xref: /freebsd/crypto/libecc/src/hash/sha384.c (revision 05427f4639bcf2703329a9be9d25ec09bb782742)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/lib_ecc_config.h>
17 #ifdef WITH_HASH_SHA384
18 
19 #include <libecc/hash/sha384.h>
20 
21 /* SHA-2 core processing. Returns 0 on success, -1 on error. */
22 ATTRIBUTE_WARN_UNUSED_RET static int sha384_process(sha384_context *ctx,
23 			   const u8 data[SHA384_BLOCK_SIZE])
24 {
25 	u64 a, b, c, d, e, f, g, h;
26 	u64 W[80];
27 	unsigned int i;
28 	int ret;
29 
30 	MUST_HAVE((data != NULL), ret, err);
31 	SHA384_HASH_CHECK_INITIALIZED(ctx, ret, err);
32 
33 	/* Init our inner variables */
34 	a = ctx->sha384_state[0];
35 	b = ctx->sha384_state[1];
36 	c = ctx->sha384_state[2];
37 	d = ctx->sha384_state[3];
38 	e = ctx->sha384_state[4];
39 	f = ctx->sha384_state[5];
40 	g = ctx->sha384_state[6];
41 	h = ctx->sha384_state[7];
42 
43 	for (i = 0; i < 16; i++) {
44 		GET_UINT64_BE(W[i], data, 8 * i);
45 		SHA2CORE_SHA512(a, b, c, d, e, f, g, h, W[i], K_SHA512[i]);
46 	}
47 
48 	for (i = 16; i < 80; i++) {
49 		SHA2CORE_SHA512(a, b, c, d, e, f, g, h, UPDATEW_SHA512(W, i),
50 				K_SHA512[i]);
51 	}
52 
53 	/* Update state */
54 	ctx->sha384_state[0] += a;
55 	ctx->sha384_state[1] += b;
56 	ctx->sha384_state[2] += c;
57 	ctx->sha384_state[3] += d;
58 	ctx->sha384_state[4] += e;
59 	ctx->sha384_state[5] += f;
60 	ctx->sha384_state[6] += g;
61 	ctx->sha384_state[7] += h;
62 
63 	ret = 0;
64 
65 err:
66 	return ret;
67 }
68 
69 /* Init hash function. Returns 0 on success, -1 on error. */
70 int sha384_init(sha384_context *ctx)
71 {
72 	int ret;
73 
74 	MUST_HAVE((ctx != NULL), ret, err);
75 
76 	ctx->sha384_total[0] = ctx->sha384_total[1] = 0;
77 	ctx->sha384_state[0] = (u64)(0xCBBB9D5DC1059ED8);
78 	ctx->sha384_state[1] = (u64)(0x629A292A367CD507);
79 	ctx->sha384_state[2] = (u64)(0x9159015A3070DD17);
80 	ctx->sha384_state[3] = (u64)(0x152FECD8F70E5939);
81 	ctx->sha384_state[4] = (u64)(0x67332667FFC00B31);
82 	ctx->sha384_state[5] = (u64)(0x8EB44A8768581511);
83 	ctx->sha384_state[6] = (u64)(0xDB0C2E0D64F98FA7);
84 	ctx->sha384_state[7] = (u64)(0x47B5481DBEFA4FA4);
85 
86 	/* Tell that we are initialized */
87 	ctx->magic = SHA384_HASH_MAGIC;
88 	ret = 0;
89 
90 err:
91 	return ret;
92 }
93 
94 /* Update hash function. Returns 0 on success, -1 on error. */
95 int sha384_update(sha384_context *ctx, const u8 *input, u32 ilen)
96 {
97 	u32 left;
98 	u32 fill;
99 	const u8 *data_ptr = input;
100 	u32 remain_ilen = ilen;
101 	int ret;
102 
103 	MUST_HAVE((input != NULL), ret, err);
104 	SHA384_HASH_CHECK_INITIALIZED(ctx, ret, err);
105 
106 	/* Nothing to process, return */
107 	if (ilen == 0) {
108 		ret = 0;
109 		goto err;
110 	}
111 
112 	/* Get what's left in our local buffer */
113 	left = (ctx->sha384_total[0] & 0x7F);
114 	fill = (SHA384_BLOCK_SIZE - left);
115 
116 	ADD_UINT128_UINT64(ctx->sha384_total[0], ctx->sha384_total[1], ilen);
117 
118 	if ((left > 0) && (remain_ilen >= fill)) {
119 		/* Copy data at the end of the buffer */
120 		ret = local_memcpy(ctx->sha384_buffer + left, data_ptr, fill); EG(ret, err);
121 		ret = sha384_process(ctx, ctx->sha384_buffer); EG(ret, err);
122 		data_ptr += fill;
123 		remain_ilen -= fill;
124 		left = 0;
125 	}
126 
127 	while (remain_ilen >= SHA384_BLOCK_SIZE) {
128 		ret = sha384_process(ctx, data_ptr); EG(ret, err);
129 		data_ptr += SHA384_BLOCK_SIZE;
130 		remain_ilen -= SHA384_BLOCK_SIZE;
131 	}
132 
133 	if (remain_ilen > 0) {
134 		ret = local_memcpy(ctx->sha384_buffer + left, data_ptr, remain_ilen); EG(ret, err);
135 	}
136 
137 	ret = 0;
138 
139 err:
140 	return ret;
141 }
142 
143 /*
144  * Finalize hash function. Returns 0 on success, -1 on error. In all
145  * cases (success or error), hash context is no more usable after the
146  * call.
147  */
148 int sha384_final(sha384_context *ctx, u8 output[SHA384_DIGEST_SIZE])
149 {
150 	unsigned int block_present = 0;
151 	u8 last_padded_block[2 * SHA384_BLOCK_SIZE];
152 	int ret;
153 
154 	MUST_HAVE((output != NULL), ret, err);
155 	SHA384_HASH_CHECK_INITIALIZED(ctx, ret, err);
156 
157 	/* Fill in our last block with zeroes */
158 	ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err);
159 
160 	/* This is our final step, so we proceed with the padding */
161 	block_present = (ctx->sha384_total[0] % SHA384_BLOCK_SIZE);
162 	if (block_present != 0) {
163 		/* Copy what's left in our temporary context buffer */
164 		ret = local_memcpy(last_padded_block, ctx->sha384_buffer,
165 			     block_present); EG(ret, err);
166 	}
167 
168 	/* Put the 0x80 byte, beginning of padding  */
169 	last_padded_block[block_present] = 0x80;
170 
171 	/* Handle possible additional block */
172 	if (block_present > (SHA384_BLOCK_SIZE - 1 - (2 * sizeof(u64)))) {
173 		/* We need an additional block */
174 		PUT_MUL8_UINT128_BE(ctx->sha384_total[0], ctx->sha384_total[1],
175 				    last_padded_block,
176 				    2 * (SHA384_BLOCK_SIZE - sizeof(u64)));
177 		ret = sha384_process(ctx, last_padded_block); EG(ret, err);
178 		ret = sha384_process(ctx, last_padded_block + SHA384_BLOCK_SIZE); EG(ret, err);
179 	} else {
180 		/* We do not need an additional block */
181 		PUT_MUL8_UINT128_BE(ctx->sha384_total[0], ctx->sha384_total[1],
182 				    last_padded_block,
183 				    SHA384_BLOCK_SIZE - (2 * sizeof(u64)));
184 		ret = sha384_process(ctx, last_padded_block); EG(ret, err);
185 	}
186 
187 	/* Output the hash result */
188 	PUT_UINT64_BE(ctx->sha384_state[0], output, 0);
189 	PUT_UINT64_BE(ctx->sha384_state[1], output, 8);
190 	PUT_UINT64_BE(ctx->sha384_state[2], output, 16);
191 	PUT_UINT64_BE(ctx->sha384_state[3], output, 24);
192 	PUT_UINT64_BE(ctx->sha384_state[4], output, 32);
193 	PUT_UINT64_BE(ctx->sha384_state[5], output, 40);
194 
195 	/* Tell that we are uninitialized */
196 	ctx->magic = WORD(0);
197 
198 	ret = 0;
199 
200 err:
201 	return ret;
202 }
203 
204 /*
205  * Scattered version performing init/update/finalize on a vector of buffers
206  * 'inputs' with the length of each buffer passed via 'ilens'. The function
207  * loops on pointers in 'inputs' until it finds a NULL pointer. The function
208  * returns 0 on success, -1 on error.
209  */
210 int sha384_scattered(const u8 **inputs, const u32 *ilens,
211 		      u8 output[SHA384_DIGEST_SIZE])
212 {
213 	sha384_context ctx;
214 	int pos = 0;
215 	int ret;
216 
217 	MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
218 
219 	ret = sha384_init(&ctx); EG(ret, err);
220 
221 	while (inputs[pos] != NULL) {
222 		const u8 *buf = inputs[pos];
223 		u32 buflen = ilens[pos];
224 
225 		ret = sha384_update(&ctx, buf, buflen); EG(ret, err);
226 		pos += 1;
227 	}
228 
229 	ret = sha384_final(&ctx, output);
230 
231 err:
232 	return ret;
233 }
234 
235 /* init/update/finalize on a single buffer 'input' of length 'ilen'. */
236 int sha384(const u8 *input, u32 ilen, u8 output[SHA384_DIGEST_SIZE])
237 {
238 	sha384_context ctx;
239 	int ret;
240 
241 	ret = sha384_init(&ctx); EG(ret, err);
242 	ret = sha384_update(&ctx, input, ilen); EG(ret, err);
243 	ret = sha384_final(&ctx, output);
244 
245 err:
246 	return ret;
247 }
248 
249 #else /* WITH_HASH_SHA384 */
250 
251 /*
252  * Dummy definition to avoid the empty translation unit ISO C warning
253  */
254 typedef int dummy;
255 #endif /* WITH_HASH_SHA384 */
256