xref: /freebsd/crypto/libecc/src/fp/fp_sqrt.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/fp/fp_sqrt.h>
17 #include <libecc/nn/nn_add.h>
18 #include <libecc/nn/nn_logical.h>
19 
20 /*
21  * Compute the legendre symbol of an element of Fp:
22  *
23  *   Legendre(a) = a^((p-1)/2) (p) = { -1, 0, 1 }
24  *
25  */
26 ATTRIBUTE_WARN_UNUSED_RET static int legendre(fp_src_t a)
27 {
28 	int ret, iszero, cmp;
29 	fp pow; /* The result if the exponentiation is in Fp */
30 	fp one; /* The element 1 in the field */
31 	nn exp; /* The power exponent is in NN */
32 	pow.magic = one.magic = WORD(0);
33 	exp.magic = WORD(0);
34 
35 	/* Initialize elements */
36 	ret = fp_check_initialized(a); EG(ret, err);
37 	ret = fp_init(&pow, a->ctx); EG(ret, err);
38 	ret = fp_init(&one, a->ctx); EG(ret, err);
39 	ret = nn_init(&exp, 0); EG(ret, err);
40 
41 	/* Initialize our variables from the Fp context of the
42 	 * input a.
43 	 */
44 	ret = fp_init(&pow, a->ctx); EG(ret, err);
45 	ret = fp_init(&one, a->ctx); EG(ret, err);
46 	ret = nn_init(&exp, 0); EG(ret, err);
47 
48 	/* one = 1 in Fp */
49 	ret = fp_one(&one); EG(ret, err);
50 
51 	/* Compute the exponent (p-1)/2
52 	 * The computation is done in NN, and the division by 2
53 	 * is performed using a right shift by one
54 	 */
55 	ret = nn_dec(&exp, &(a->ctx->p)); EG(ret, err);
56 	ret = nn_rshift(&exp, &exp, 1); EG(ret, err);
57 
58 	/* Compute a^((p-1)/2) in Fp using our fp_pow
59 	 * API.
60 	 */
61 	ret = fp_pow(&pow, a, &exp); EG(ret, err);
62 
63 	ret = fp_iszero(&pow, &iszero); EG(ret, err);
64 	ret = fp_cmp(&pow, &one, &cmp); EG(ret, err);
65 	if (iszero) {
66 		ret = 0;
67 	} else if (cmp == 0) {
68 		ret = 1;
69 	} else {
70 		ret = -1;
71 	}
72 
73 err:
74 	/* Cleaning */
75 	fp_uninit(&pow);
76 	fp_uninit(&one);
77 	nn_uninit(&exp);
78 
79 	return ret;
80 }
81 
82 /*
83  * We implement the Tonelli-Shanks algorithm for finding
84  * square roots (quadratic residues) modulo a prime number,
85  * i.e. solving the equation:
86  *     x^2 = n (p)
87  * where p is a prime number. This can be seen as an equation
88  * over the finite field Fp where a and x are elements of
89  * this finite field.
90  *   Source: https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
91  *   All   ≡   are taken to mean   (mod p)   unless stated otherwise.
92  *   Input : p an odd prime, and an integer n .
93  *       Step 0. Check that n is indeed a square  : (n | p) must be ≡ 1
94  *       Step 1. [Factors out powers of 2 from p-1] Define q -odd- and s such as p-1 = q * 2^s
95  *           - if s = 1 , i.e p ≡ 3 (mod 4) , output the two solutions r ≡ +/- n^((p+1)/4) .
96  *       Step 2. Select a non-square z such as (z | p) = -1 , and set c ≡ z^q .
97  *       Step 3. Set r ≡ n ^((q+1)/2) , t ≡ n^q, m = s .
98  *       Step 4. Loop.
99  *           - if t ≡ 1 output r, p-r .
100  *           - Otherwise find, by repeated squaring, the lowest i , 0 < i < m , such as t^(2^i) ≡ 1
101  *           - Let b ≡ c^(2^(m-i-1)), and set r ≡ r*b, t ≡ t*b^2 , c ≡ b^2 and m = i.
102  *
103  * NOTE: the algorithm is NOT constant time.
104  *
105  * The outputs, sqrt1 and sqrt2 ARE initialized by the function.
106  * The function returns 0 on success, -1 on error (in which case values of sqrt1 and sqrt2
107  * must not be considered).
108  *
109  * Aliasing is supported.
110  *
111  */
112 int fp_sqrt(fp_t sqrt1, fp_t sqrt2, fp_src_t n)
113 {
114 	int ret, iszero, cmp, isodd;
115 	nn q, s, one_nn, two_nn, m, i, tmp_nn;
116 	fp z, t, b, r, c, one_fp, tmp_fp, __n;
117 	fp_t _n = &__n;
118 	q.magic = s.magic = one_nn.magic = two_nn.magic = m.magic = WORD(0);
119 	i.magic = tmp_nn.magic = z.magic = t.magic = b.magic = WORD(0);
120 	r.magic = c.magic = one_fp.magic = tmp_fp.magic = __n.magic = WORD(0);
121 
122 	ret = nn_init(&q, 0); EG(ret, err);
123 	ret = nn_init(&s, 0); EG(ret, err);
124 	ret = nn_init(&tmp_nn, 0); EG(ret, err);
125 	ret = nn_init(&one_nn, 0); EG(ret, err);
126 	ret = nn_init(&two_nn, 0); EG(ret, err);
127 	ret = nn_init(&m, 0); EG(ret, err);
128 	ret = nn_init(&i, 0); EG(ret, err);
129 	ret = fp_init(&z, n->ctx); EG(ret, err);
130 	ret = fp_init(&t, n->ctx); EG(ret, err);
131 	ret = fp_init(&b, n->ctx); EG(ret, err);
132 	ret = fp_init(&r, n->ctx); EG(ret, err);
133 	ret = fp_init(&c, n->ctx); EG(ret, err);
134 	ret = fp_init(&one_fp, n->ctx); EG(ret, err);
135 	ret = fp_init(&tmp_fp, n->ctx); EG(ret, err);
136 
137 	/* Handle input aliasing */
138 	ret = fp_copy(_n, n); EG(ret, err);
139 
140 	/* Initialize outputs */
141 	ret = fp_init(sqrt1, _n->ctx); EG(ret, err);
142 	ret = fp_init(sqrt2, _n->ctx); EG(ret, err);
143 
144 	/* one_nn = 1 in NN */
145 	ret = nn_one(&one_nn); EG(ret, err);
146 	/* two_nn = 2 in NN */
147 	ret = nn_set_word_value(&two_nn, WORD(2)); EG(ret, err);
148 
149 	/* If our p prime of Fp is 2, then return the input as square roots */
150 	ret = nn_cmp(&(_n->ctx->p), &two_nn, &cmp); EG(ret, err);
151 	if (cmp == 0) {
152 		ret = fp_copy(sqrt1, _n); EG(ret, err);
153 		ret = fp_copy(sqrt2, _n); EG(ret, err);
154 		ret = 0;
155 		goto err;
156 	}
157 
158 	/* Square root of 0 is 0 */
159 	ret = fp_iszero(_n, &iszero); EG(ret, err);
160 	if (iszero) {
161 		ret = fp_zero(sqrt1); EG(ret, err);
162 		ret = fp_zero(sqrt2); EG(ret, err);
163 		ret = 0;
164 		goto err;
165 	}
166 	/* Step 0. Check that n is indeed a square  : (n | p) must be ≡ 1 */
167 	if (legendre(_n) != 1) {
168 		/* a is not a square */
169 		ret = -1;
170 		goto err;
171 	}
172 	/* Step 1. [Factors out powers of 2 from p-1] Define q -odd- and s such as p-1 = q * 2^s */
173 	/* s = 0 */
174 	ret = nn_zero(&s); EG(ret, err);
175 	/* q = p - 1 */
176 	ret = nn_copy(&q, &(_n->ctx->p)); EG(ret, err);
177 	ret = nn_dec(&q, &q); EG(ret, err);
178 	while (1) {
179 		/* i is used as a temporary unused variable here */
180 		ret = nn_divrem(&tmp_nn, &i, &q, &two_nn); EG(ret, err);
181 		ret = nn_inc(&s, &s); EG(ret, err);
182 		ret = nn_copy(&q, &tmp_nn); EG(ret, err);
183 		/* If r is odd, we have finished our division */
184 		ret = nn_isodd(&q, &isodd); EG(ret, err);
185 		if (isodd) {
186 			break;
187 		}
188 	}
189 	/* - if s = 1 , i.e p ≡ 3 (mod 4) , output the two solutions r ≡ +/- n^((p+1)/4) . */
190 	ret = nn_cmp(&s, &one_nn, &cmp); EG(ret, err);
191 	if (cmp == 0) {
192 		ret = nn_inc(&tmp_nn, &(_n->ctx->p)); EG(ret, err);
193 		ret = nn_rshift(&tmp_nn, &tmp_nn, 2); EG(ret, err);
194 		ret = fp_pow(sqrt1, _n, &tmp_nn); EG(ret, err);
195 		ret = fp_neg(sqrt2, sqrt1); EG(ret, err);
196 		ret = 0;
197 		goto err;
198 	}
199 	/* Step 2. Select a non-square z such as (z | p) = -1 , and set c ≡ z^q . */
200 	ret = fp_zero(&z); EG(ret, err);
201 	while (legendre(&z) != -1) {
202 		ret = fp_inc(&z, &z); EG(ret, err);
203 	}
204 	ret = fp_pow(&c, &z, &q); EG(ret, err);
205 	/* Step 3. Set r ≡ n ^((q+1)/2) , t ≡ n^q, m = s . */
206 	ret = nn_inc(&tmp_nn, &q); EG(ret, err);
207 	ret = nn_rshift(&tmp_nn, &tmp_nn, 1); EG(ret, err);
208 	ret = fp_pow(&r, _n, &tmp_nn); EG(ret, err);
209 	ret = fp_pow(&t, _n, &q); EG(ret, err);
210 	ret = nn_copy(&m, &s); EG(ret, err);
211 	ret = fp_one(&one_fp); EG(ret, err);
212 
213 	/* Step 4. Loop. */
214 	while (1) {
215 		/* - if t ≡ 1 output r, p-r . */
216 		ret = fp_cmp(&t, &one_fp, &cmp); EG(ret, err);
217 		if (cmp == 0) {
218 			ret = fp_copy(sqrt1, &r); EG(ret, err);
219 			ret = fp_neg(sqrt2, sqrt1); EG(ret, err);
220 			ret = 0;
221 			goto err;
222 		}
223 		/* - Otherwise find, by repeated squaring, the lowest i , 0 < i < m , such as t^(2^i) ≡ 1 */
224 		ret = nn_one(&i); EG(ret, err);
225 		ret = fp_copy(&tmp_fp, &t); EG(ret, err);
226 		while (1) {
227 			ret = fp_sqr(&tmp_fp, &tmp_fp); EG(ret, err);
228 			ret = fp_cmp(&tmp_fp, &one_fp, &cmp); EG(ret, err);
229 			if (cmp == 0) {
230 				break;
231 			}
232 			ret = nn_inc(&i, &i); EG(ret, err);
233 			ret = nn_cmp(&i, &m, &cmp); EG(ret, err);
234 			if (cmp == 0) {
235 				/* i has reached m, that should not happen ... */
236 				ret = -2;
237 				goto err;
238 			}
239 		}
240 		/* - Let b ≡ c^(2^(m-i-1)), and set r ≡ r*b, t ≡ t*b^2 , c ≡ b^2 and m = i. */
241 		ret = nn_sub(&tmp_nn, &m, &i); EG(ret, err);
242 		ret = nn_dec(&tmp_nn, &tmp_nn); EG(ret, err);
243 		ret = fp_copy(&b, &c); EG(ret, err);
244 		ret = nn_iszero(&tmp_nn, &iszero); EG(ret, err);
245 		while (!iszero) {
246 			ret = fp_sqr(&b, &b); EG(ret, err);
247 			ret = nn_dec(&tmp_nn, &tmp_nn); EG(ret, err);
248 			ret = nn_iszero(&tmp_nn, &iszero); EG(ret, err);
249 		}
250 		/* r ≡ r*b */
251 		ret = fp_mul(&r, &r, &b); EG(ret, err);
252 		/* c ≡ b^2 */
253 		ret = fp_sqr(&c, &b); EG(ret, err);
254 		/* t ≡ t*b^2 */
255 		ret = fp_mul(&t, &t, &c); EG(ret, err);
256 		/* m = i */
257 		ret = nn_copy(&m, &i); EG(ret, err);
258 	}
259 
260  err:
261 	/* Uninitialize local variables */
262 	nn_uninit(&q);
263 	nn_uninit(&s);
264 	nn_uninit(&tmp_nn);
265 	nn_uninit(&one_nn);
266 	nn_uninit(&two_nn);
267 	nn_uninit(&m);
268 	nn_uninit(&i);
269 	fp_uninit(&z);
270 	fp_uninit(&t);
271 	fp_uninit(&b);
272 	fp_uninit(&r);
273 	fp_uninit(&c);
274 	fp_uninit(&one_fp);
275 	fp_uninit(&tmp_fp);
276 	fp_uninit(&__n);
277 
278 	PTR_NULLIFY(_n);
279 
280 	return ret;
281 }
282