xref: /freebsd/crypto/libecc/src/examples/sss/sss.c (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 /*
2  *  Copyright (C) 2021 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *
8  *  This software is licensed under a dual BSD and GPL v2 license.
9  *  See LICENSE file at the root folder of the project.
10  */
11 #include "sss_private.h"
12 #include "sss.h"
13 
14 /*
15  * The purpose of this example is to implement the SSS
16  * (Shamir's Secret Sharing) scheme based on libecc arithmetic
17  * primitives. The scheme is implemented over a ~256 bit prime
18  * field.
19  *
20  * Secret sharing allows to combine some shares (at least k among n >= k)
21  * to regenerate a secret. The current code also ensures the integrity
22  * of the shares using HMAC. A maximum of (2**16 - 1) shares can be
23  * generated, and beware that the time complexity of generation heavily
24  * increases with k and n, and the time complexity of shares combination
25  * increases with k.
26  *
27  * Shares regeneration from exisiting ones is also offered although it
28  * is expensive in CPU cycles (as the Lagrange interpolation polynomials
29  * have to be evaluated for each existing share before computing new ones).
30  *
31  * !! DISCLAIMER !!
32  * ================
33  * Some efforts have been put on providing a clean code and constant time
34  * as well as some SCA (side-channel attacks) resistance (e.g. blinding some
35  * operations manipulating secrets). However, no absolute guarantee can be claimed:
36  * use this code knowingly and at your own risks!
37  *
38  * Also, as for all other libecc primitives, beware of randomness sources. By default,
39  * the library uses the OS random sources (e.g. "/dev/urandom"), but the user
40  * is encouraged to adapt the ../external_deps/rand.c source file to combine
41  * multiple sources and add entropy there depending on the context where this
42  * code is integrated. The security level of all the cryptographic primitives
43  * heavily relies on random sources quality.
44  *
45  */
46 
47 #ifndef GET_UINT16_BE
48 #define GET_UINT16_BE(n, b, i)                          \
49 do {                                                    \
50         (n) =     (u16)( ((u16) (b)[(i)    ]) << 8 )    \
51                 | (u16)( ((u16) (b)[(i) + 1])       );  \
52 } while( 0 )
53 #endif
54 
55 #ifndef PUT_UINT16_BE
56 #define PUT_UINT16_BE(n, b, i)                  \
57 do {                                            \
58         (b)[(i)    ] = (u8) ( (n) >> 8 );       \
59         (b)[(i) + 1] = (u8) ( (n)       );      \
60 } while( 0 )
61 #endif
62 
63 /* The prime number we use: it is close to (2**256-1) but still stricly less
64  * than this value, hence a theoretical security of more than 255 bits but less than
65  * 256 bits. This prime p is used in the prime field of secp256k1, the "bitcoin"
66  * curve.
67  *
68  * This can be modified with another prime, beware however of the size
69  * of the prime to be in line with the shared secrets sizes, and also
70  * that all our shares and secret lie in Fp, and hence are < p,
71  *
72  * Although bigger primes could be used, beware that SSS shares recombination
73  * complexity is quadratic in the number of shares, yielding impractical
74  * computation time when the prime is too big. Also, some elements related to
75  * the share generation (_sss_derive_seed) must be adapated to keep proper entropy
76  * if the prime (size) is modified.
77  */
78 static const u8 prime[] = {
79         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
80         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
81         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
82         0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f,
83 };
84 
85 ATTRIBUTE_WARN_UNUSED_RET static int _sss_derive_seed(fp_t out, const u8 seed[SSS_SECRET_SIZE], u16 idx)
86 {
87 	int ret;
88 	u8 hmac_val[SHA512_DIGEST_SIZE];
89 	u8 C[2];
90 	u8 len;
91 	nn nn_val;
92 
93 	/* Sanity check on sizes to avoid entropy loss through reduction biases */
94 	MUST_HAVE((SHA512_DIGEST_SIZE >= (2 * SSS_SECRET_SIZE)), ret, err);
95 
96 	/* out must be initialized with a context */
97 	ret = fp_check_initialized(out); EG(ret, err);
98 
99 	ret = local_memset(hmac_val, 0, sizeof(hmac_val)); EG(ret, err);
100 	ret = local_memset(C, 0, sizeof(C)); EG(ret, err);
101 
102 	/* Export our idx in big endian representation on two bytes */
103 	PUT_UINT16_BE(idx, C, 0);
104 
105 	len = sizeof(hmac_val);
106 	ret = hmac(seed, SSS_SECRET_SIZE, SHA512, C, sizeof(C), hmac_val, &len); EG(ret, err);
107 
108 	ret = nn_init_from_buf(&nn_val, hmac_val, len); EG(ret, err);
109 	/* Since we will put this in Fp, take the modulo */
110 	ret = nn_mod(&nn_val, &nn_val, &(out->ctx->p)); EG(ret, err);
111 	/* Now import our reduced value in Fp as the result of the derivation */
112 	ret = fp_set_nn(out, &nn_val);
113 
114 err:
115 	/* Cleanup secret data */
116 	IGNORE_RET_VAL(local_memset(hmac_val, 0, sizeof(hmac_val)));
117 	IGNORE_RET_VAL(local_memset(C, 0, sizeof(C)));
118 	nn_uninit(&nn_val);
119 
120 	return ret;
121 }
122 
123 /***** Raw versions ***********************/
124 /* SSS shares and secret generation */
125 ATTRIBUTE_WARN_UNUSED_RET static int _sss_raw_generate(sss_share *shares, u16 k, u16 n, sss_secret *secret, boolean input_secret)
126 {
127 	fp_ctx ctx;
128 	nn p;
129 	fp a0, a, s;
130 	fp exp, base, tmp;
131 	fp blind, blind_inv;
132 	u8 secret_seed[SSS_SECRET_SIZE];
133 	u16 idx_shift, num_shares;
134 	int ret;
135 	unsigned int i, j;
136 	p.magic = WORD(0);
137 	exp.magic = base.magic = tmp.magic = s.magic = a.magic = a0.magic = WORD(0);
138 	blind.magic = blind_inv.magic = WORD(0);
139 
140 	ret = local_memset(secret_seed, 0, sizeof(secret_seed)); EG(ret, err);
141 
142 	MUST_HAVE((shares != NULL) && (secret != NULL), ret, err);
143 	/* Sanity checks */
144 	MUST_HAVE((n <= (u16)(0xffff - 1)), ret, err);
145 	MUST_HAVE((k <= n), ret, err);
146 	MUST_HAVE((k >= 1), ret, err);
147 	MUST_HAVE((SSS_SECRET_SIZE == sizeof(prime)), ret, err);
148 
149 	/* Import our prime number and create the Fp context */
150 	ret = nn_init_from_buf(&p, prime, sizeof(prime)); EG(ret, err);
151 	ret = fp_ctx_init_from_p(&ctx, &p); EG(ret, err);
152 
153 	/* Generate a secret seed of the size of the secret that will be our base to
154 	 * generate the plolynomial coefficients.
155 	 */
156 	ret = get_random(secret_seed, sizeof(secret_seed)); EG(ret, err);
157 	/* NOTE: although we could generate all our a[i] coefficients using our randomness
158 	 * source, we prefer to derive them from a single secret seed in order to optimize
159 	 * the storage space as our share generation algorithm needs to parse these a[i] multiple
160 	 * times. This time / memory tradeoff saves a lot of memory space for embedded contexts and
161 	 * avoids "malloc" usage (preserving the "no dynamic allocation" philosophy of libecc).
162 	 *
163 	 * Our secret seed is SSS_SECRET_SIZE long, so on the security side there should be no
164 	 * loss of strength/entropy. For each index i, a[i] is computed as follows:
165 	 *
166 	 *        a[i] = HMAC(secret_seed, i)
167 	 * where the HMAC is interpreted as a value in Fp (i.e. modulo p), and i is represented
168 	 * as a string of 2 elements. The HMAC uses a hash function of at least twice the
169 	 * size of the secret to avoid biases in modular reduction.
170 	 */
171 
172 	/* a0 is either derived from the secret seed or taken from input if
173 	 * provided.
174 	 */
175 	ret = fp_init(&a0, &ctx); EG(ret, err);
176 	if(input_secret == SSS_TRUE){
177 		/* Import the secret the user provides
178 		 * XXX: NOTE: the user shared secret MUST be in Fp! Since our prime is < (2**256 - 1),
179 		 * some 256 bit strings can be rejected here (namely those >= p and <= (2**256 - 1)).
180 		 */
181 		ret = fp_import_from_buf(&a0, secret->secret, SSS_SECRET_SIZE); EG(ret, err);
182 	}
183 	else{
184 		/* Generate the secret from our seed */
185 		ret = _sss_derive_seed(&a0, secret_seed, 0); EG(ret, err);
186 	}
187 
188 	/* Compute the shares P(x) for x in [idx_shift + 0, ..., idx_shift + n] (or
189 	 * [idx_shift + 0, ..., idx_shift + n + 1] to avoid the 0 index),
190 	 * with idx_shift a non-zero random index shift to avoid leaking the number of shares.
191 	 */
192 	ret = fp_init(&base, &ctx); EG(ret, err);
193 	ret = fp_init(&exp, &ctx); EG(ret, err);
194 	ret = fp_init(&tmp, &ctx); EG(ret, err);
195 	ret = fp_init(&s, &ctx); EG(ret, err);
196 	ret = fp_init(&a, &ctx); EG(ret, err);
197 	/* Get a random blind mask and invert it */
198 	ret = fp_get_random(&blind, &ctx); EG(ret, err);
199 	ret = fp_init(&blind_inv, &ctx); EG(ret, err);
200 	ret = fp_inv(&blind_inv, &blind); EG(ret, err);
201 	/* Generate a non-zero random index base for x to avoid leaking
202 	 * the number of shares. We could use a static sequence from x = 1 to n
203 	 * but this would leak some information to the participants about the number
204 	 * of shares (e.g. if a participant gets the share with x = 4, she surely knows
205 	 * that n >= 4). To avoid the leak we randomize the base value of the index where
206 	 * we begin our x.
207 	 */
208 	idx_shift = 0;
209 	while(idx_shift == 0){
210 		ret = get_random((u8*)&idx_shift, sizeof(idx_shift)); EG(ret, err);
211 	}
212 	num_shares = 0;
213 	i = 0;
214 	while(num_shares < n){
215 		_sss_raw_share *cur_share_i = &(shares[num_shares].raw_share);
216 		u16 curr_idx = (u16)(idx_shift + i);
217 		if(curr_idx == 0){
218 			/* Skip the index 0 specific case */
219 			i++;
220 			continue;
221 		}
222 		/* Set s[i] to the a[0] as blinded initial value */
223 		ret = fp_mul(&s, &blind, &a0); EG(ret, err);
224 		/* Get a random base x as u16 for share index */
225 		ret = fp_set_word_value(&base, (word_t)curr_idx); EG(ret, err);
226 		/* Set the exp to 1 */
227 		ret = fp_one(&exp); EG(ret, err);
228 		for(j = 1; j < k; j++){
229 			/* Compute x**j by iterative multiplications */
230 			ret = fp_mul_monty(&exp, &exp, &base); EG(ret, err);
231 			/* Compute our a[j] coefficient */
232 			ret = _sss_derive_seed(&a, secret_seed, (u16)j); EG(ret, err);
233 			/* Blind a[j] */
234 			ret = fp_mul_monty(&a, &a, &blind); EG(ret, err);
235 			/* NOTE1: actually, the real a[j] coefficients are _sss_derive_seed(secret_seed, j)
236 			 * multiplied by some power of r^-1 (the Montgomery constant), but this is OK as
237 			 * we need any random values (computable from the secret seed) here. We use this "trick"
238 			 * to be able to use our more performant redcified versions of Fp multiplication.
239 			 *
240 			 * NOTE2: this trick makes also this generation not deterministic with the same seed
241 			 * on binaries with different WORD sizes (16, 32, 64 bits) as the r Montgomery constant will
242 			 * differ depending on this size. However, this is not really an issue per se for our SSS
243 			 * as we are in our generation primitive and the a[j] coefficients are expected to be
244 			 * random (the only drawback is that deterministic test vectors will not be consistent
245 			 * across WORD sizes).
246 			 */
247 			/* Accumulate */
248 			ret = fp_mul_monty(&tmp, &exp, &a); EG(ret, err);
249 			ret = fp_add(&s, &s, &tmp); EG(ret, err);
250 		}
251 		/* Export the computed share */
252 		PUT_UINT16_BE(curr_idx, (u8*)&(cur_share_i->index), 0);
253 		/* Unblind */
254 		ret = fp_mul(&s, &s, &blind_inv); EG(ret, err);
255 		ret = fp_export_to_buf(cur_share_i->share, SSS_SECRET_SIZE, &s); EG(ret, err);
256 		num_shares++;
257 		i++;
258 	}
259 	/* The secret is a[0] */
260 	ret = fp_export_to_buf(secret->secret, SSS_SECRET_SIZE, &a0);
261 
262 err:
263 	/* We can throw away our secret seed now that the shares have
264 	 * been generated.
265 	 */
266 	IGNORE_RET_VAL(local_memset(secret_seed, 0, sizeof(secret_seed)));
267 	IGNORE_RET_VAL(local_memset(&ctx, 0, sizeof(ctx)));
268 	nn_uninit(&p);
269 	fp_uninit(&a0);
270 	fp_uninit(&a);
271 	fp_uninit(&s);
272 	fp_uninit(&base);
273 	fp_uninit(&exp);
274 	fp_uninit(&tmp);
275 	fp_uninit(&blind);
276 	fp_uninit(&blind_inv);
277 
278 	return ret;
279 }
280 
281 /* SSS helper to compute Lagrange interpolation on an input value.
282  *     - k is the number of shares pointed by the shares pointer
283  *     - secret is the computed secret
284  *     - val is the 'index' on which the Lagrange interpolation must be computed, i.e.
285  *       the idea is to have using Lagrage formulas the value f(val) where f is our polynomial. Of course
286  *       the proper value can only be computed if enough shares k are provided (the interpolation
287  *       does not hold in other cases and the result will be an incorrect value)
288  */
289 ATTRIBUTE_WARN_UNUSED_RET static int _sss_raw_lagrange(const sss_share *shares, u16 k, sss_secret *secret, u16 val)
290 {
291 	fp_ctx ctx;
292 	nn p;
293 	fp s, x, y;
294 	fp x_i, x_j, tmp, tmp2;
295 	fp blind, blind_inv, r_inv;
296 	int ret;
297 	unsigned int i, j;
298 	p.magic = WORD(0);
299 	x_i.magic = x_j.magic = tmp.magic = tmp2.magic = s.magic = y.magic = x.magic = WORD(0);
300 	blind.magic = blind_inv.magic = r_inv.magic = WORD(0);
301 
302 	MUST_HAVE((shares != NULL) && (secret != NULL), ret, err);
303 	/* Sanity checks */
304 	MUST_HAVE((k >= 1), ret, err);
305 	MUST_HAVE((SSS_SECRET_SIZE == sizeof(prime)), ret, err);
306 
307 	/* Import our prime number and create the Fp context */
308 	ret = nn_init_from_buf(&p, prime, sizeof(prime)); EG(ret, err);
309 	ret = fp_ctx_init_from_p(&ctx, &p); EG(ret, err);
310 
311 	/* Recombine our shared secrets */
312 	ret = fp_init(&s, &ctx); EG(ret, err);
313 	ret = fp_init(&y, &ctx); EG(ret, err);
314 	ret = fp_init(&x_i, &ctx); EG(ret, err);
315 	ret = fp_init(&x_j, &ctx); EG(ret, err);
316 	ret = fp_init(&tmp, &ctx); EG(ret, err);
317 	ret = fp_init(&tmp2, &ctx); EG(ret, err);
318 	if(val != 0){
319 		/* NOTE: we treat the case 'val = 0' in a specific case for
320 		 * optimization. This optimization is of interest since computing
321 		 * f(0) (where f(.) is our polynomial) is the formula for getting the
322 		 * SSS secret (which happens to be the constant of degree 0 of the
323 		 * polynomial).
324 		 */
325 		ret = fp_init(&x, &ctx); EG(ret, err);
326 		ret = fp_set_word_value(&x, (word_t)val); EG(ret, err);
327 	}
328 	/* Get a random blind mask and invert it */
329 	ret = fp_get_random(&blind, &ctx); EG(ret, err);
330 	ret = fp_init(&blind_inv, &ctx); EG(ret, err);
331 	ret = fp_inv(&blind_inv, &blind); EG(ret, err);
332 	/* Perform the computation of r^-1 to optimize our multiplications using Montgomery
333 	 * multiplication in the main loop.
334 	 */
335 	ret = fp_init(&r_inv, &ctx); EG(ret, err);
336 	ret = fp_set_nn(&r_inv, &(ctx.r)); EG(ret, err);
337 	ret = fp_inv(&r_inv, &r_inv); EG(ret, err);
338 	/* Proceed with the interpolation */
339 	for(i = 0; i < k; i++){
340 		u16 curr_idx;
341 		const _sss_raw_share *cur_share_i = &(shares[i].raw_share);
342 		/* Import s[i] */
343 		ret = fp_import_from_buf(&s, cur_share_i->share, SSS_SECRET_SIZE); EG(ret, err);
344 		/* Blind s[i] */
345 		ret = fp_mul_monty(&s, &s, &blind); EG(ret, err);
346 		/* Get the index */
347 		GET_UINT16_BE(curr_idx, (const u8*)&(cur_share_i->index), 0);
348 		ret = fp_set_word_value(&x_i, (word_t)(curr_idx)); EG(ret, err);
349 		/* Initialize multiplication with "one" (actually Montgomery r^-1 for multiplication optimization) */
350 		ret = fp_copy(&tmp2, &r_inv); EG(ret, err);
351 		/* Compute the product for all k other than i
352 		 * NOTE: we use fp_mul in its redcified version as the multiplication by r^-1 is
353 		 * cancelled by the fraction of (x_j - x) * r^-1 / (x_j - x_i) * r^-1 = (x_j - x) / (x_j - x_i)
354 		 */
355 		for(j = 0; j < k; j++){
356 			const _sss_raw_share *cur_share_j = &(shares[j].raw_share);
357 			GET_UINT16_BE(curr_idx, (const u8*)&(cur_share_j->index), 0);
358 			ret = fp_set_word_value(&x_j, (word_t)(curr_idx)); EG(ret, err);
359 			if(j != i){
360 				if(val != 0){
361 					ret = fp_sub(&tmp, &x_j, &x); EG(ret, err);
362 					ret = fp_mul_monty(&s, &s, &tmp); EG(ret, err);
363 				}
364 				else{
365 					/* NOTE: we treat the case 'val = 0' in a specific case for
366 					 * optimization. This optimization is of interest since computing
367 					 * f(0) (where f(.) is our polynomial) is the formula for getting the
368 					 * SSS secret (which happens to be the constant of degree 0 of the
369 					 * polynomial).
370 					 */
371 					ret = fp_mul_monty(&s, &s, &x_j); EG(ret, err);
372 				}
373 				ret = fp_sub(&tmp, &x_j, &x_i); EG(ret, err);
374 				ret = fp_mul_monty(&tmp2, &tmp2, &tmp); EG(ret, err);
375 			}
376 		}
377 		/* Invert all the (x_j - x_i) poducts */
378 		ret = fp_inv(&tmp, &tmp2); EG(ret, err);
379 		ret = fp_mul_monty(&s, &s, &tmp); EG(ret, err);
380 		/* Accumulate in secret */
381 		ret = fp_add(&y, &y, &s); EG(ret, err);
382 	}
383 	/* Unblind y */
384 	ret = fp_redcify(&y, &y); EG(ret, err);
385 	ret = fp_mul(&y, &y, &blind_inv); EG(ret, err);
386 	/* We should have our secret in y */
387 	ret = fp_export_to_buf(secret->secret, SSS_SECRET_SIZE, &y);
388 
389 err:
390 	IGNORE_RET_VAL(local_memset(&ctx, 0, sizeof(ctx)));
391 	nn_uninit(&p);
392 	fp_uninit(&s);
393 	fp_uninit(&y);
394 	fp_uninit(&x_i);
395 	fp_uninit(&x_j);
396 	fp_uninit(&tmp);
397 	fp_uninit(&tmp2);
398 	fp_uninit(&blind);
399 	fp_uninit(&blind_inv);
400 	fp_uninit(&r_inv);
401 	if(val != 0){
402 		fp_uninit(&x);
403 	}
404 
405 	return ret;
406 }
407 
408 
409 /* SSS shares and secret combination */
410 ATTRIBUTE_WARN_UNUSED_RET static int _sss_raw_combine(const sss_share *shares, u16 k, sss_secret *secret)
411 {
412 	return _sss_raw_lagrange(shares, k, secret, 0);
413 }
414 
415 /***** Secure versions (public APIs) ***********************/
416 /* SSS shares and secret generation:
417  *     Inputs:
418  *         - n: is the number of shares to generate
419  *         - k: the quorum of shares to regenerate the secret (of course k <= n)
420  *         - secret: the secret value when input_secret is set to 'true'
421  *     Output:
422  *         - shares: a pointer to the generated n shares
423  *         - secret: the secret value when input_secret is set to 'false', this
424  *           value being randomly generated
425  */
426 int sss_generate(sss_share *shares, unsigned short k, unsigned short n, sss_secret *secret, boolean input_secret)
427 {
428 	int ret;
429 	unsigned int i;
430 	u8 len;
431 	u8 session_id[SSS_SESSION_ID_SIZE];
432 
433 	ret = local_memset(session_id, 0, sizeof(session_id)); EG(ret, err);
434 
435 	/* Generate raw shares */
436 	ret = _sss_raw_generate(shares, k, n, secret, input_secret); EG(ret, err);
437 
438 	/* Sanity check */
439 	MUST_HAVE((SSS_HMAC_SIZE == sizeof(shares[0].raw_share_hmac)), ret, err);
440 	MUST_HAVE((SHA256_DIGEST_SIZE >= sizeof(shares[0].raw_share_hmac)), ret, err);
441 
442 	/* Generate a random session ID */
443 	ret = get_random(session_id, sizeof(session_id)); EG(ret, err);
444 
445 	/* Compute the authenticity seal for each share with HMAC */
446 	for(i = 0; i < n; i++){
447 		_sss_raw_share *cur_share = &(shares[i].raw_share);
448 		u8 *cur_id = (u8*)&(shares[i].session_id);
449 		u8 *cur_share_hmac = (u8*)&(shares[i].raw_share_hmac);
450 		/* NOTE: we 'abuse' casts here for shares[i].raw_share to u8*, but this should be OK since
451 		 * our structures are packed.
452 		 */
453 		const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL };
454 		const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 };
455 
456 		/* Copy the session ID */
457 		ret = local_memcpy(cur_id, session_id, SSS_SESSION_ID_SIZE); EG(ret, err);
458 
459 		len = SSS_HMAC_SIZE;
460 		ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, cur_share_hmac, &len); EG(ret, err);
461 	}
462 
463 err:
464 	IGNORE_RET_VAL(local_memset(session_id, 0, sizeof(session_id)));
465 
466 	return ret;
467 }
468 
469 /* SSS shares and secret combination
470  *     Inputs:
471  *         - k: the quorum of shares to regenerate the secret
472  *         - shares: a pointer to the k shares
473  *     Output:
474  *         - secret: the secret value computed from the k shares
475  */
476 int sss_combine(const sss_share *shares, unsigned short k, sss_secret *secret)
477 {
478 	int ret, cmp;
479 	unsigned int i;
480 	u8 hmac_val[SSS_HMAC_SIZE];
481 	u8 len;
482 
483 	ret = local_memset(hmac_val, 0, sizeof(hmac_val)); EG(ret, err);
484 
485 	/* Recombine raw shares */
486 	ret = _sss_raw_combine(shares, k, secret); EG(ret, err);
487 
488 	/* Compute and check the authenticity seal for each HMAC */
489 	for(i = 0; i < k; i++){
490 		const _sss_raw_share *cur_share = &(shares[i].raw_share);
491 		const u8 *cur_id = (const u8*)&(shares[i].session_id);
492 		const u8 *cur_id0 = (const u8*)&(shares[0].session_id);
493 		const u8 *cur_share_hmac = (const u8*)&(shares[i].raw_share_hmac);
494 		/* NOTE: we 'abuse' casts here for shares[i].raw_share to u8*, but this should be OK since
495 		 * our structures are packed.
496 		 */
497 		const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL };
498 		const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 };
499 
500 		/* Check that all our shares have the same session ID, return an error otherwise */
501 		ret = are_equal(cur_id, cur_id0, SSS_SESSION_ID_SIZE, &cmp); EG(ret, err);
502 		if(!cmp){
503 #ifdef VERBOSE
504 			ext_printf("[-] sss_combine error for share %d / %d: session ID is not OK!\n", i, k);
505 #endif
506 			ret = -1;
507 			goto err;
508 		}
509 
510 		len = sizeof(hmac_val);
511 		ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, hmac_val, &len); EG(ret, err);
512 
513 		/* Check the HMAC */
514 		ret = are_equal(hmac_val, cur_share_hmac, len, &cmp); EG(ret, err);
515 		if(!cmp){
516 #ifdef VERBOSE
517 			ext_printf("[-] sss_combine error for share %d / %d: HMAC is not OK!\n", i, k);
518 #endif
519 			ret = -1;
520 			goto err;
521 		}
522 	}
523 
524 err:
525 	IGNORE_RET_VAL(local_memset(hmac_val, 0, sizeof(hmac_val)));
526 
527 	return ret;
528 }
529 
530 /* SSS shares regeneration from existing shares
531  *     Inputs:
532  *         - shares: a pointer to the input k shares allowing the regeneration
533  *         - n: is the number of shares to regenerate
534  *         - k: the input shares (of course k <= n)
535  *     Output:
536  *         - shares: a pointer to the generated n shares (among which the k first are
537  *           the ones provided as inputs)
538  *         - secret: the recomputed secret value
539  */
540 int sss_regenerate(sss_share *shares, unsigned short k, unsigned short n, sss_secret *secret)
541 {
542 	int ret, cmp;
543 	unsigned int i;
544 	u16 max_idx, num_shares;
545 	u8 hmac_val[SSS_HMAC_SIZE];
546 	u8 len;
547 
548 	/* Sanity check */
549 	MUST_HAVE((n <= (u16)(0xffff - 1)), ret, err);
550 	MUST_HAVE((n >= k), ret, err);
551 
552 	ret = local_memset(hmac_val, 0, sizeof(hmac_val)); EG(ret, err);
553 
554 	/* Compute the secret */
555 	ret = _sss_raw_lagrange(shares, k, secret, 0); EG(ret, err);
556 	/* Check the authenticity of our shares */
557 	for(i = 0; i < k; i++){
558 		_sss_raw_share *cur_share = &(shares[i].raw_share);
559 		u8 *cur_id = (u8*)&(shares[i].session_id);
560 		u8 *cur_id0 = (u8*)&(shares[0].session_id);
561 		u8 *cur_share_hmac = (u8*)&(shares[i].raw_share_hmac);
562 		/* NOTE: we 'abuse' casts here for shares[i].raw_share to u8*, but this should be OK since
563 		 * our structures are packed.
564 		 */
565 		const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL };
566 		const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 };
567 
568 		/* Check that all our shares have the same session ID, return an error otherwise */
569 		ret = are_equal(cur_id, cur_id0, SSS_SESSION_ID_SIZE, &cmp); EG(ret, err);
570 		if(!cmp){
571 #ifdef VERBOSE
572 			ext_printf("[-] sss_regenerate error for share %d / %d: session ID is not OK!\n", i, k);
573 #endif
574 			ret = -1;
575 			goto err;
576 		}
577 
578 		len = sizeof(hmac_val);
579 		/* NOTE: we 'abuse' cast here for secret to (const u8*), but this should be OK since our
580 		 * structures are packed.
581 		 */
582 		ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, hmac_val, &len); EG(ret, err);
583 		ret = are_equal(hmac_val, cur_share_hmac, len, &cmp); EG(ret, err);
584 		if(!cmp){
585 #ifdef VERBOSE
586 			ext_printf("[-] sss_regenerate error for share %d / %d: HMAC is not OK!\n", i, k);
587 #endif
588 			ret = -1;
589 			goto err;
590 		}
591 	}
592 
593 	/* Our secret regeneration consists of determining the maximum index, and
594 	 * proceed with Lagrange interpolation on new values.
595 	 */
596 	max_idx = 0;
597 	for(i = 0; i < k; i++){
598 		u16 curr_idx;
599 		GET_UINT16_BE(curr_idx, (u8*)&(shares[i].raw_share.index), 0);
600 		if(curr_idx > max_idx){
601 			max_idx = curr_idx;
602 		}
603 	}
604 	/* Now regenerate as many shares as we need */
605 	num_shares = 0;
606 	i = k;
607 	while(num_shares < (n - k)){
608 		_sss_raw_share *cur_share = &(shares[k + num_shares].raw_share);
609 		u8 *cur_id = (u8*)&(shares[k + num_shares].session_id);
610 		u8 *cur_id0 = (u8*)&(shares[0].session_id);
611 		u8 *cur_share_hmac = (u8*)&(shares[k + num_shares].raw_share_hmac);
612 		u16 curr_idx;
613 		/* NOTE: we 'abuse' casts here for shares[i].raw_share.share to sss_secret*, but this should be OK since
614 		 * our shares[i].raw_share.share is a SSS_SECRET_SIZE as the sss_secret.secret type encapsulates and our
615 		 * structures are packed.
616 		 */
617 		const u8 *inputs[3] = { (const u8*)cur_share, cur_id, NULL };
618 		const u32 ilens[3] = { sizeof(*cur_share), SSS_SESSION_ID_SIZE, 0 };
619 
620 		/* Skip the index = 0 case */
621 		curr_idx = (u16)(max_idx + (u16)(i - k + 1));
622 		if(curr_idx == 0){
623 			i++;
624 			continue;
625 		}
626 
627 		/* Copy our session ID */
628 		ret = local_memcpy(cur_id, cur_id0, SSS_SESSION_ID_SIZE); EG(ret, err);
629 
630 		ret = _sss_raw_lagrange(shares, k, (sss_secret*)(cur_share->share), curr_idx); EG(ret, err);
631 		PUT_UINT16_BE(curr_idx, (u8*)&(cur_share->index), 0);
632 
633 		/* Compute the HMAC */
634 		len = SSS_HMAC_SIZE;
635 		ret = hmac_scattered((const u8*)secret, SSS_SECRET_SIZE, SHA256, inputs, ilens, cur_share_hmac, &len); EG(ret, err);
636 		num_shares++;
637 		i++;
638 	}
639 
640 err:
641 	IGNORE_RET_VAL(local_memset(hmac_val, 0, sizeof(hmac_val)));
642 
643 	return ret;
644 }
645 
646 
647 /********* main test program for SSS *************/
648 #ifdef SSS
649 #include <libecc/utils/print_buf.h>
650 
651 #define K 50
652 #define N 150
653 #define MAX_N 200
654 
655 int main(int argc, char *argv[])
656 {
657 	int ret = 0;
658 	unsigned int i;
659 	sss_share shares[MAX_N];
660 	sss_share shares_[MAX_N];
661 	sss_secret secret;
662 
663 	FORCE_USED_VAR(argc);
664 	FORCE_USED_VAR(argv);
665 
666 	/* Generate N shares for SSS with at least K shares OK among N */
667 	ext_printf("[+] Generating the secrets %d / %d, call should be OK\n", K, N);
668 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
669 	/* NOTE: 'false' here means that we let the library generate the secret randomly */
670 	ret = sss_generate(shares, K, N, &secret, SSS_FALSE);
671 	if(ret){
672 		ext_printf("  [X] Error: sss_generate error\n");
673 		goto err;
674 	}
675 	else{
676 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE); EG(ret, err);
677 	}
678 	/* Shuffle shares */
679 	for(i = 0; i < N; i++){
680 		shares_[i] = shares[N - 1 - i];
681 	}
682 
683 	/* Combine (k-1) shares: this call should trigger an ERROR */
684 	ext_printf("[+] Combining the secrets with less shares: call should trigger an error\n");
685 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
686 	ret = sss_combine(shares_, K - 1, &secret);
687 	if (ret) {
688 		ext_printf("  [X] Error: sss_combine error\n");
689 	} else{
690 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE);
691 	}
692 
693 	/* Combine k shares: this call should be OK and recombine the initial
694 	 * secret
695 	 */
696 	ext_printf("[+] Combining the secrets with minimum shares: call should be OK\n");
697 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
698 	ret = sss_combine(shares_, K, &secret);
699 	if (ret) {
700 		ext_printf("  [X] Error: sss_combine error\n");
701 		goto err;
702 	} else {
703 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE);
704 	}
705 
706 	/* Combine k shares: this call should be OK and recombine the initial
707 	 * secret
708 	 */
709 	ext_printf("[+] Combining the secrets with more shares: call should be OK\n");
710 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
711 	ret = sss_combine(shares_, K + 1, &secret);
712 	if (ret) {
713 		ext_printf("  [X] Error: sss_combine error\n");
714 		goto err;
715 	} else {
716 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE);
717 	}
718 
719 	/* Combine with a corrupted share: call should trigger an error */
720 	ext_printf("[+] Combining the secrets with more shares but one corrupted: call should trigger an error\n");
721 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
722 	shares_[K].raw_share.share[0] = 0x00;
723 	ret = sss_combine(shares_, K + 1, &secret);
724 	if (ret) {
725 		ext_printf("  [X] Error: sss_combine error\n");
726 	} else {
727 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE);
728 	}
729 
730 	/* Regenerate more shares! call should be OK */
731 	ext_printf("[+] Regenerating more shares: call should be OK\n");
732 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
733 	ret = sss_regenerate(shares, K, MAX_N, &secret); EG(ret, err);
734 	if (ret) {
735 		ext_printf("  [X] Error: sss_regenerate error\n");
736 		goto err;
737 	} else {
738 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE);
739 	}
740 	/* Shuffle shares */
741 	for(i = 0; i < MAX_N; i++){
742 		shares_[i] = shares[MAX_N - 1 - i];
743 	}
744 
745 	/* Combine newly generated shares: call should be OK */
746 	ext_printf("[+] Combining the secrets with newly generated shares: call should be OK\n");
747 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
748 	ret = sss_combine(shares_, K, &secret);
749 	if (ret) {
750 		ext_printf("  [X] Error: sss_combine error\n");
751 		goto err;
752 	} else {
753 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE);
754 	}
755 
756 	/* Modify the session ID of one of the shares: call should trigger an error */
757 	ext_printf("[+] Combining the secrets with newly generated shares and a bad session ID: call should trigger an error\n");
758 	ret = local_memset(&secret, 0x00, sizeof(secret)); EG(ret, err);
759 	shares_[1].session_id[0] = 0x00;
760 	ret = sss_combine(shares_, K, &secret);
761 	if (ret) {
762 		ext_printf("  [X] Error: sss_combine error\n");
763 	} else {
764 		buf_print("  secret", (u8*)&secret, SSS_SECRET_SIZE);
765 	}
766 
767 	ret = 0;
768 
769 err:
770 	return ret;
771 }
772 #endif
773