xref: /freebsd/crypto/libecc/src/fp/fp_mul.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/fp/fp_mul.h>
17 #include <libecc/fp/fp_pow.h>
18 #include <libecc/nn/nn_add.h>
19 #include <libecc/nn/nn_mul_public.h>
20 #include <libecc/nn/nn_modinv.h>
21 /* Include the "internal" header as we use non public API here */
22 #include "../nn/nn_div.h"
23 
24 /*
25  * Compute out = in1 * in2 mod p. 'out' parameter must have been initialized
26  * by the caller. Returns 0 on success, -1 on error.
27  *
28  * Aliasing is supported.
29  */
30 int fp_mul(fp_t out, fp_src_t in1, fp_src_t in2)
31 {
32 	int ret;
33 
34 	ret = fp_check_initialized(in1); EG(ret, err);
35 	ret = fp_check_initialized(in2); EG(ret, err);
36 	ret = fp_check_initialized(out); EG(ret, err);
37 
38 	MUST_HAVE(out->ctx == in1->ctx, ret, err);
39 	MUST_HAVE(out->ctx == in2->ctx, ret, err);
40 
41 	ret = nn_mul(&(out->fp_val), &(in1->fp_val), &(in2->fp_val)); EG(ret, err);
42 	ret = nn_mod_unshifted(&(out->fp_val), &(out->fp_val), &(in1->ctx->p_normalized),
43                          in1->ctx->p_reciprocal, in1->ctx->p_shift);
44 
45 err:
46 	return ret;
47 }
48 
49 /*
50  * Compute out = in * in mod p. 'out' parameter must have been initialized
51  * by the caller. Returns 0 on success, -1 on error.
52  *
53  * Aliasing is supported.
54  */
55 int fp_sqr(fp_t out, fp_src_t in)
56 {
57 	return fp_mul(out, in, in);
58 }
59 
60 /* We use Fermat's little theorem for our inversion in Fp:
61  *    x^(p-1) = 1 mod (p) means that x^(p-2) mod(p) is the modular
62  *    inverse of x mod (p)
63  *
64  * Aliasing is supported.
65  */
66 int fp_inv(fp_t out, fp_src_t in)
67 {
68 	/* Use our lower layer Fermat modular inversion with precomputed
69 	 * Montgomery coefficients.
70 	 */
71 	int ret;
72 
73 	ret = fp_check_initialized(in); EG(ret, err);
74 	ret = fp_check_initialized(out); EG(ret, err);
75 
76 	MUST_HAVE(out->ctx == in->ctx, ret, err);
77 
78 	/* We can use the Fermat inversion as p is surely prime here */
79 	ret = nn_modinv_fermat_redc(&(out->fp_val), &(in->fp_val), &(in->ctx->p), &(in->ctx->r), &(in->ctx->r_square), in->ctx->mpinv);
80 
81 err:
82 	return ret;
83 }
84 
85 /*
86  * Compute out = w^-1 mod p. 'out' parameter must have been initialized
87  * by the caller. Returns 0 on success, -1 on error.
88  */
89 int fp_inv_word(fp_t out, word_t w)
90 {
91 	int ret;
92 
93 	ret = fp_check_initialized(out); EG(ret, err);
94 
95 	ret = nn_modinv_word(&(out->fp_val), w, &(out->ctx->p));
96 
97 err:
98 	return ret;
99 }
100 
101 /*
102  * Compute out such that num = out * den mod p. 'out' parameter must have been initialized
103  * by the caller. Returns 0 on success, -1 on error.
104  *
105  * Aliasing is supported.
106  */
107 int fp_div(fp_t out, fp_src_t num, fp_src_t den)
108 {
109 	int ret;
110 
111 	ret = fp_check_initialized(num); EG(ret, err);
112  	ret = fp_check_initialized(den); EG(ret, err);
113 	ret = fp_check_initialized(out); EG(ret, err);
114 
115 	MUST_HAVE(out->ctx == num->ctx, ret, err);
116 	MUST_HAVE(out->ctx == den->ctx, ret, err);
117 
118 	if(out == num){
119 		/* Handle aliasing of out and num */
120 		fp _num;
121 		_num.magic = WORD(0);
122 
123 		ret = fp_copy(&_num, num); EG(ret, err1);
124 		ret = fp_inv(out, den); EG(ret, err1);
125 		ret = fp_mul(out, &_num, out);
126 
127 err1:
128 		fp_uninit(&_num);
129 		EG(ret, err);
130 	}
131 	else{
132 		ret = fp_inv(out, den); EG(ret, err);
133 		ret = fp_mul(out, num, out);
134 	}
135 
136 err:
137 	return ret;
138 }
139