xref: /freebsd/crypto/libecc/src/examples/hash/sha0.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  *  Copyright (C) 2021 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *
8  *  This software is licensed under a dual BSD and GPL v2 license.
9  *  See LICENSE file at the root folder of the project.
10  */
11 #include "sha0.h"
12 
13 #define ROTL_SHA0(x, n)      ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n))))
14 
15 /* All the inner SHA-0 operations */
16 #define K1_SHA0	0x5a827999
17 #define K2_SHA0	0x6ed9eba1
18 #define K3_SHA0	0x8f1bbcdc
19 #define K4_SHA0	0xca62c1d6
20 
21 #define F1_SHA0(x, y, z)   ((z) ^ ((x) & ((y) ^ (z))))
22 #define F2_SHA0(x, y, z)   ((x) ^ (y) ^ (z))
23 #define F3_SHA0(x, y, z)   (((x) & (y)) | ((z) & ((x) | (y))))
24 #define F4_SHA0(x, y, z)   ((x) ^ (y) ^ (z))
25 
26 #define SHA0_EXPAND(W, i) (W[i & 15] = (W[i & 15] ^ W[(i - 14) & 15] ^ W[(i - 8) & 15] ^ W[(i - 3) & 15]))
27 
28 #define SHA0_SUBROUND(a, b, c, d, e, F, K, data) do { \
29 	u32 A_, B_, C_, D_, E_; \
30 	A_ = (e + ROTL_SHA0(a, 5) + F(b, c, d) + K + data); \
31 	B_ = a; \
32 	C_ = ROTL_SHA0(b, 30); \
33 	D_ = c; \
34 	E_ = d; \
35 	/**/ \
36 	a = A_; b = B_; c = C_; d = D_; e = E_; \
37 } while(0)
38 
39 /* SHA-0 core processing. Returns 0 on success, -1 on error. */
40 ATTRIBUTE_WARN_UNUSED_RET static inline int sha0_process(sha0_context *ctx,
41 			   const u8 data[SHA0_BLOCK_SIZE])
42 {
43 	u32 A, B, C, D, E;
44 	u32 W[16];
45 	int ret;
46 	unsigned int i;
47 
48 	MUST_HAVE((data != NULL), ret, err);
49 	SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
50 
51 	/* Init our inner variables */
52 	A = ctx->sha0_state[0];
53 	B = ctx->sha0_state[1];
54 	C = ctx->sha0_state[2];
55 	D = ctx->sha0_state[3];
56 	E = ctx->sha0_state[4];
57 
58 	/* Load data */
59 	for (i = 0; i < 16; i++) {
60 		GET_UINT32_BE(W[i], data, (4 * i));
61 	}
62 	for (i = 0; i < 80; i++) {
63 		if(i <= 15){
64 			SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, W[i]);
65 		}
66 		else if((i >= 16) && (i <= 19)){
67 			SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, SHA0_EXPAND(W, i));
68 		}
69 		else if((i >= 20) && (i <= 39)){
70 			SHA0_SUBROUND(A, B, C, D, E, F2_SHA0, K2_SHA0, SHA0_EXPAND(W, i));
71 		}
72 		else if((i >= 40) && (i <= 59)){
73 			SHA0_SUBROUND(A, B, C, D, E, F3_SHA0, K3_SHA0, SHA0_EXPAND(W, i));
74 		}
75 		else{
76 			SHA0_SUBROUND(A, B, C, D, E, F4_SHA0, K4_SHA0, SHA0_EXPAND(W, i));
77 		}
78 	}
79 
80 	/* Update state */
81 	ctx->sha0_state[0] += A;
82 	ctx->sha0_state[1] += B;
83 	ctx->sha0_state[2] += C;
84 	ctx->sha0_state[3] += D;
85 	ctx->sha0_state[4] += E;
86 
87 	ret = 0;
88 
89 err:
90 	return ret;
91 }
92 
93 /* Init hash function. Returns 0 on success, -1 on error. */
94 ATTRIBUTE_WARN_UNUSED_RET int sha0_init(sha0_context *ctx)
95 {
96 	int ret;
97 
98 	MUST_HAVE((ctx != NULL), ret, err);
99 
100 	/* Sanity check on size */
101 	MUST_HAVE((SHA0_DIGEST_SIZE <= MAX_DIGEST_SIZE), ret, err);
102 
103 	ctx->sha0_total = 0;
104 	ctx->sha0_state[0] = 0x67452301;
105 	ctx->sha0_state[1] = 0xefcdab89;
106 	ctx->sha0_state[2] = 0x98badcfe;
107 	ctx->sha0_state[3] = 0x10325476;
108 	ctx->sha0_state[4] = 0xc3d2e1f0;
109 
110 	/* Tell that we are initialized */
111 	ctx->magic = SHA0_HASH_MAGIC;
112 
113 	ret = 0;
114 
115 err:
116 	return ret;
117 }
118 
119 ATTRIBUTE_WARN_UNUSED_RET int sha0_update(sha0_context *ctx, const u8 *input, u32 ilen)
120 {
121 	const u8 *data_ptr = input;
122 	u32 remain_ilen = ilen;
123 	u16 fill;
124 	u8 left;
125 	int ret;
126 
127 	MUST_HAVE((input != NULL) || (ilen == 0), ret, err);
128 	SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
129 
130 	/* Nothing to process, return */
131 	if (ilen == 0) {
132 		ret = 0;
133 		goto err;
134 	}
135 
136 	/* Get what's left in our local buffer */
137 	left = (ctx->sha0_total & 0x3F);
138 	fill = (u16)(SHA0_BLOCK_SIZE - left);
139 
140 	ctx->sha0_total += ilen;
141 
142 	if ((left > 0) && (remain_ilen >= fill)) {
143 		/* Copy data at the end of the buffer */
144 		ret = local_memcpy(ctx->sha0_buffer + left, data_ptr, fill); EG(ret, err);
145 		ret = sha0_process(ctx, ctx->sha0_buffer); EG(ret, err);
146 		data_ptr += fill;
147 		remain_ilen -= fill;
148 		left = 0;
149 	}
150 
151 	while (remain_ilen >= SHA0_BLOCK_SIZE) {
152 		ret = sha0_process(ctx, data_ptr); EG(ret, err);
153 		data_ptr += SHA0_BLOCK_SIZE;
154 		remain_ilen -= SHA0_BLOCK_SIZE;
155 	}
156 
157 	if (remain_ilen > 0) {
158 		ret = local_memcpy(ctx->sha0_buffer + left, data_ptr, remain_ilen); EG(ret, err);
159 	}
160 
161 	ret = 0;
162 
163 err:
164 	return ret;
165 }
166 
167 /* Finalize. Returns 0 on success, -1 on error.*/
168 ATTRIBUTE_WARN_UNUSED_RET int sha0_final(sha0_context *ctx, u8 output[SHA0_DIGEST_SIZE])
169 {
170 	unsigned int block_present = 0;
171 	u8 last_padded_block[2 * SHA0_BLOCK_SIZE];
172 	int ret;
173 
174 	MUST_HAVE((output != NULL), ret, err);
175 	SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err);
176 
177 	/* Fill in our last block with zeroes */
178 	ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err);
179 
180 	/* This is our final step, so we proceed with the padding */
181 	block_present = ctx->sha0_total % SHA0_BLOCK_SIZE;
182 	if (block_present != 0) {
183 		/* Copy what's left in our temporary context buffer */
184 		ret = local_memcpy(last_padded_block, ctx->sha0_buffer,
185 			     block_present); EG(ret, err);
186 	}
187 
188 	/* Put the 0x80 byte, beginning of padding  */
189 	last_padded_block[block_present] = 0x80;
190 
191 	/* Handle possible additional block */
192 	if (block_present > (SHA0_BLOCK_SIZE - 1 - sizeof(u64))) {
193 		/* We need an additional block */
194 		PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block,
195 			      (2 * SHA0_BLOCK_SIZE) - sizeof(u64));
196 		ret = sha0_process(ctx, last_padded_block); EG(ret, err);
197 		ret = sha0_process(ctx, last_padded_block + SHA0_BLOCK_SIZE); EG(ret, err);
198 	} else {
199 		/* We do not need an additional block */
200 		PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block,
201 			      SHA0_BLOCK_SIZE - sizeof(u64));
202 		ret = sha0_process(ctx, last_padded_block); EG(ret, err);
203 	}
204 
205 	/* Output the hash result */
206 	PUT_UINT32_BE(ctx->sha0_state[0], output, 0);
207 	PUT_UINT32_BE(ctx->sha0_state[1], output, 4);
208 	PUT_UINT32_BE(ctx->sha0_state[2], output, 8);
209 	PUT_UINT32_BE(ctx->sha0_state[3], output, 12);
210 	PUT_UINT32_BE(ctx->sha0_state[4], output, 16);
211 
212 	/* Tell that we are uninitialized */
213 	ctx->magic = WORD(0);
214 
215 	ret = 0;
216 
217 err:
218 	return ret;
219 }
220 
221 
222 /*
223  * Scattered version performing init/update/finalize on a vector of buffers
224  * 'inputs' with the length of each buffer passed via 'ilens'. The function
225  * loops on pointers in 'inputs' until it finds a NULL pointer. The function
226  * returns 0 on success, -1 on error.
227  */
228 ATTRIBUTE_WARN_UNUSED_RET int sha0_scattered(const u8 **inputs, const u32 *ilens,
229 		      u8 output[SHA0_DIGEST_SIZE])
230 {
231 	sha0_context ctx;
232 	int ret, pos = 0;
233 
234 	MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err);
235 
236 	ret = sha0_init(&ctx); EG(ret, err);
237 
238 	while (inputs[pos] != NULL) {
239 		ret = sha0_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err);
240 		pos += 1;
241 	}
242 
243 	ret = sha0_final(&ctx, output);
244 
245 err:
246 	return ret;
247 }
248 
249 /*
250  * Single call version performing init/update/final on given input.
251  * Returns 0 on success, -1 on error.
252  */
253 ATTRIBUTE_WARN_UNUSED_RET int sha0(const u8 *input, u32 ilen, u8 output[SHA0_DIGEST_SIZE])
254 {
255 	sha0_context ctx;
256 	int ret;
257 
258 	ret = sha0_init(&ctx); EG(ret, err);
259 	ret = sha0_update(&ctx, input, ilen); EG(ret, err);
260 	ret = sha0_final(&ctx, output);
261 
262 err:
263 	return ret;
264 }
265