
172 		MUST_HAVE((!nn_cmp(&u, m, &cmp)) && (cmp < 0), ret, err);
173 		MUST_HAVE((!nn_cmp(uu, m, &cmp)) && (cmp < 0), ret, err);
174 
175 		/*
176 		 * As long as a > 0, the quantity
177 		 * (bitsize of a) + (bitsize of b)
178 		 * is reduced by at least one bit per iteration,
179 		 * hence after (bitsize of x) + (bitsize of m) - 1
180 		 * iterations we surely have a = 0. Then b = gcd(x, m)
181 		 * and if b = 1 then also uu = x^{-1} (mod m).
182 		 */
183 	}
184 
185 	MUST_HAVE((!nn_iszero(&a, &iszero)) && iszero, ret, err);
186 
187 	/* Check that gcd is one. */
188 	ret = nn_cmp_word(&b, WORD(1), &cmp); EG(ret, err);
189 
190 	/* If not, set "inverse" to zero. */
191 	ret = nn_cnd_sub(cmp != 0, uu, uu, uu); EG(ret, err);
192 
193 	ret = cmp ? -1 : 0;
194 
195 err:
196 	nn_uninit(&a);
197 	nn_uninit(&b);
198 	nn_uninit(&u);
199 	nn_uninit(&mp1d2);
200 	nn_uninit(&tmp);
201 
202 	PTR_NULLIFY(uu);
203 
204 	return ret;
205 }
206 
207 /*
208  * Same as above without restriction on m.
209  * No attempt to make it constant time.
210  * Uses the above constant-time binary xgcd when m is odd
211  * and a not constant time plain Euclidean xgcd when m is even.
212  *
213  * _out parameter need not be initialized; this will be done by the function.
214  * x and m must be initialized nn.
215  *
216  * Return -1 on error or if if x has no reciprocal modulo m. out is zeroed.
217  * Return  0 if x has reciprocal modulo m.
218  *
219  * The function supports aliasing.
220  */
221 int nn_modinv(nn_t _out, nn_src_t x, nn_src_t m)
222 {
223 	int sign, ret, cmp, isodd, isone;
224 	nn_t x_mod_m;
225 	nn u, v, out; /* Out to support aliasing */
226 	out.magic = u.magic = v.magic = WORD(0);
227 
228 	ret = nn_check_initialized(x); EG(ret, err);
229 	ret = nn_check_initialized(m); EG(ret, err);
230 
231 	/* Initialize out */
232 	ret = nn_init(&out, 0); EG(ret, err);
233 	ret = nn_isodd(m, &isodd); EG(ret, err);
234 	if (isodd) {
235 		ret = nn_cmp(x, m, &cmp); EG(ret, err);
236 		if (cmp >= 0) {
237 			/*
238 			 * If x >= m, (x^-1) mod m = ((x mod m)^-1) mod m
239 			 * Hence, compute x mod m. In order to avoid
240 			 * additional stack usage, we use 'u' (not
241 			 * already useful at that point in the function).
242 			 */
243 			x_mod_m = &u;
244 			ret = nn_mod(x_mod_m, x, m); EG(ret, err);
245 			ret = _nn_modinv_odd(&out, x_mod_m, m); EG(ret, err);
246 		} else {
247 			ret = _nn_modinv_odd(&out, x, m); EG(ret, err);
248 		}
249 		ret = nn_copy(_out, &out);
250 		goto err;
251 	}
252 
253 	/* Now m is even */
254 	ret = nn_isodd(x, &isodd); EG(ret, err);
255 	MUST_HAVE(isodd, ret, err);
256 
257 	ret = nn_init(&u, 0); EG(ret, err);
258 	ret = nn_init(&v, 0); EG(ret, err);
259 	ret = nn_xgcd(&out, &u, &v, x, m, &sign); EG(ret, err);
260 	ret = nn_isone(&out, &isone); EG(ret, err);
261 	MUST_HAVE(isone, ret, err);
262 
263 	ret = nn_mod(&out, &u, m); EG(ret, err);
264 	if (sign == -1) {
265 		ret = nn_sub(&out, m, &out); EG(ret, err);
266 	}
267 	ret = nn_copy(_out, &out);
268 
269 err:
270 	nn_uninit(&out);
271 	nn_uninit(&u);
272 	nn_uninit(&v);
273 
274 	PTR_NULLIFY(x_mod_m);
275 
276 	return ret;
277 }
278 
279 /*
280  * Compute (A - B) % 2^(storagebitsizeof(B) + 1). A and B must be initialized nn.
281  * the function is an internal helper and does not verify params have been
282  * initialized; this must be done by the caller. No assumption on A and B values
283  * such as A >= B. Done in *constant time. Returns 0 on success, -1 on error.
284  */
285 ATTRIBUTE_WARN_UNUSED_RET static inline int _nn_sub_mod_2exp(nn_t A, nn_src_t B)
286 {
287 	u8 Awlen = A->wlen;
288 	int ret;
289 
290 	ret = nn_set_wlen(A, (u8)(Awlen + 1)); EG(ret, err);
291 
292 	/* Make sure A > B */
293 	/* NOTE: A->wlen - 1 is not an issue here thant to the nn_set_wlen above */
294 	A->val[A->wlen - 1] = WORD(1);
295 	ret = nn_sub(A, A, B); EG(ret, err);
296 
297 	/* The artificial word will be cleared in the following function call */
298 	ret = nn_set_wlen(A, Awlen);
299 
300 err:
301 	return ret;
302 }
303 
304 /*
305  * Invert x modulo 2^exp using Hensel lifting. Returns 0 on success, -1 on
306  * error. On success, x_isodd is 1 if x is odd, 0 if it is even.
307  * Please note that the result is correct (inverse of x) only when x is prime
308  * to 2^exp, i.e. x is odd (x_odd is 1).
309  *
310  * Operations are done in *constant time*.
311  *
312  * Aliasing is supported.
313  */
314 int nn_modinv_2exp(nn_t _out, nn_src_t x, bitcnt_t exp, int *x_isodd)
315 {
316 	bitcnt_t cnt;
317 	u8 exp_wlen = (u8)BIT_LEN_WORDS(exp);
318 	bitcnt_t exp_cnt = exp % WORD_BITS;
319 	word_t mask = (word_t)((exp_cnt == 0) ? WORD_MASK : (word_t)((WORD(1) << exp_cnt) - WORD(1)));
320 	nn tmp_sqr, tmp_mul;
321 	/* for aliasing */
322 	int isodd, ret;
323 	nn out;
324 	out.magic = tmp_sqr.magic = tmp_mul.magic = WORD(0);
325 
326 	MUST_HAVE((x_isodd != NULL), ret, err);
327 	ret = nn_check_initialized(x); EG(ret, err);
328 	ret = nn_check_initialized(_out); EG(ret, err);
329 
330 	ret = nn_init(&out, 0); EG(ret, err);
331 	ret = nn_init(&tmp_sqr, 0); EG(ret, err);
332 	ret = nn_init(&tmp_mul, 0); EG(ret, err);
333 	ret = nn_isodd(x, &isodd); EG(ret, err);
334 	if (exp == (bitcnt_t)0){
335 		/* Specific case of zero exponent, output 0 */
336 		(*x_isodd) = isodd;
337 		goto err;
338 	}
339 	if (!isodd) {
340 		ret = nn_zero(_out); EG(ret, err);
341 		(*x_isodd) = 0;
342 		goto err;
343 	}
344 
345 	/*
346 	 * Inverse modulo 2.
347 	 */
348 	cnt = 1;
349 	ret = nn_one(&out); EG(ret, err);
350 
351 	/*
352 	 * Inverse modulo 2^(2^i) <= 2^WORD_BITS.
353 	 * Assumes WORD_BITS is a power of two.
354 	 */
355 	for (; cnt < WORD_MIN(WORD_BITS, exp); cnt = (bitcnt_t)(cnt << 1)) {
356 		ret = nn_sqr_low(&tmp_sqr, &out, out.wlen); EG(ret, err);
357 		ret = nn_mul_low(&tmp_mul, &tmp_sqr, x, out.wlen); EG(ret, err);
358 		ret = nn_lshift_fixedlen(&out, &out, 1); EG(ret, err);
359 
360 		/*
361 		 * Allowing "negative" results for a subtraction modulo
362 		 * a power of two would allow to use directly:
363 		 * nn_sub(out, out, tmp_mul)
364 		 * which is always negative in ZZ except when x is one.
365 		 *
366 		 * Another solution is to add the opposite of tmp_mul.
367 		 * nn_modopp_2exp(tmp_mul, tmp_mul);
368 		 * nn_add(out, out, tmp_mul);
369 		 *
370 		 * The current solution is to add a sufficiently large power
371 		 * of two to out unconditionally to absorb the potential
372 		 * borrow. The result modulo 2^(2^i) is correct whether the
373 		 * borrow occurs or not.
374 		 */
375 		ret = _nn_sub_mod_2exp(&out, &tmp_mul); EG(ret, err);
376 	}
377 
378 	/*
379 	 * Inverse modulo 2^WORD_BITS < 2^(2^i) < 2^exp.
380 	 */
381 	for (; cnt < ((exp + 1) >> 1); cnt = (bitcnt_t)(cnt << 1)) {
382 		ret = nn_set_wlen(&out, (u8)(2 * out.wlen)); EG(ret, err);
383 		ret = nn_sqr_low(&tmp_sqr, &out, out.wlen); EG(ret, err);
384 		ret = nn_mul_low(&tmp_mul, &tmp_sqr, x, out.wlen); EG(ret, err);
385 		ret = nn_lshift_fixedlen(&out, &out, 1); EG(ret, err);
386 		ret = _nn_sub_mod_2exp(&out, &tmp_mul); EG(ret, err);
387 	}
388 
389 	/*
390 	 * Inverse modulo 2^(2^i + j) >= 2^exp.
391 	 */
392 	if (exp > WORD_BITS) {
393 		ret = nn_set_wlen(&out, exp_wlen); EG(ret, err);
394 		ret = nn_sqr_low(&tmp_sqr, &out, out.wlen); EG(ret, err);
395 		ret = nn_mul_low(&tmp_mul, &tmp_sqr, x, out.wlen); EG(ret, err);
396 		ret = nn_lshift_fixedlen(&out, &out, 1); EG(ret, err);
397 		ret = _nn_sub_mod_2exp(&out, &tmp_mul); EG(ret, err);
398 	}
399 
400 	/*
401 	 * Inverse modulo 2^exp.
402 	 */
403 	out.val[exp_wlen - 1] &= mask;
404 
405 	ret = nn_copy(_out, &out); EG(ret, err);
406 
407 	(*x_isodd) = 1;
408 
409 err:
410 	nn_uninit(&out);
411 	nn_uninit(&tmp_sqr);
412 	nn_uninit(&tmp_mul);
413 
414 	return ret;
415 }
416 
417 /*
418  * Invert word w modulo m.
419  *
420  * The function supports aliasing.
421  */
422 int nn_modinv_word(nn_t out, word_t w, nn_src_t m)
423 {
424 	nn nn_tmp;
425 	int ret;
426 	nn_tmp.magic = WORD(0);
427 
428 	ret = nn_init(&nn_tmp, 0); EG(ret, err);
429 	ret = nn_set_word_value(&nn_tmp, w); EG(ret, err);
430 	ret = nn_modinv(out, &nn_tmp, m);
431 
432 err:
433 	nn_uninit(&nn_tmp);
434 
435 	return ret;
436 }
437 
438 
439 /*
440  * Internal function for nn_modinv_fermat and nn_modinv_fermat_redc used
441  * hereafter.
442  */
443 ATTRIBUTE_WARN_UNUSED_RET static int _nn_modinv_fermat_common(nn_t out, nn_src_t x, nn_src_t p, nn_t p_minus_two, int *lesstwo)
444 {
445 	int ret, cmp, isodd;
446 	nn two;
447 	two.magic = WORD(0);
448 
449 	/* Sanity checks on inputs */
450 	ret = nn_check_initialized(x); EG(ret, err);
451 	ret = nn_check_initialized(p); EG(ret, err);
452 	/* NOTE: since this is an internal function, we are ensured that p_minus_two,
453 	 * two and regular are OK.
454 	 */
455 
456 	/* 0 is not invertible in any case */
457 	ret = nn_iszero(x, &cmp); EG(ret, err);
458 	if(cmp){
459 		/* Zero the output and return an error */
460 		ret = nn_init(out, 0); EG(ret, err);
461 		ret = nn_zero(out); EG(ret, err);
462 		ret = -1;
463 		goto err;
464 	}
465 
466 	/* For p <= 2, p being prime either p = 1 or p = 2.
467 	 * When p = 2, only 1 has an inverse, if p = 1 no one has an inverse.
468 	 */
469 	(*lesstwo) = 0;
470 	ret = nn_cmp_word(p, WORD(2), &cmp); EG(ret, err);
471         if(cmp == 0){
472 		/* This is the p = 2 case, parity of x provides the result */
473 		ret = nn_isodd(x, &isodd); EG(ret, err);
474 		if(isodd){
475 			/* x is odd, 1 is its inverse */
476 			ret = nn_init(out, 0); EG(ret, err);
477 			ret = nn_one(out); EG(ret, err);
478 			ret = 0;
479 		}
480 		else{
481 			/* x is even, no inverse. Zero the output */
482 			ret = nn_init(out, 0); EG(ret, err);
483 			ret = nn_zero(out); EG(ret, err);
484 			ret = -1;
485 		}
486 		(*lesstwo) = 1;
487 		goto err;
488         } else if (cmp < 0){
489 		/* This is the p = 1 case, no inverse here: hence return an error */
490 		/* Zero the output */
491 		ret = nn_init(out, 0); EG(ret, err);
492 		ret = nn_zero(out); EG(ret, err);
493 		ret = -1;
494 		(*lesstwo) = 1;
495 		goto err;
496 	}
497 
498 	/* Else we compute (p-2) for the upper layer */
499 	if(p != p_minus_two){
500 		/* Handle aliasing of p and p_minus_two */
501 		ret = nn_init(p_minus_two, 0); EG(ret, err);
502 	}
503 
504 	ret = nn_init(&two, 0); EG(ret, err);
505 	ret = nn_set_word_value(&two, WORD(2)); EG(ret, err);
506 	ret = nn_sub(p_minus_two, p, &two);
507 
508 err:
509 	nn_uninit(&two);
510 
511 	return ret;
512 }
513 
514 /*
515  * Invert NN x modulo p using Fermat's little theorem for our inversion:
516  *
517  *    p prime means that:
518  *    x^(p-1) = 1 mod (p)
519  *    which means that x^(p-2) mod(p) is the modular inverse of x mod (p)
520  *    for x != 0
521  *
522  * NOTE: the input hypothesis is that p is prime.
523  * XXX WARNING: using this function with p not prime will produce wrong
524  * results without triggering an error!
525  *
526  * The function returns 0 on success, -1 on error
527  * (e.g. if x has no inverse modulo p, i.e. x = 0).
528  *
529  * Aliasing is supported.
530  */
531 int nn_modinv_fermat(nn_t out, nn_src_t x, nn_src_t p)
532 {
533 	int ret, lesstwo;
534 	nn p_minus_two;
535 	p_minus_two.magic = WORD(0);
536 
537 	/* Call our helper.
538 	 * NOTE: "marginal" cases where x = 0 and p <= 2 should be caught in this helper.
539 	 */
540 	ret = _nn_modinv_fermat_common(out, x, p, &p_minus_two, &lesstwo); EG(ret, err);
541 
542 	if(!lesstwo){
543 		/* Compute x^(p-2) mod (p) */
544 		ret = nn_mod_pow(out, x, &p_minus_two, p);
545 	}
546 
547 err:
548 	nn_uninit(&p_minus_two);
549 
550 	return ret;
551 }
552 
553 /*
554  * Invert NN x modulo m using Fermat's little theorem for our inversion.
555  *
556  * This is a version with already (pre)computed Montgomery coefficients.
557  *
558  * NOTE: the input hypothesis is that p is prime.
559  * XXX WARNING: using this function with p not prime will produce wrong
560  * results without triggering an error!
561  *
562  * The function returns 0 on success, -1 on error
563  * (e.g. if x has no inverse modulo p, i.e. x = 0).
564  *
565  * Aliasing is supported.
566  */
567 int nn_modinv_fermat_redc(nn_t out, nn_src_t x, nn_src_t p, nn_src_t r, nn_src_t r_square, word_t mpinv)
568 {
569 	int ret, lesstwo;
570 	nn p_minus_two;
571 	p_minus_two.magic = WORD(0);
572 
573 	/* Call our helper.
574 	 * NOTE: "marginal" cases where x = 0 and p <= 2 should be caught in this helper.
575 	 */
576 	ret = _nn_modinv_fermat_common(out, x, p, &p_minus_two, &lesstwo); EG(ret, err);
577 
578 	if(!lesstwo){
579 		/* Compute x^(p-2) mod (p) using precomputed Montgomery coefficients as input */
580 		ret = nn_mod_pow_redc(out, x, &p_minus_two, p, r, r_square, mpinv);
581 	}
582 
583 err:
584 	nn_uninit(&p_minus_two);
585 
586 	return ret;
587 }
588