1 /* 2 * Copyright (C) 2021 - This file is part of libecc project 3 * 4 * Authors: 5 * Ryad BENADJILA <ryadbenadjila@gmail.com> 6 * Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr> 7 * 8 * This software is licensed under a dual BSD and GPL v2 license. 9 * See LICENSE file at the root folder of the project. 10 */ 11 #include "sha0.h" 12 13 #define ROTL_SHA0(x, n) ((((u32)(x)) << (n)) | (((u32)(x)) >> (32-(n)))) 14 15 /* All the inner SHA-0 operations */ 16 #define K1_SHA0 0x5a827999 17 #define K2_SHA0 0x6ed9eba1 18 #define K3_SHA0 0x8f1bbcdc 19 #define K4_SHA0 0xca62c1d6 20 21 #define F1_SHA0(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 22 #define F2_SHA0(x, y, z) ((x) ^ (y) ^ (z)) 23 #define F3_SHA0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) 24 #define F4_SHA0(x, y, z) ((x) ^ (y) ^ (z)) 25 26 #define SHA0_EXPAND(W, i) (W[i & 15] = (W[i & 15] ^ W[(i - 14) & 15] ^ W[(i - 8) & 15] ^ W[(i - 3) & 15])) 27 28 #define SHA0_SUBROUND(a, b, c, d, e, F, K, data) do { \ 29 u32 A_, B_, C_, D_, E_; \ 30 A_ = (e + ROTL_SHA0(a, 5) + F(b, c, d) + K + data); \ 31 B_ = a; \ 32 C_ = ROTL_SHA0(b, 30); \ 33 D_ = c; \ 34 E_ = d; \ 35 /**/ \ 36 a = A_; b = B_; c = C_; d = D_; e = E_; \ 37 } while(0) 38 39 /* SHA-0 core processing. Returns 0 on success, -1 on error. */ 40 ATTRIBUTE_WARN_UNUSED_RET static inline int sha0_process(sha0_context *ctx, 41 const u8 data[SHA0_BLOCK_SIZE]) 42 { 43 u32 A, B, C, D, E; 44 u32 W[16]; 45 int ret; 46 unsigned int i; 47 48 MUST_HAVE((data != NULL), ret, err); 49 SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err); 50 51 /* Init our inner variables */ 52 A = ctx->sha0_state[0]; 53 B = ctx->sha0_state[1]; 54 C = ctx->sha0_state[2]; 55 D = ctx->sha0_state[3]; 56 E = ctx->sha0_state[4]; 57 58 /* Load data */ 59 for (i = 0; i < 16; i++) { 60 GET_UINT32_BE(W[i], data, (4 * i)); 61 } 62 for (i = 0; i < 80; i++) { 63 if(i <= 15){ 64 SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, W[i]); 65 } 66 else if((i >= 16) && (i <= 19)){ 67 SHA0_SUBROUND(A, B, C, D, E, F1_SHA0, K1_SHA0, SHA0_EXPAND(W, i)); 68 } 69 else if((i >= 20) && (i <= 39)){ 70 SHA0_SUBROUND(A, B, C, D, E, F2_SHA0, K2_SHA0, SHA0_EXPAND(W, i)); 71 } 72 else if((i >= 40) && (i <= 59)){ 73 SHA0_SUBROUND(A, B, C, D, E, F3_SHA0, K3_SHA0, SHA0_EXPAND(W, i)); 74 } 75 else{ 76 SHA0_SUBROUND(A, B, C, D, E, F4_SHA0, K4_SHA0, SHA0_EXPAND(W, i)); 77 } 78 } 79 80 /* Update state */ 81 ctx->sha0_state[0] += A; 82 ctx->sha0_state[1] += B; 83 ctx->sha0_state[2] += C; 84 ctx->sha0_state[3] += D; 85 ctx->sha0_state[4] += E; 86 87 ret = 0; 88 89 err: 90 return ret; 91 } 92 93 /* Init hash function. Returns 0 on success, -1 on error. */ 94 ATTRIBUTE_WARN_UNUSED_RET int sha0_init(sha0_context *ctx) 95 { 96 int ret; 97 98 MUST_HAVE((ctx != NULL), ret, err); 99 100 /* Sanity check on size */ 101 MUST_HAVE((SHA0_DIGEST_SIZE <= MAX_DIGEST_SIZE), ret, err); 102 103 ctx->sha0_total = 0; 104 ctx->sha0_state[0] = 0x67452301; 105 ctx->sha0_state[1] = 0xefcdab89; 106 ctx->sha0_state[2] = 0x98badcfe; 107 ctx->sha0_state[3] = 0x10325476; 108 ctx->sha0_state[4] = 0xc3d2e1f0; 109 110 /* Tell that we are initialized */ 111 ctx->magic = SHA0_HASH_MAGIC; 112 113 ret = 0; 114 115 err: 116 return ret; 117 } 118 119 ATTRIBUTE_WARN_UNUSED_RET int sha0_update(sha0_context *ctx, const u8 *input, u32 ilen) 120 { 121 const u8 *data_ptr = input; 122 u32 remain_ilen = ilen; 123 u16 fill; 124 u8 left; 125 int ret; 126 127 MUST_HAVE((input != NULL) || (ilen == 0), ret, err); 128 SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err); 129 130 /* Nothing to process, return */ 131 if (ilen == 0) { 132 ret = 0; 133 goto err; 134 } 135 136 /* Get what's left in our local buffer */ 137 left = (ctx->sha0_total & 0x3F); 138 fill = (u16)(SHA0_BLOCK_SIZE - left); 139 140 ctx->sha0_total += ilen; 141 142 if ((left > 0) && (remain_ilen >= fill)) { 143 /* Copy data at the end of the buffer */ 144 ret = local_memcpy(ctx->sha0_buffer + left, data_ptr, fill); EG(ret, err); 145 ret = sha0_process(ctx, ctx->sha0_buffer); EG(ret, err); 146 data_ptr += fill; 147 remain_ilen -= fill; 148 left = 0; 149 } 150 151 while (remain_ilen >= SHA0_BLOCK_SIZE) { 152 ret = sha0_process(ctx, data_ptr); EG(ret, err); 153 data_ptr += SHA0_BLOCK_SIZE; 154 remain_ilen -= SHA0_BLOCK_SIZE; 155 } 156 157 if (remain_ilen > 0) { 158 ret = local_memcpy(ctx->sha0_buffer + left, data_ptr, remain_ilen); EG(ret, err); 159 } 160 161 ret = 0; 162 163 err: 164 return ret; 165 } 166 167 /* Finalize. Returns 0 on success, -1 on error.*/ 168 ATTRIBUTE_WARN_UNUSED_RET int sha0_final(sha0_context *ctx, u8 output[SHA0_DIGEST_SIZE]) 169 { 170 unsigned int block_present = 0; 171 u8 last_padded_block[2 * SHA0_BLOCK_SIZE]; 172 int ret; 173 174 MUST_HAVE((output != NULL), ret, err); 175 SHA0_HASH_CHECK_INITIALIZED(ctx, ret, err); 176 177 /* Fill in our last block with zeroes */ 178 ret = local_memset(last_padded_block, 0, sizeof(last_padded_block)); EG(ret, err); 179 180 /* This is our final step, so we proceed with the padding */ 181 block_present = ctx->sha0_total % SHA0_BLOCK_SIZE; 182 if (block_present != 0) { 183 /* Copy what's left in our temporary context buffer */ 184 ret = local_memcpy(last_padded_block, ctx->sha0_buffer, 185 block_present); EG(ret, err); 186 } 187 188 /* Put the 0x80 byte, beginning of padding */ 189 last_padded_block[block_present] = 0x80; 190 191 /* Handle possible additional block */ 192 if (block_present > (SHA0_BLOCK_SIZE - 1 - sizeof(u64))) { 193 /* We need an additional block */ 194 PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block, 195 (2 * SHA0_BLOCK_SIZE) - sizeof(u64)); 196 ret = sha0_process(ctx, last_padded_block); EG(ret, err); 197 ret = sha0_process(ctx, last_padded_block + SHA0_BLOCK_SIZE); EG(ret, err); 198 } else { 199 /* We do not need an additional block */ 200 PUT_UINT64_BE(8 * ctx->sha0_total, last_padded_block, 201 SHA0_BLOCK_SIZE - sizeof(u64)); 202 ret = sha0_process(ctx, last_padded_block); EG(ret, err); 203 } 204 205 /* Output the hash result */ 206 PUT_UINT32_BE(ctx->sha0_state[0], output, 0); 207 PUT_UINT32_BE(ctx->sha0_state[1], output, 4); 208 PUT_UINT32_BE(ctx->sha0_state[2], output, 8); 209 PUT_UINT32_BE(ctx->sha0_state[3], output, 12); 210 PUT_UINT32_BE(ctx->sha0_state[4], output, 16); 211 212 /* Tell that we are uninitialized */ 213 ctx->magic = WORD(0); 214 215 ret = 0; 216 217 err: 218 return ret; 219 } 220 221 222 /* 223 * Scattered version performing init/update/finalize on a vector of buffers 224 * 'inputs' with the length of each buffer passed via 'ilens'. The function 225 * loops on pointers in 'inputs' until it finds a NULL pointer. The function 226 * returns 0 on success, -1 on error. 227 */ 228 ATTRIBUTE_WARN_UNUSED_RET int sha0_scattered(const u8 **inputs, const u32 *ilens, 229 u8 output[SHA0_DIGEST_SIZE]) 230 { 231 sha0_context ctx; 232 int ret, pos = 0; 233 234 MUST_HAVE((inputs != NULL) && (ilens != NULL) && (output != NULL), ret, err); 235 236 ret = sha0_init(&ctx); EG(ret, err); 237 238 while (inputs[pos] != NULL) { 239 ret = sha0_update(&ctx, inputs[pos], ilens[pos]); EG(ret, err); 240 pos += 1; 241 } 242 243 ret = sha0_final(&ctx, output); 244 245 err: 246 return ret; 247 } 248 249 /* 250 * Single call version performing init/update/final on given input. 251 * Returns 0 on success, -1 on error. 252 */ 253 ATTRIBUTE_WARN_UNUSED_RET int sha0(const u8 *input, u32 ilen, u8 output[SHA0_DIGEST_SIZE]) 254 { 255 sha0_context ctx; 256 int ret; 257 258 ret = sha0_init(&ctx); EG(ret, err); 259 ret = sha0_update(&ctx, input, ilen); EG(ret, err); 260 ret = sha0_final(&ctx, output); 261 262 err: 263 return ret; 264 } 265