xref: /freebsd/crypto/libecc/src/hash/ripemd160.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  *  Copyright (C) 2021 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
6  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
7  *
8  *  This software is licensed under a dual BSD and GPL v2 license.
9  *  See LICENSE file at the root folder of the project.
10  */
11 #include <libecc/lib_ecc_config.h>
12 #ifdef WITH_HASH_RIPEMD160
13 
14 #include <libecc/hash/ripemd160.h>
15 
16 /****************************************************/
17 /*
18  * 32-bit integer manipulation macros (big endian)
19  */
20 #ifndef GET_UINT32_LE
21 #define GET_UINT32_LE(n, b, i)                          \
22 do {                                                    \
23         (n) =     ( ((u32) (b)[(i) + 3]) << 24 )        \
24                 | ( ((u32) (b)[(i) + 2]) << 16 )        \
25                 | ( ((u32) (b)[(i) + 1]) <<  8 )        \
26                 | ( ((u32) (b)[(i)    ])       );       \
27 } while( 0 )
28 #endif
29 
30 #ifndef PUT_UINT32_LE
31 #define PUT_UINT32_LE(n, b, i)                  \
32 do {                                            \
33         (b)[(i) + 3] = (u8) ( (n) >> 24 );      \
34         (b)[(i) + 2] = (u8) ( (n) >> 16 );      \
35         (b)[(i) + 1] = (u8) ( (n) >>  8 );      \
36         (b)[(i)    ] = (u8) ( (n)       );      \
37 } while( 0 )
38 #endif
39 
40 /*
41  * 64-bit integer manipulation macros (big endian)
42  */
43 #ifndef PUT_UINT64_LE
44 #define PUT_UINT64_LE(n,b,i)            \
45 do {                                    \
46     (b)[(i) + 7] = (u8) ( (n) >> 56 );  \
47     (b)[(i) + 6] = (u8) ( (n) >> 48 );  \
48     (b)[(i) + 5] = (u8) ( (n) >> 40 );  \
49     (b)[(i) + 4] = (u8) ( (n) >> 32 );  \
50     (b)[(i) + 3] = (u8) ( (n) >> 24 );  \
51     (b)[(i) + 2] = (u8) ( (n) >> 16 );  \
52     (b)[(i) + 1] = (u8) ( (n) >>  8 );  \
53     (b)[(i)    ] = (u8) ( (n)       );  \
54 } while( 0 )
55 #endif /* PUT_UINT64_LE */
56 
57 /* Elements related to RIPEMD160 */
58 #define ROTL_RIPEMD160(x, n)    ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n))))
59 
60 #define F1_RIPEMD160(x, y, z)   ((x) ^ (y) ^ (z))
61 #define F2_RIPEMD160(x, y, z)   (((x) & (y)) | ((~(x)) & (z)))
62 #define F3_RIPEMD160(x, y, z)   (((x) | (~(y))) ^ (z))
63 #define F4_RIPEMD160(x, y, z)   (((x) & (z)) | ((y) & (~(z))))
64 #define F5_RIPEMD160(x, y, z)   ((x) ^ ((y) | (~(z))))
65 
66 /* Left constants */
67 static const u32 KL_RIPEMD160[5] = {
68 	0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e
69 };
70 /* Right constants */
71 static const u32 KR_RIPEMD160[5] = {
72 	0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000
73 };
74 
75 /* Left line */
76 static const u8 RL_RIPEMD160[5][16] = {
77 	{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
78 	{ 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 },
79 	{ 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 },
80 	{ 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 },
81 	{ 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 }
82 };
83 static const u8 SL_RIPEMD160[5][16] = {
84 	{ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 },
85 	{ 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 },
86 	{ 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 },
87 	{ 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 },
88 	{ 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 }
89 };
90 
91 /* Right line */
92 static const u8 RR_RIPEMD160[5][16] = {
93 	{ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 },
94 	{ 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 },
95 	{ 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 },
96 	{ 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 },
97 	{ 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 }
98 };
99 static const u8 SR_RIPEMD160[5][16] = {
100 	{ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 },
101 	{ 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 },
102 	{ 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 },
103 	{ 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 },
104 	{ 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 }
105 };
106 
107 #define RIPEMD160_CORE(a, b, c, d, e, round, idx, w, F, S, R, K) do { 				\
108 	u32 t = ROTL_RIPEMD160(a + F(b, c, d) + w[R[round][idx]] + K[round], S[round][idx]) + e;\
109 	a = e; e = d; d = ROTL_RIPEMD160(c, 10); c = b; b = t; 					\
110 } while(0)
111 
112 /* RIPEMD160 core processing */
113 ATTRIBUTE_WARN_UNUSED_RET static int ripemd160_process(ripemd160_context *ctx,
114 			   const u8 data[RIPEMD160_BLOCK_SIZE])
115 {
116 	/* Left line */
117 	u32 al, bl, cl, dl, el;
118 	/* Right line */
119 	u32 ar, br, cr, dr, er;
120 	/* Temporary data */
121 	u32 tt;
122 	/* Data */
123 	u32 W[16];
124 	unsigned int i;
125 	int ret;
126 
127 	MUST_HAVE((data != NULL), ret, err);
128 	RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err);
129 
130 	/* Init our inner variables */
131 	al = ar = ctx->ripemd160_state[0];
132 	bl = br = ctx->ripemd160_state[1];
133 	cl = cr = ctx->ripemd160_state[2];
134 	dl = dr = ctx->ripemd160_state[3];
135 	el = er = ctx->ripemd160_state[4];
136 
137 	/* Load data */
138 	for (i = 0; i < 16; i++) {
139 		GET_UINT32_LE(W[i], data, (4 * i));
140 	}
141 
142 	/* Round 1 */
143 	for(i = 0; i < 16; i++){
144 		RIPEMD160_CORE(al, bl, cl, dl, el, 0, i, W, F1_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
145 		RIPEMD160_CORE(ar, br, cr, dr, er, 0, i, W, F5_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
146 	}
147 	/* Round 2 */
148 	for(i = 0; i < 16; i++){
149 		RIPEMD160_CORE(al, bl, cl, dl, el, 1, i, W, F2_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
150 		RIPEMD160_CORE(ar, br, cr, dr, er, 1, i, W, F4_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
151 	}
152 	/* Round 3 */
153 	for(i = 0; i < 16; i++){
154 		RIPEMD160_CORE(al, bl, cl, dl, el, 2, i, W, F3_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
155 		RIPEMD160_CORE(ar, br, cr, dr, er, 2, i, W, F3_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
156 	}
157 	/* Round 4 */
158 	for(i = 0; i < 16; i++){
159 		RIPEMD160_CORE(al, bl, cl, dl, el, 3, i, W, F4_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
160 		RIPEMD160_CORE(ar, br, cr, dr, er, 3, i, W, F2_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
161 	}
162 	/* Round 5 */
163 	for(i = 0; i < 16; i++){
164 		RIPEMD160_CORE(al, bl, cl, dl, el, 4, i, W, F5_RIPEMD160, SL_RIPEMD160, RL_RIPEMD160, KL_RIPEMD160);
165 		RIPEMD160_CORE(ar, br, cr, dr, er, 4, i, W, F1_RIPEMD160, SR_RIPEMD160, RR_RIPEMD160, KR_RIPEMD160);
166 	}
167 
168 	/* Mix the lines and update state */
169 	tt = (ctx->ripemd160_state[1] + cl + dr);
170 	ctx->ripemd160_state[1] = (ctx->ripemd160_state[2] + dl + er);
171 	ctx->ripemd160_state[2] = (ctx->ripemd160_state[3] + el + ar);
172 	ctx->ripemd160_state[3] = (ctx->ripemd160_state[4] + al + br);
173 	ctx->ripemd160_state[4] = (ctx->ripemd160_state[0] + bl + cr);
174 	ctx->ripemd160_state[0] = tt;
175 
176 	ret = 0;
177 
178 err:
179 	return ret;
180 }
181 
182 /* Init hash function */
183 int ripemd160_init(ripemd160_context *ctx)
184 {
185 	int ret;
186 
187 	MUST_HAVE((ctx != NULL), ret, err);
188 
189 	ctx->ripemd160_total = 0;
190 	ctx->ripemd160_state[0] = 0x67452301;
191 	ctx->ripemd160_state[1] = 0xefcdab89;
192 	ctx->ripemd160_state[2] = 0x98badcfe;
193 	ctx->ripemd160_state[3] = 0x10325476;
194 	ctx->ripemd160_state[4] = 0xc3d2e1f0;
195 
196 	/* Tell that we are initialized */
197 	ctx->magic = RIPEMD160_HASH_MAGIC;
198 
199 	ret = 0;
200 
201 err:
202 	return ret;
203 }
204 
205 /* Update hash function */
206 int ripemd160_update(ripemd160_context *ctx, const u8 *input, u32 ilen)
207 {
208 	const u8 *data_ptr = input;
209 	u32 remain_ilen = ilen;
210 	u16 fill;
211 	u8 left;
212 	int ret;
213 
214 	MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
215 	RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err);
216 
217 	/* Nothing to process, return */
218 	if (ilen == 0) {
219 		ret = 0;
220 		goto err;
221 	}
222 
223 	/* Get what's left in our local buffer */
224 	left = (ctx->ripemd160_total & 0x3F);
225 	fill = (u16)(RIPEMD160_BLOCK_SIZE - left);
226 
227 	ctx->ripemd160_total += ilen;
228 
229 	if ((left > 0) && (remain_ilen >= fill)) {
230 		/* Copy data at the end of the buffer */
231 		ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, fill); EG(ret, err);
232 		ret = ripemd160_process(ctx, ctx->ripemd160_buffer); EG(ret, err);
233 		data_ptr += fill;
234 		remain_ilen -= fill;
235 		left = 0;
236 	}
237 
238 	while (remain_ilen >= RIPEMD160_BLOCK_SIZE) {
239 		ret = ripemd160_process(ctx, data_ptr); EG(ret, err);
240 		data_ptr += RIPEMD160_BLOCK_SIZE;
241 		remain_ilen -= RIPEMD160_BLOCK_SIZE;
242 	}
243 
244 	if (remain_ilen > 0) {
245 		ret = local_memcpy(ctx->ripemd160_buffer + left, data_ptr, remain_ilen); EG(ret, err);
246 	}
247 
248 	ret = 0;
249 
250 err:
251 	return ret;
252 }
253 
254 /* Finalize */
255 int ripemd160_final(ripemd160_context *ctx, u8 output[RIPEMD160_DIGEST_SIZE])
256 {
257 	unsigned int block_present = 0;
258 	u8 last_padded_block[2 * RIPEMD160_BLOCK_SIZE];
259 	int ret;
260 
261 	MUST_HAVE((output != NULL), ret, err);
262 	RIPEMD160_HASH_CHECK_INITIALIZED(ctx, ret, err);
263 
264 	/* Fill in our last block with zeroes */
265 	ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err);
266 
267 	/* This is our final step, so we proceed with the padding */
268 	block_present = (ctx->ripemd160_total % RIPEMD160_BLOCK_SIZE);
269 	if (block_present != 0) {
270 		/* Copy what's left in our temporary context buffer */
271 		ret = local_memcpy(last_padded_block, ctx->ripemd160_buffer,
272 			     block_present); EG(ret, err);
273 	}
274 
275 	/* Put the 0x80 byte, beginning of padding  */
276 	last_padded_block[block_present] = 0x80;
277 
278 	/* Handle possible additional block */
279 	if (block_present > (RIPEMD160_BLOCK_SIZE - 1 - sizeof(u64))) {
280 		/* We need an additional block */
281 		PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block,
282 			      (2 * RIPEMD160_BLOCK_SIZE) - sizeof(u64));
283 		ret = ripemd160_process(ctx, last_padded_block); EG(ret, err);
284 		ret = ripemd160_process(ctx, last_padded_block + RIPEMD160_BLOCK_SIZE); EG(ret, err);
285 	} else {
286 		/* We do not need an additional block */
287 		PUT_UINT64_LE(8 * ctx->ripemd160_total, last_padded_block,
288 			      RIPEMD160_BLOCK_SIZE - sizeof(u64));
289 		ret = ripemd160_process(ctx, last_padded_block); EG(ret, err);
290 	}
291 
292 	/* Output the hash result */
293 	PUT_UINT32_LE(ctx->ripemd160_state[0], output, 0);
294 	PUT_UINT32_LE(ctx->ripemd160_state[1], output, 4);
295 	PUT_UINT32_LE(ctx->ripemd160_state[2], output, 8);
296 	PUT_UINT32_LE(ctx->ripemd160_state[3], output, 12);
297 	PUT_UINT32_LE(ctx->ripemd160_state[4], output, 16);
298 
299 	/* Tell that we are uninitialized */
300 	ctx->magic = WORD(0);
301 
302 	ret = 0;
303 
304 err:
305 	return ret;
306 }
307 
308 int ripemd160_scattered(const u8 **inputs, const u32 *ilens,
309 		      u8 output[RIPEMD160_DIGEST_SIZE])
310 {
311 	ripemd160_context ctx;
312 	int ret, pos = 0;
313 
314 	MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
315 
316 	ret = ripemd160_init(&ctx); EG(ret, err);
317 
318 	while (inputs[pos] != NULL) {
319 		ret = ripemd160_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
320 		pos += 1;
321 	}
322 
323 	ret = ripemd160_final(&ctx, output);
324 
325 err:
326 	return ret;
327 }
328 
329 int ripemd160(const u8 *input, u32 ilen, u8 output[RIPEMD160_DIGEST_SIZE])
330 {
331 	ripemd160_context ctx;
332 	int ret;
333 
334 	ret = ripemd160_init(&ctx); EG(ret, err);
335 	ret = ripemd160_update(&ctx, input, ilen); EG(ret, err);
336 	ret = ripemd160_final(&ctx, output);
337 
338 err:
339 	return ret;
340 }
341 
342 #else /* WITH_HASH_RIPEMD160 */
343 
344 /*
345  * Dummy definition to avoid the empty translation unit ISO C warning
346  */
347 typedef int dummy;
348 #endif /* WITH_HASH_RIPEMD160 */
349