1 /*
2 * Copyright (C) 2022 - This file is part of libecc project
3 *
4 * Authors:
5 * Ryad BENADJILA <ryadbenadjila@gmail.com>
6 * Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7 *
8 * This software is licensed under a dual BSD and GPL v2 license.
9 * See LICENSE file at the root folder of the project.
10 */
11 #include <libecc/lib_ecc_config.h>
12 #ifdef WITH_HASH_BELT_HASH
13
14 #include <libecc/hash/belt-hash.h>
15
16 /*
17 * This is an implementation of the BELT-HASH hash function as
18 * defined int STB 34.101.31.
19 */
20
21
22 /*
23 * The BELT-HASH function uses an underlying BELT block cipher
24 * defined in STB 34.101.31. This is a simple and straitforward
25 * implementation.
26 */
27 #define ROTL_BELT(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n))))
28
29 #define SWAP_BELT(x, y) do { \
30 u32 z; \
31 z = (x); \
32 (x) = (y); \
33 (y) = z; \
34 } while(0)
35
36 /* The S-Box */
37 static u8 S[256] =
38 {
39 0xB1, 0x94, 0xBA, 0xC8, 0x0A, 0x08, 0xF5, 0x3B, 0x36, 0x6D, 0x00, 0x8E, 0x58, 0x4A, 0x5D, 0xE4,
40 0x85, 0x04, 0xFA, 0x9D, 0x1B, 0xB6, 0xC7, 0xAC, 0x25, 0x2E, 0x72, 0xC2, 0x02, 0xFD, 0xCE, 0x0D,
41 0x5B, 0xE3, 0xD6, 0x12, 0x17, 0xB9, 0x61, 0x81, 0xFE, 0x67, 0x86, 0xAD, 0x71, 0x6B, 0x89, 0x0B,
42 0x5C, 0xB0, 0xC0, 0xFF, 0x33, 0xC3, 0x56, 0xB8, 0x35, 0xC4, 0x05, 0xAE, 0xD8, 0xE0, 0x7F, 0x99,
43 0xE1, 0x2B, 0xDC, 0x1A, 0xE2, 0x82, 0x57, 0xEC, 0x70, 0x3F, 0xCC, 0xF0, 0x95, 0xEE, 0x8D, 0xF1,
44 0xC1, 0xAB, 0x76, 0x38, 0x9F, 0xE6, 0x78, 0xCA, 0xF7, 0xC6, 0xF8, 0x60, 0xD5, 0xBB, 0x9C, 0x4F,
45 0xF3, 0x3C, 0x65, 0x7B, 0x63, 0x7C, 0x30, 0x6A, 0xDD, 0x4E, 0xA7, 0x79, 0x9E, 0xB2, 0x3D, 0x31,
46 0x3E, 0x98, 0xB5, 0x6E, 0x27, 0xD3, 0xBC, 0xCF, 0x59, 0x1E, 0x18, 0x1F, 0x4C, 0x5A, 0xB7, 0x93,
47 0xE9, 0xDE, 0xE7, 0x2C, 0x8F, 0x0C, 0x0F, 0xA6, 0x2D, 0xDB, 0x49, 0xF4, 0x6F, 0x73, 0x96, 0x47,
48 0x06, 0x07, 0x53, 0x16, 0xED, 0x24, 0x7A, 0x37, 0x39, 0xCB, 0xA3, 0x83, 0x03, 0xA9, 0x8B, 0xF6,
49 0x92, 0xBD, 0x9B, 0x1C, 0xE5, 0xD1, 0x41, 0x01, 0x54, 0x45, 0xFB, 0xC9, 0x5E, 0x4D, 0x0E, 0xF2,
50 0x68, 0x20, 0x80, 0xAA, 0x22, 0x7D, 0x64, 0x2F, 0x26, 0x87, 0xF9, 0x34, 0x90, 0x40, 0x55, 0x11,
51 0xBE, 0x32, 0x97, 0x13, 0x43, 0xFC, 0x9A, 0x48, 0xA0, 0x2A, 0x88, 0x5F, 0x19, 0x4B, 0x09, 0xA1,
52 0x7E, 0xCD, 0xA4, 0xD0, 0x15, 0x44, 0xAF, 0x8C, 0xA5, 0x84, 0x50, 0xBF, 0x66, 0xD2, 0xE8, 0x8A,
53 0xA2, 0xD7, 0x46, 0x52, 0x42, 0xA8, 0xDF, 0xB3, 0x69, 0x74, 0xC5, 0x51, 0xEB, 0x23, 0x29, 0x21,
54 0xD4, 0xEF, 0xD9, 0xB4, 0x3A, 0x62, 0x28, 0x75, 0x91, 0x14, 0x10, 0xEA, 0x77, 0x6C, 0xDA, 0x1D,
55 };
56
57 /* */
58 #define GET_BYTE(x, a) ( ((x) >> (a)) & 0xff )
59 #define PUT_BYTE(x, a) ( (u32)(x) << (a) )
60 #define SB(x, a) PUT_BYTE( S[GET_BYTE((x), (a))], (a) )
61
62 #define G(x, r) ROTL_BELT( SB((x), 24) | SB((x), 16) | SB((x), 8) | SB((x), 0), (r) )
63
64 static u32 KIdx[8][7] =
65 {
66 { 0, 1, 2, 3, 4, 5, 6 },
67 { 7, 0, 1, 2, 3, 4, 5 },
68 { 6, 7, 0, 1, 2, 3, 4 },
69 { 5, 6, 7, 0, 1, 2, 3 },
70 { 4, 5, 6, 7, 0, 1, 2 },
71 { 3, 4, 5, 6, 7, 0, 1 },
72 { 2, 3, 4, 5, 6, 7, 0 },
73 { 1, 2, 3, 4, 5, 6, 7 },
74 };
75
belt_init(const u8 * k,u32 k_len,u8 ks[BELT_KEY_SCHED_LEN])76 int belt_init(const u8 *k, u32 k_len, u8 ks[BELT_KEY_SCHED_LEN])
77 {
78 int ret = -1;
79 unsigned int i;
80
81 switch(k_len){
82 case 16:{
83 for(i = 0; i < 16; i++){
84 ks[i] = k[i];
85 ks[i + 16] = k[i];
86 }
87 break;
88 }
89 case 24:{
90 for(i = 0; i < 24; i++){
91 ks[i] = k[i];
92 }
93 for(i = 24; i < 32; i++){
94 ks[i] = k[i - 24] ^ k[i - 20] ^ k[i - 16];
95 }
96 break;
97 }
98 case 32:{
99 for(i = 0; i < 32; i++){
100 ks[i] = k[i];
101 }
102 break;
103 }
104 default:{
105 ret = -1;
106 goto err;
107 }
108
109
110 }
111
112 ret = 0;
113 err:
114 return ret;
115 }
116
belt_encrypt(const u8 in[BELT_BLOCK_LEN],u8 out[BELT_BLOCK_LEN],const u8 ks[BELT_KEY_SCHED_LEN])117 void belt_encrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN])
118 {
119 u32 a, b, c, d, e;
120 u32 i;
121
122 GET_UINT32_LE(a, in, 0);
123 GET_UINT32_LE(b, in, 4);
124 GET_UINT32_LE(c, in, 8);
125 GET_UINT32_LE(d, in, 12);
126
127 for(i = 0; i < 8; i++){
128 u32 key;
129 GET_UINT32_LE(key, ks, 4*KIdx[i][0]);
130 b ^= G(a + key, 5);
131 GET_UINT32_LE(key, ks, 4*KIdx[i][1]);
132 c ^= G(d + key, 21);
133 GET_UINT32_LE(key, ks, 4*KIdx[i][2]);
134 a = (u32)(a - G(b + key, 13));
135 GET_UINT32_LE(key, ks, 4*KIdx[i][3]);
136 e = G(b + c + key, 21) ^ (i + 1);
137 b += e;
138 c = (u32)(c - e);
139 GET_UINT32_LE(key, ks, 4*KIdx[i][4]);
140 d += G(c + key, 13);
141 GET_UINT32_LE(key, ks, 4*KIdx[i][5]);
142 b ^= G(a + key, 21);
143 GET_UINT32_LE(key, ks, 4*KIdx[i][6]);
144 c ^= G(d + key, 5);
145 SWAP_BELT(a, b);
146 SWAP_BELT(c, d);
147 SWAP_BELT(b, c);
148 }
149
150 PUT_UINT32_LE(b, out, 0);
151 PUT_UINT32_LE(d, out, 4);
152 PUT_UINT32_LE(a, out, 8);
153 PUT_UINT32_LE(c, out, 12);
154
155 return;
156 }
157
belt_decrypt(const u8 in[BELT_BLOCK_LEN],u8 out[BELT_BLOCK_LEN],const u8 ks[BELT_KEY_SCHED_LEN])158 void belt_decrypt(const u8 in[BELT_BLOCK_LEN], u8 out[BELT_BLOCK_LEN], const u8 ks[BELT_KEY_SCHED_LEN])
159 {
160 u32 a, b, c, d, e;
161 u32 i;
162
163 GET_UINT32_LE(a, in, 0);
164 GET_UINT32_LE(b, in, 4);
165 GET_UINT32_LE(c, in, 8);
166 GET_UINT32_LE(d, in, 12);
167
168 for(i = 0; i < 8; i++){
169 u32 key;
170 u32 j = (7 - i);
171 GET_UINT32_LE(key, ks, 4*KIdx[i][6]);
172 b ^= G(a + key, 5);
173 GET_UINT32_LE(key, ks, 4*KIdx[i][5]);
174 c ^= G(d + key, 21);
175 GET_UINT32_LE(key, ks, 4*KIdx[i][4]);
176 a = (u32)(a - G(b + key, 13));
177 GET_UINT32_LE(key, ks, 4*KIdx[i][3]);
178 e = G(b + c + key, 21) ^ (j + 1);
179 b += e;
180 c = (u32)(c - e);
181 GET_UINT32_LE(key, ks, 4*KIdx[i][2]);
182 d += G(c + key, 13);
183 GET_UINT32_LE(key, ks, 4*KIdx[i][1]);
184 b ^= G(a + key, 21);
185 GET_UINT32_LE(key, ks, 4*KIdx[i][0]);
186 c ^= G(d + key, 5);
187 SWAP_BELT(a, b);
188 SWAP_BELT(c, d);
189 SWAP_BELT(a, d);
190 }
191
192 PUT_UINT32_LE(c, out, 0);
193 PUT_UINT32_LE(a, out, 4);
194 PUT_UINT32_LE(d, out, 8);
195 PUT_UINT32_LE(b, out, 12);
196
197 return;
198 }
199
200 /* BELT-HASH primitives */
sigma1_xor(const u8 x[2* BELT_BLOCK_LEN],const u8 h[2* BELT_BLOCK_LEN],u8 s[BELT_BLOCK_LEN],u8 use_xor)201 static void sigma1_xor(const u8 x[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN], u8 use_xor){
202 u8 tmp1[BELT_BLOCK_LEN];
203 unsigned int i;
204
205 for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
206 tmp1[i] = (h[i] ^ h[i + BELT_BLOCK_LEN]);
207 tmp1[i + (BELT_BLOCK_LEN / 2)] = (h[i + (BELT_BLOCK_LEN / 2)] ^ h[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)]);
208 }
209
210 if(use_xor){
211 u8 tmp2[BELT_BLOCK_LEN];
212
213 belt_encrypt(tmp1, tmp2, x);
214
215 for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
216 s[i] ^= (tmp1[i] ^ tmp2[i]);
217 s[i + (BELT_BLOCK_LEN / 2)] ^= (tmp1[i + (BELT_BLOCK_LEN / 2)] ^ tmp2[i + (BELT_BLOCK_LEN / 2)]);
218 }
219 }
220 else{
221 belt_encrypt(tmp1, s, x);
222 for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
223 s[i] ^= tmp1[i];
224 s[i + (BELT_BLOCK_LEN / 2)] ^= tmp1[i + (BELT_BLOCK_LEN / 2)];
225 }
226 }
227
228 return;
229 }
230
sigma2(const u8 x[2* BELT_BLOCK_LEN],u8 const h[2* BELT_BLOCK_LEN],u8 result[2* BELT_BLOCK_LEN])231 static void sigma2(const u8 x[2 * BELT_BLOCK_LEN], u8 const h[2 * BELT_BLOCK_LEN], u8 result[2 * BELT_BLOCK_LEN])
232 {
233 u8 teta[BELT_KEY_SCHED_LEN];
234 u8 tmp[BELT_BLOCK_LEN];
235 unsigned int i;
236
237 /* Copy the beginning of h for later in case it is lost */
238 IGNORE_RET_VAL(local_memcpy(&tmp[0], &h[0], BELT_BLOCK_LEN));
239
240 sigma1_xor(x, h, teta, 0);
241 IGNORE_RET_VAL(local_memcpy(&teta[BELT_BLOCK_LEN], &h[BELT_BLOCK_LEN], BELT_BLOCK_LEN));
242
243 belt_encrypt(x, result, teta);
244 for(i = 0; i < BELT_BLOCK_LEN; i++){
245 result[i] ^= x[i];
246 teta[i] ^= 0xff;
247 teta[i + BELT_BLOCK_LEN] = tmp[i];
248 }
249
250 belt_encrypt(&x[BELT_BLOCK_LEN], &result[BELT_BLOCK_LEN], teta);
251
252 for(i = 0; i < (BELT_BLOCK_LEN / 2); i++){
253 result[i + BELT_BLOCK_LEN] ^= x[i + BELT_BLOCK_LEN];
254 result[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)] ^= x[i + BELT_BLOCK_LEN + (BELT_BLOCK_LEN / 2)];
255 }
256
257 return;
258 }
259
_belt_hash_process(const u8 x[2* BELT_BLOCK_LEN],u8 h[2* BELT_BLOCK_LEN],u8 s[BELT_BLOCK_LEN])260 static void _belt_hash_process(const u8 x[2 * BELT_BLOCK_LEN], u8 h[2 * BELT_BLOCK_LEN], u8 s[BELT_BLOCK_LEN])
261 {
262 sigma1_xor(x, h, s, 1);
263
264 sigma2(x, h, h);
265
266 return;
267 }
268
belt_hash_process(belt_hash_context * ctx,const u8 data[BELT_HASH_BLOCK_SIZE])269 ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_process(belt_hash_context *ctx, const u8 data[BELT_HASH_BLOCK_SIZE])
270 {
271 _belt_hash_process(data, ctx->belt_hash_h, &(ctx->belt_hash_state[BELT_BLOCK_LEN]));
272
273 return 0;
274 }
275
belt_hash_finalize(const u8 s[2* BELT_BLOCK_LEN],const u8 h[2* BELT_BLOCK_LEN],u8 res[2* BELT_BLOCK_LEN])276 ATTRIBUTE_WARN_UNUSED_RET static int belt_hash_finalize(const u8 s[2 * BELT_BLOCK_LEN], const u8 h[2 * BELT_BLOCK_LEN], u8 res[2 * BELT_BLOCK_LEN])
277 {
278 sigma2(s, h, res);
279
280 return 0;
281 }
282
belt_update_ctr(belt_hash_context * ctx,u8 len_bytes)283 static void belt_update_ctr(belt_hash_context *ctx, u8 len_bytes)
284 {
285 /* Perform a simple addition on 128 bits on the first part of the state */
286 u64 a0, a1, b, c;
287
288 GET_UINT64_LE(a0, (const u8*)(ctx->belt_hash_state), 0);
289 GET_UINT64_LE(a1, (const u8*)(ctx->belt_hash_state), 8);
290
291 b = (u64)(len_bytes << 3);
292
293 c = (a0 + b);
294 if(c < b){
295 /* Handle carry */
296 a1 += 1;
297 }
298
299 /* Store the result */
300 PUT_UINT64_LE(c, (u8*)(ctx->belt_hash_state), 0);
301 PUT_UINT64_LE(a1, (u8*)(ctx->belt_hash_state), 8);
302
303 return;
304 }
305
306 /* Init hash function. Returns 0 on success, -1 on error. */
belt_hash_init(belt_hash_context * ctx)307 int belt_hash_init(belt_hash_context *ctx)
308 {
309 int ret;
310
311 MUST_HAVE((ctx != NULL), ret, err);
312
313 ctx->belt_hash_total = 0;
314
315 ret = local_memset(ctx->belt_hash_state, 0, sizeof(ctx->belt_hash_state)); EG(ret, err);
316
317 PUT_UINT64_LE(0x3bf5080ac8ba94b1ULL, ctx->belt_hash_h, 0);
318 PUT_UINT64_LE(0xe45d4a588e006d36ULL, ctx->belt_hash_h, 8);
319 PUT_UINT64_LE(0xacc7b61b9dfa0485ULL, ctx->belt_hash_h, 16);
320 PUT_UINT64_LE(0x0dcefd02c2722e25ULL, ctx->belt_hash_h, 24);
321
322 /* Tell that we are initialized */
323 ctx->magic = BELT_HASH_HASH_MAGIC;
324
325 ret = 0;
326
327 err:
328 return ret;
329 }
330
331 /* Update hash function. Returns 0 on success, -1 on error. */
belt_hash_update(belt_hash_context * ctx,const u8 * input,u32 ilen)332 int belt_hash_update(belt_hash_context *ctx, const u8 *input, u32 ilen)
333 {
334 const u8 *data_ptr = input;
335 u32 remain_ilen = ilen;
336 u16 fill;
337 u8 left;
338 int ret;
339
340 MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
341 BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err);
342
343 /* Nothing to process, return */
344 if (ilen == 0) {
345 ret = 0;
346 goto err;
347 }
348
349 /* Get what's left in our local buffer */
350 left = (ctx->belt_hash_total & (BELT_HASH_BLOCK_SIZE - 1));
351 fill = (u16)(BELT_HASH_BLOCK_SIZE - left);
352
353 ctx->belt_hash_total += ilen;
354
355 if ((left > 0) && (remain_ilen >= fill)) {
356 /* Copy data at the end of the buffer */
357 ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, fill); EG(ret, err);
358 /* Update the counter with one full block */
359 belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE);
360 /* Process */
361 ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err);
362 data_ptr += fill;
363 remain_ilen -= fill;
364 left = 0;
365 }
366
367 while (remain_ilen >= BELT_HASH_BLOCK_SIZE) {
368 /* Update the counter with one full block */
369 belt_update_ctr(ctx, BELT_HASH_BLOCK_SIZE);
370 /* Process */
371 ret = belt_hash_process(ctx, data_ptr); EG(ret, err);
372 data_ptr += BELT_HASH_BLOCK_SIZE;
373 remain_ilen -= BELT_HASH_BLOCK_SIZE;
374 }
375
376 if (remain_ilen > 0) {
377 ret = local_memcpy(ctx->belt_hash_buffer + left, data_ptr, remain_ilen); EG(ret, err);
378 }
379
380 ret = 0;
381
382 err:
383 return ret;
384 }
385
386 /* Finalize. Returns 0 on success, -1 on error.*/
belt_hash_final(belt_hash_context * ctx,u8 output[BELT_HASH_DIGEST_SIZE])387 int belt_hash_final(belt_hash_context *ctx, u8 output[BELT_HASH_DIGEST_SIZE])
388 {
389 int ret;
390 unsigned int i;
391
392 MUST_HAVE((output != NULL), ret, err);
393 BELT_HASH_HASH_CHECK_INITIALIZED(ctx, ret, err);
394
395 if((ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE) != 0){
396 /* Pad our last block with zeroes */
397 for(i = (ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE); i < BELT_HASH_BLOCK_SIZE; i++){
398 ctx->belt_hash_buffer[i] = 0;
399 }
400
401 /* Update the counter with the remaining data */
402 belt_update_ctr(ctx, (u8)(ctx->belt_hash_total % BELT_HASH_BLOCK_SIZE));
403
404 /* Process the last block */
405 ret = belt_hash_process(ctx, ctx->belt_hash_buffer); EG(ret, err);
406 }
407
408 /* Finalize and output the result */
409 ret = belt_hash_finalize(ctx->belt_hash_state, ctx->belt_hash_h, output); EG(ret, err);
410
411 /* Tell that we are uninitialized */
412 ctx->magic = WORD(0);
413
414 ret = 0;
415
416 err:
417 return ret;
418 }
419
420 /*
421 * Scattered version performing init/update/finalize on a vector of buffers
422 * 'inputs' with the length of each buffer passed via 'ilens'. The function
423 * loops on pointers in 'inputs' until it finds a NULL pointer. The function
424 * returns 0 on success, -1 on error.
425 */
belt_hash_scattered(const u8 ** inputs,const u32 * ilens,u8 output[BELT_HASH_DIGEST_SIZE])426 int belt_hash_scattered(const u8 **inputs, const u32 *ilens,
427 u8 output[BELT_HASH_DIGEST_SIZE])
428 {
429 belt_hash_context ctx;
430 int ret, pos = 0;
431
432 MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
433
434 ret = belt_hash_init(&ctx); EG(ret, err);
435
436 while (inputs[pos] != NULL) {
437 ret = belt_hash_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
438 pos += 1;
439 }
440
441 ret = belt_hash_final(&ctx, output);
442
443 err:
444 return ret;
445 }
446
447 /*
448 * Single call version performing init/update/final on given input.
449 * Returns 0 on success, -1 on error.
450 */
belt_hash(const u8 * input,u32 ilen,u8 output[BELT_HASH_DIGEST_SIZE])451 int belt_hash(const u8 *input, u32 ilen, u8 output[BELT_HASH_DIGEST_SIZE])
452 {
453 belt_hash_context ctx;
454 int ret;
455
456 ret = belt_hash_init(&ctx); EG(ret, err);
457 ret = belt_hash_update(&ctx, input, ilen); EG(ret, err);
458 ret = belt_hash_final(&ctx, output);
459
460 err:
461 return ret;
462 }
463
464 #else /* WITH_HASH_BELT_HASH */
465
466 /*
467 * Dummy definition to avoid the empty translation unit ISO C warning
468 */
469 typedef int dummy;
470
471 #endif /* WITH_HASH_BELT_HASH */
472