1 /* 2 * Copyright (C) 2021 - This file is part of libecc project 3 * 4 * Authors: 5 * Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr> 6 * Ryad BENADJILA <ryadbenadjila@gmail.com> 7 * 8 * This software is licensed under a dual BSD and GPL v2 license. 9 * See LICENSE file at the root folder of the project. 10 */ 11 #include <libecc/lib_ecc_config.h> 12 #ifdef WITH_HASH_RIPEMD160 13 14 #include <libecc/hash/ripemd160.h> 15 16 /****************************************************/ 17 /* 18 * 32-bit integer manipulation macros (big endian) 19 */ 20 #ifndef GET_UINT32_LE 21 #define GET_UINT32_LE(n, b, i) \ 22 do { \ 23 (n) = ( ((u32) (b)[(i) + 3]) << 24 ) \ 24 | ( ((u32) (b)[(i) + 2]) << 16 ) \ 25 | ( ((u32) (b)[(i) + 1]) << 8 ) \ 26 | ( ((u32) (b)[(i) ]) ); \ 27 } while( 0 ) 28 #endif 29 30 #ifndef PUT_UINT32_LE 31 #define PUT_UINT32_LE(n, b, i) \ 32 do { \ 33 (b)[(i) + 3] = (u8) ( (n) >> 24 ); \ 34 (b)[(i) + 2] = (u8) ( (n) >> 16 ); \ 35 (b)[(i) + 1] = (u8) ( (n) >> 8 ); \ 36 (b)[(i) ] = (u8) ( (n) ); \ 37 } while( 0 ) 38 #endif 39 40 /* 41 * 64-bit integer manipulation macros (big endian) 42 */ 43 #ifndef PUT_UINT64_LE 44 #define PUT_UINT64_LE(n,b,i) \ 45 do { \ 46 (b)[(i) + 7] = (u8) ( (n) >> 56 ); \ 47 (b)[(i) + 6] = (u8) ( (n) >> 48 ); \ 48 (b)[(i) + 5] = (u8) ( (n) >> 40 ); \ 49 (b)[(i) + 4] = (u8) ( (n) >> 32 ); \ 50 (b)[(i) + 3] = (u8) ( (n) >> 24 ); \ 51 (b)[(i) + 2] = (u8) ( (n) >> 16 ); \ 52 (b)[(i) + 1] = (u8) ( (n) >> 8 ); \ 53 (b)[(i) ] = (u8) ( (n) ); \ 54 } while( 0 ) 55 #endif /* PUT_UINT64_LE */ 56 57 /* Elements related to RIPEMD160 */ 58 #define ROTL_RIPEMD160(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n)))) 59 60 #define F1_RIPEMD160(x, y, z) ((x) ^ (y) ^ (z)) 61 #define F2_RIPEMD160(x, y, z) (((x) & (y)) | ((~(x)) & (z))) 62 #define F3_RIPEMD160(x, y, z) (((x) | (~(y))) ^ (z)) 63 #define F4_RIPEMD160(x, y, z) (((x) & (z)) | ((y) & (~(z)))) 64 #define F5_RIPEMD160(x, y, z) ((x) ^ ((y) | (~(z)))) 65 66 /* Left constants */ 67 static const u32 KL_RIPEMD160[5] = { 68 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e 69 }; 70 /* Right constants */ 71 static const u32 KR_RIPEMD160[5] = { 72 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000 73 }; 74 75 /* Left line */ 76 static const u8 RL_RIPEMD160[5][16] = { 77 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, 78 { 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 }, 79 { 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 }, 80 { 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 }, 81 { 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 } 82 }; 83 static const u8 SL_RIPEMD160[5][16] = { 84 { 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 }, 85 { 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 }, 86 { 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 }, 87 { 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 }, 88 { 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 } 89 }; 90 91 /* Right line */ 92 static const u8 RR_RIPEMD160[5][16] = { 93 { 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 }, 94 { 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 }, 95 { 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 }, 96 { 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 }, 97 { 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 } 98 }; 99 static const u8 SR_RIPEMD160[5][16] = { 100 { 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 }, 101 { 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 }, 102 { 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 }, 103 { 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 }, 104 { 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 } 105 }; 106 107 #define RIPEMD160_CORE(a, b, c, d, e, round, idx, w, F, S, R, K) do { \ 108 u32 t = ROTL_RIPEMD160(a + F(b, c, d) + w[R[round][idx]] + K[round], S[round][idx]) + e;\ 109 a = e; e = d; d = ROTL_RIPEMD160(c, 10); c = b; b = t; \ 110 } while(0) 111 112 /* RIPEMD160 core processing */ 113 ATTRIBUTE_WARN_UNUSED_RET static int ripemd160_process(ripemd160_context *ctx, 114 const u8 data[RIPEMD160_BLOCK_SIZE]) 115 { 116 /* Left line */ 117 u32 al, bl, cl, dl, el; 118 /* Right line */ 119 u32 ar, br, cr, dr, er; 120 /* Temporary data */ 121 u32 tt; 122 /* Data */ 123 u32 W[16]; 124 unsigned int i; 125 int ret; 126 127 MUST_HAVE((data != NULL), ret, err); 128 RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err); 129 130 /* Init our inner variables */ 131 al = ar = ctx->ripemd160_state[0]; 132 bl = br = ctx->ripemd160_state[1]; 133 cl = cr = ctx->ripemd160_state[2]; 134 dl = dr = ctx->ripemd160_state[3]; 135 el = er = ctx->ripemd160_state[4]; 136 137 /* Load data */ 138 for (i = 0; i < 16; i++) { 139 GET_UINT32_LE(W[i], data, (4 * i)); 140 } 141 142 /* Round 1 */ 143 for(i = 0; i < 16; i++){ 144 RIPEMD160_CORE(al, bl, cl, dl, el, 0, i, W, F1_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); 145 RIPEMD160_CORE(ar, br, cr, dr, er, 0, i, W, F5_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); 146 } 147 /* Round 2 */ 148 for(i = 0; i < 16; i++){ 149 RIPEMD160_CORE(al, bl, cl, dl, el, 1, i, W, F2_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); 150 RIPEMD160_CORE(ar, br, cr, dr, er, 1, i, W, F4_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); 151 } 152 /* Round 3 */ 153 for(i = 0; i < 16; i++){ 154 RIPEMD160_CORE(al, bl, cl, dl, el, 2, i, W, F3_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); 155 RIPEMD160_CORE(ar, br, cr, dr, er, 2, i, W, F3_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); 156 } 157 /* Round 4 */ 158 for(i = 0; i < 16; i++){ 159 RIPEMD160_CORE(al, bl, cl, dl, el, 3, i, W, F4_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); 160 RIPEMD160_CORE(ar, br, cr, dr, er, 3, i, W, F2_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); 161 } 162 /* Round 5 */ 163 for(i = 0; i < 16; i++){ 164 RIPEMD160_CORE(al, bl, cl, dl, el, 4, i, W, F5_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160); 165 RIPEMD160_CORE(ar, br, cr, dr, er, 4, i, W, F1_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160); 166 } 167 168 /* Mix the lines and update state */ 169 tt = (ctx->ripemd160_state[1] + cl + dr); 170 ctx->ripemd160_state[1] = (ctx->ripemd160_state[2] + dl + er); 171 ctx->ripemd160_state[2] = (ctx->ripemd160_state[3] + el + ar); 172 ctx->ripemd160_state[3] = (ctx->ripemd160_state[4] + al + br); 173 ctx->ripemd160_state[4] = (ctx->ripemd160_state[0] + bl + cr); 174 ctx->ripemd160_state[0] = tt; 175 176 ret = 0; 177 178 err: 179 return ret; 180 } 181 182 /* Init hash function */ 183 int ripemd160_init(ripemd160_context *ctx) 184 { 185 int ret; 186 187 MUST_HAVE((ctx != NULL), ret, err); 188 189 ctx->ripemd160_total = 0; 190 ctx->ripemd160_state[0] = 0x67452301; 191 ctx->ripemd160_state[1] = 0xefcdab89; 192 ctx->ripemd160_state[2] = 0x98badcfe; 193 ctx->ripemd160_state[3] = 0x10325476; 194 ctx->ripemd160_state[4] = 0xc3d2e1f0; 195 196 /* Tell that we are initialized */ 197 ctx->magic = RIPEMD160_HASH_MAGIC; 198 199 ret = 0; 200 201 err: 202 return ret; 203 } 204 205 /* Update hash function */ 206 int ripemd160_update(ripemd160_context *ctx, const u8 *input, u32 ilen) 207 { 208 const u8 *data_ptr = input; 209 u32 remain_ilen = ilen; 210 u16 fill; 211 u8 left; 212 int ret; 213 214 MUST_HAVE((input != NULL) || (ilen == 0), ret, err); 215 RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err); 216 217 /* Nothing to process, return */ 218 if (ilen == 0) { 219 ret = 0; 220 goto err; 221 } 222 223 /* Get what's left in our local buffer */ 224 left = (ctx->ripemd160_total & 0x3F); 225 fill = (u16)(RIPEMD160_BLOCK_SIZE - left); 226 227 ctx->ripemd160_total += ilen; 228 229 if ((left > 0) && (remain_ilen >= fill)) { 230 /* Copy data at the end of the buffer */ 231 ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, fill); EG(ret, err); 232 ret = ripemd160_process(ctx, ctx->ripemd160_buffer); EG(ret, err); 233 data_ptr += fill; 234 remain_ilen -= fill; 235 left = 0; 236 } 237 238 while (remain_ilen >= RIPEMD160_BLOCK_SIZE) { 239 ret = ripemd160_process(ctx, data_ptr); EG(ret, err); 240 data_ptr += RIPEMD160_BLOCK_SIZE; 241 remain_ilen -= RIPEMD160_BLOCK_SIZE; 242 } 243 244 if (remain_ilen > 0) { 245 ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, remain_ilen); EG(ret, err); 246 } 247 248 ret = 0; 249 250 err: 251 return ret; 252 } 253 254 /* Finalize */ 255 int ripemd160_final(ripemd160_context *ctx, u8 output[RIPEMD160_DIGEST_SIZE]) 256 { 257 unsigned int block_present = 0; 258 u8 last_padded_block[2 * RIPEMD160_BLOCK_SIZE]; 259 int ret; 260 261 MUST_HAVE((output != NULL), ret, err); 262 RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err); 263 264 /* Fill in our last block with zeroes */ 265 ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err); 266 267 /* This is our final step, so we proceed with the padding */ 268 block_present = (ctx->ripemd160_total % RIPEMD160_BLOCK_SIZE); 269 if (block_present != 0) { 270 /* Copy what's left in our temporary context buffer */ 271 ret = local_memcpy(last_padded_block, ctx->ripemd160_buffer, 272 block_present); EG(ret, err); 273 } 274 275 /* Put the 0x80 byte, beginning of padding */ 276 last_padded_block[block_present] = 0x80; 277 278 /* Handle possible additional block */ 279 if (block_present > (RIPEMD160_BLOCK_SIZE - 1 - sizeof(u64))) { 280 /* We need an additional block */ 281 PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block, 282 (2 * RIPEMD160_BLOCK_SIZE) - sizeof(u64)); 283 ret = ripemd160_process(ctx, last_padded_block); EG(ret, err); 284 ret = ripemd160_process(ctx, last_padded_block + RIPEMD160_BLOCK_SIZE); EG(ret, err); 285 } else { 286 /* We do not need an additional block */ 287 PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block, 288 RIPEMD160_BLOCK_SIZE - sizeof(u64)); 289 ret = ripemd160_process(ctx, last_padded_block); EG(ret, err); 290 } 291 292 /* Output the hash result */ 293 PUT_UINT32_LE(ctx->ripemd160_state[0], output, 0); 294 PUT_UINT32_LE(ctx->ripemd160_state[1], output, 4); 295 PUT_UINT32_LE(ctx->ripemd160_state[2], output, 8); 296 PUT_UINT32_LE(ctx->ripemd160_state[3], output, 12); 297 PUT_UINT32_LE(ctx->ripemd160_state[4], output, 16); 298 299 /* Tell that we are uninitialized */ 300 ctx->magic = WORD(0); 301 302 ret = 0; 303 304 err: 305 return ret; 306 } 307 308 int ripemd160_scattered(const u8 **inputs, const u32 *ilens, 309 u8 output[RIPEMD160_DIGEST_SIZE]) 310 { 311 ripemd160_context ctx; 312 int ret, pos = 0; 313 314 MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err); 315 316 ret = ripemd160_init(&ctx); EG(ret, err); 317 318 while (inputs[pos] != NULL) { 319 ret = ripemd160_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err); 320 pos += 1; 321 } 322 323 ret = ripemd160_final(&ctx, output); 324 325 err: 326 return ret; 327 } 328 329 int ripemd160(const u8 *input, u32 ilen, u8 output[RIPEMD160_DIGEST_SIZE]) 330 { 331 ripemd160_context ctx; 332 int ret; 333 334 ret = ripemd160_init(&ctx); EG(ret, err); 335 ret = ripemd160_update(&ctx, input, ilen); EG(ret, err); 336 ret = ripemd160_final(&ctx, output); 337 338 err: 339 return ret; 340 } 341 342 #else /* WITH_HASH_RIPEMD160 */ 343 344 /* 345 * Dummy definition to avoid the empty translation unit ISO C warning 346 */ 347 typedef int dummy; 348 #endif /* WITH_HASH_RIPEMD160 */ 349