xref: /freebsd/crypto/libecc/src/examples/basic/nn_pollard_rho.c (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 /*
17  * The purpose of this example is to implement Pollard's rho
18  * algorithm to find non-trivial factors of a composite natural
19  * number.
20  * The prime numbers decomposition of the natural number is
21  * recovered through repeated Pollard's rho. Primality checking
22  * is performed using a Miller-Rabin test.
23  *
24  * WARNING: the code in this example is only here to illustrate
25  * how to use the NN layer API. This code has not been designed
26  * for production purposes (e.g. no effort has been made to make
27  * it constant time).
28  *
29  *
30  */
31 
32 /* We include the NN layer API header */
33 #include <libecc/libarith.h>
34 
35 /* Declare our Miller-Rabin test implemented
36  * in another module.
37  */
38 ATTRIBUTE_WARN_UNUSED_RET int miller_rabin(nn_src_t n, const unsigned int t, int *check);
39 
40 ATTRIBUTE_WARN_UNUSED_RET int pollard_rho(nn_t d, nn_src_t n, const word_t c);
41 /* Pollard's rho main function, as described in
42  * "Handbook of Applied Cryptography".
43  *
44  * Pollard's rho:
45  * ==============
46  * See "Handbook of Applied Cryptography", alorithm 3.9:
47  *
48  *   Algorithm Pollard’s rho algorithm for factoring integers
49  *   INPUT: a composite integer n that is not a prime power.
50  *   OUTPUT: a non-trivial factor d of n.
51  *      1. Set a←2, b←2.
52  *      2. For i = 1, 2, ... do the following:
53  *        2.1 Compute a←a^2 + 1 mod n, b←b^2 + 1 mod n, b←b^2 + 1 mod n.
54  *        2.2 Compute d = gcd(a − b, n).
55  *        2.3 If 1 < d < n then return(d) and terminate with success.
56  *        2.4 If d = n then terminate the algorithm with failure (see Note 3.12).
57  */
58 int pollard_rho(nn_t d, nn_src_t n, const word_t c)
59 {
60 	int ret, cmp, cmp1, cmp2;
61 	/* Temporary a and b variables */
62 	nn a, b, tmp, one, c_bignum;
63 	a.magic = b.magic = tmp.magic = one.magic = c_bignum.magic = WORD(0);
64 
65 	/* Initialize variables */
66 	ret = nn_init(&a, 0); EG(ret, err);
67 	ret = nn_init(&b, 0); EG(ret, err);
68 	ret = nn_init(&tmp, 0); EG(ret, err);
69 	ret = nn_init(&one, 0); EG(ret, err);
70 	ret = nn_init(&c_bignum, 0); EG(ret, err);
71 	ret = nn_init(d, 0); EG(ret, err);
72 
73 	MUST_HAVE((c > 0), ret, err);
74 
75 	/* Zeroize the output */
76 	ret = nn_zero(d); EG(ret, err);
77 	ret = nn_one(&one); EG(ret, err);
78 	/* 1. Set a←2, b←2. */
79 	ret = nn_set_word_value(&a, WORD(2)); EG(ret, err);
80 	ret = nn_set_word_value(&b, WORD(2)); EG(ret, err);
81 	ret = nn_set_word_value(&c_bignum, c); EG(ret, err);
82 
83 	/* For i = 1, 2, . . . do the following: */
84 	while (1) {
85 		int sign;
86 		/* 2.1 Compute a←a^2 + c mod n */
87 		ret = nn_sqr(&a, &a); EG(ret, err);
88 		ret = nn_add(&a, &a, &c_bignum); EG(ret, err);
89 		ret = nn_mod(&a, &a, n); EG(ret, err);
90 		/* 2.1 Compute b←b^2 + c mod n twice in a row */
91 		ret = nn_sqr(&b, &b); EG(ret, err);
92 		ret = nn_add(&b, &b, &c_bignum); EG(ret, err);
93 		ret = nn_mod(&b, &b, n); EG(ret, err);
94 		ret = nn_sqr(&b, &b); EG(ret, err);
95 		ret = nn_add(&b, &b, &c_bignum); EG(ret, err);
96 		ret = nn_mod(&b, &b, n); EG(ret, err);
97 		/* 2.2 Compute d = gcd(a − b, n) */
98 		ret = nn_cmp(&a, &b, &cmp); EG(ret, err);
99 		if (cmp >= 0) {
100 			ret = nn_sub(&tmp, &a, &b); EG(ret, err);
101 		} else {
102 			ret = nn_sub(&tmp, &b, &a); EG(ret, err);
103 		}
104 		ret = nn_gcd(d, &tmp, n, &sign); EG(ret, err);
105 		ret = nn_cmp(d, n, &cmp1); EG(ret, err);
106 		ret = nn_cmp(d, &one, &cmp2); EG(ret, err);
107 		if ((cmp1 < 0) && (cmp2 > 0)) {
108 			ret = 0;
109 			goto err;
110 		}
111 		ret = nn_cmp(d, n, &cmp); EG(ret, err);
112 		if (cmp == 0) {
113 			ret = -1;
114 			goto err;
115 		}
116 	}
117  err:
118 	/* Uninitialize local variables */
119 	nn_uninit(&a);
120 	nn_uninit(&b);
121 	nn_uninit(&tmp);
122 	nn_uninit(&one);
123 	nn_uninit(&c_bignum);
124 
125 	return ret;
126 }
127 
128 ATTRIBUTE_WARN_UNUSED_RET int find_divisors(nn_src_t in);
129 /* Maximum number of divisors we support */
130 #define MAX_DIVISORS 10
131 /* Function to find prime divisors of the NN input */
132 int find_divisors(nn_src_t in)
133 {
134 	int n_divisors_found, i, found, ret, check, cmp;
135 	nn n;
136 	nn divisors[MAX_DIVISORS];
137 	word_t c;
138 
139 	n.magic = WORD(0);
140 	for(i = 0; i < MAX_DIVISORS; i++){
141 		divisors[i].magic = WORD(0);
142 	}
143 
144 	ret = nn_check_initialized(in); EG(ret, err);
145 
146 	ext_printf("=================\n");
147 	nn_print("Finding factors of:", in);
148 
149 	/* First, check primality of the input */
150 	ret = miller_rabin(in, 10, &check); EG(ret, err);
151 	if (check) {
152 		ext_printf("The number is probably prime, leaving ...\n");
153 		ret = -1;
154 		goto err;
155 	}
156 	ext_printf("The number is composite, performing Pollard's rho\n");
157 
158 	ret = nn_init(&n, 0); EG(ret, err);
159 	ret = nn_copy(&n, in); EG(ret, err);
160 	for (i = 0; i < MAX_DIVISORS; i++) {
161 		ret = nn_init(&(divisors[i]), 0); EG(ret, err);
162 	}
163 
164 	n_divisors_found = 0;
165 	c = 0;
166 	while (1) {
167 		c++;
168 		ret = pollard_rho(&(divisors[n_divisors_found]), &n, c);
169 		if (ret) {
170 			continue;
171 		}
172 		found = 0;
173 		for (i = 0; i < n_divisors_found; i++) {
174 			ret = nn_cmp(&(divisors[n_divisors_found]), &(divisors[i]), &cmp); EG(ret, err);
175 			if (cmp == 0) {
176 				found = 1;
177 			}
178 		}
179 		if (found == 0) {
180 			nn q, r;
181 			ret = nn_init(&q, 0); EG(ret, err);
182 			ret = nn_init(&r, 0); EG(ret, err);
183 			ext_printf("Pollard's rho succeded\n");
184 			nn_print("d:", &(divisors[n_divisors_found]));
185 			/*
186 			 * Now we can launch the algorithm again on n / d
187 			 * to find new divisors. If n / d is prime, we are done!
188 			 */
189 			ret = nn_divrem(&q, &r, &n, &(divisors[n_divisors_found])); EG(ret, err);
190 			/*
191 			 * Check n / d primality with Miller-Rabin (security
192 			 * parameter of 10)
193 			 */
194 			ret = miller_rabin(&q, 10, &check); EG(ret, err);
195 			if (check == 1) {
196 				nn_print("Last divisor is prime:", &q);
197 				nn_uninit(&q);
198 				nn_uninit(&r);
199 				break;
200 			}
201 			nn_print("Now performing Pollard's rho on:", &q);
202 			ret = nn_copy(&n, &q); EG(ret, err);
203 			nn_uninit(&q);
204 			nn_uninit(&r);
205 			c = 0;
206 			n_divisors_found++;
207 			if (n_divisors_found == MAX_DIVISORS) {
208 				ext_printf
209 					("Max divisors reached, leaving ...\n");
210 				break;
211 			}
212 		}
213 	}
214 	ret = 0;
215 
216 err:
217 	ext_printf("=================\n");
218 	nn_uninit(&n);
219 	for (i = 0; i < MAX_DIVISORS; i++) {
220 		nn_uninit(&(divisors[i]));
221 	}
222 	return ret;
223 }
224 
225 #ifdef NN_EXAMPLE
226 int main(int argc, char *argv[])
227 {
228 	int ret;
229 
230 	/* Fermat F5 = 2^32 + 1 = 641 x 6700417 */
231 	const unsigned char fermat_F5[] = { 0x01, 0x00, 0x00, 0x00, 0x01 };
232 	/* Fermat F6 = 2^64 + 1 = 274177 x 67280421310721 */
233 	const unsigned char fermat_F6[] =
234 		{ 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 };
235 	nn n;
236 	n.magic = WORD(0);
237 
238 	FORCE_USED_VAR(argc);
239 	FORCE_USED_VAR(argv);
240 
241 	ret = nn_init(&n, 0); EG(ret, err);
242 	/* Execute factorization on F5 */
243 	ret = nn_init_from_buf(&n, fermat_F5, sizeof(fermat_F5)); EG(ret, err);
244 	ret = find_divisors(&n); EG(ret, err);
245 	/* Execute factorization on F6 */
246 	ret = nn_init_from_buf(&n, fermat_F6, sizeof(fermat_F6)); EG(ret, err);
247 	ret = find_divisors(&n); EG(ret, err);
248 	/* Execute factorization on a random 80 bits number */
249 	ret = nn_one(&n); EG(ret, err);
250 	/* Compute 2**80 = 0x1 << 80 */
251 	ret = nn_lshift(&n, &n, 80); EG(ret, err);
252 	ret = nn_get_random_mod(&n, &n); EG(ret, err);
253 	ret = find_divisors(&n); EG(ret, err);
254 
255 	return 0;
256 err:
257 	return -1;
258 }
259 #endif
260