xref: /freebsd/crypto/libecc/src/examples/basic/curve_basic_examples.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/libec.h>
17 /* We include the printf external dependency for printf output */
18 #include <libecc/external_deps/print.h>
19 /* We include the time external dependency for performance measurement */
20 #include <libecc/external_deps/time.h>
21 
22 /* The followin function picks a random Fp element x, where Fp is the
23  * curve underlying prime field, and computes y in Fp such that:
24  *   y^2 = x^3 + ax + b, where a and b are the input elliptic
25  * curve parameters.
26  *
27  * This means that (x, y) are the affine coordinates of a "random"
28  * point on our curve. The function then outputs the projective
29  * coordinates of (x, y), i.e. the triplet (x, y, 1).
30  * PS: all our operations on points are done with projective coordinates.
31  *
32  * Computing y means computing a quadratic residue in Fp, for which we
33  * use the Tonelli-Shanks algorithm implemented in the Fp source example
34  * (fp_square_residue.c).
35  */
36 ATTRIBUTE_WARN_UNUSED_RET int get_random_point_on_curve(ec_params *curve_params, prj_pt *out_point);
37 int get_random_point_on_curve(ec_params *curve_params, prj_pt *out_point)
38 {
39 	nn nn_tmp;
40 	int ret, is_oncurve;
41 
42 	/* Inside our internal representation, curve_params->ec_curve
43 	 * contains the curve coefficients a and b.
44 	 * curve_params->ec_fp is the Fp context of the curve.
45 	 */
46 	fp x, y, fp_tmp1, fp_tmp2;
47 	fp_ctx_src_t ctx;
48 
49 	MUST_HAVE((curve_params != NULL), ret, err);
50 
51 	nn_tmp.magic = WORD(0);
52 	x.magic = y.magic = fp_tmp1.magic = fp_tmp2.magic = WORD(0);
53 
54 	/* Initialize our x value with the curve Fp context */
55 	ctx = &(curve_params->ec_fp);
56 
57 	ret = fp_init(&x, ctx); EG(ret, err);
58 	ret = fp_init(&y, ctx); EG(ret, err);
59 	ret = fp_init(&fp_tmp1, ctx); EG(ret, err);
60 	ret = fp_init(&fp_tmp2, ctx); EG(ret, err);
61 
62 	ret = nn_init(&nn_tmp, 0); EG(ret, err);
63 	ret = nn_set_word_value(&nn_tmp, WORD(3)); EG(ret, err);
64 	while (1) {
65 		/* Get a random Fp */
66 		ret = fp_get_random(&x, ctx); EG(ret, err);
67 		ret = fp_copy(&fp_tmp1, &x); EG(ret, err);
68 		ret = fp_copy(&fp_tmp2, &x); EG(ret, err);
69 		/* Compute x^3 + ax + b */
70 		ret = fp_pow(&fp_tmp1, &fp_tmp1, &nn_tmp); EG(ret, err);
71 		ret = fp_mul(&fp_tmp2, &fp_tmp2, &(curve_params->ec_curve.a)); EG(ret, err);
72 		ret = fp_add(&fp_tmp1, &fp_tmp1, &fp_tmp2); EG(ret, err);
73 		ret = fp_add(&fp_tmp1, &fp_tmp1, &(curve_params->ec_curve.b)); EG(ret, err);
74 		/*
75 		 * Get any of the two square roots, corresponding to (x, y)
76 		 * and (x, -y) both on the curve. If no square root exist,
77 		 * go to next random Fp.
78 		 */
79 		if (fp_sqrt(&y, &fp_tmp2, &fp_tmp1) == 0) {
80 			/* Check that we indeed satisfy the curve equation */
81 			ret = is_on_shortw_curve(&x, &y, &(curve_params->ec_curve), &is_oncurve); EG(ret, err);
82 			if (!is_oncurve) {
83 				/* This should not happen ... */
84 				ext_printf("Error: Tonelli-Shanks found a bad "
85 					   "solution to curve equation ...\n");
86 				continue;
87 			}
88 			break;
89 		}
90 	}
91 	/* Now initialize our point with the coordinates (x, y, 1) */
92 	ret = fp_one(&fp_tmp1); EG(ret, err);
93 	ret = prj_pt_init_from_coords(out_point, &(curve_params->ec_curve), &x, &y,
94 				&fp_tmp1); EG(ret, err);
95 
96 err:
97 	fp_uninit(&x);
98 	fp_uninit(&y);
99 	fp_uninit(&fp_tmp1);
100 	fp_uninit(&fp_tmp2);
101 	nn_uninit(&nn_tmp);
102 
103 	return ret;
104 }
105 
106 #define PERF_SCALAR_MUL 40
107 ATTRIBUTE_WARN_UNUSED_RET int check_curve(const u8 *curve_name);
108 int check_curve(const u8 *curve_name)
109 {
110 	unsigned int i;
111 	u64 t1, t2;
112 	int ret, is_oncurve, isone, iszero;
113 
114 	nn nn_k;
115 	/* libecc internal structure holding the curve parameters */
116 	ec_params curve_params;
117 	/* libecc internal structure holding projective points on curves */
118 	prj_pt A, B, C, D;
119 	prj_pt TMP;
120 	aff_pt T;
121 	u32 len;
122 
123 	/* Importing a specific curve parameters from the constant static
124 	 * buffers describing it:
125 	 * It is possible to import a curves parameters by its name.
126 	 */
127 	const ec_str_params *the_curve_const_parameters;
128 
129 	nn_k.magic = WORD(0);
130 	A.magic = B.magic = C.magic = D.magic = WORD(0);
131 	TMP.magic = T.magic = WORD(0);
132 
133 	MUST_HAVE((curve_name != NULL), ret, err);
134 
135 	ret = local_strnlen((const char *)curve_name, MAX_CURVE_NAME_LEN, &len); EG(ret, err);
136 	len += 1;
137 	MUST_HAVE((len < 256), ret, err);
138 	ret = ec_get_curve_params_by_name(curve_name,
139 					    (u8)len, &the_curve_const_parameters); EG(ret, err);
140 
141 
142 	/* Get out if getting the parameters went wrong */
143 	if (the_curve_const_parameters == NULL) {
144 		ext_printf("Error: error when importing curve %s "
145 			   "parameters ...\n", curve_name);
146 		ret = -1;
147 		goto err;
148 	}
149 	/* Now map the curve parameters to our libecc internal representation */
150 	ret = import_params(&curve_params, the_curve_const_parameters); EG(ret, err);
151 	/* Get two random points on the curve */
152 	ret = get_random_point_on_curve(&curve_params, &A); EG(ret, err);
153 	ret = get_random_point_on_curve(&curve_params, &B); EG(ret, err);
154 
155 	/*
156 	 * Let's add the two points
157 	 * C = A + B with regular point addition
158 	 */
159 	ret = prj_pt_add(&C, &A, &B); EG(ret, err);
160 
161 	/*
162 	 * Check that the resulting additive point C = A+B is indeed on the
163 	 * curve.
164 	 */
165 	ret = prj_pt_to_aff(&T, &C); EG(ret, err);
166 	ret = prj_pt_is_on_curve(&C, &is_oncurve); EG(ret, err);
167 	if (!is_oncurve) {
168 		ext_printf("Error: C = A+B is not on the %s curve!\n",
169 			   curve_params.curve_name);
170 		ret = -1;
171 		goto err;
172 	}
173 	ret = aff_pt_is_on_curve(&T, &is_oncurve); EG(ret, err);
174 	if (!is_oncurve) {
175 		ext_printf("Error: C = A+B is not on the %s curve!\n",
176 			   curve_params.curve_name);
177 		ret = -1;
178 		goto err;
179 	}
180 	/* Same check with doubling
181 	 * C = 2A = A+A
182 	 */
183 	ret = prj_pt_dbl(&C, &A); EG(ret, err);
184 
185 	/* Check that the resulting point C = 2A is indeed on the curve.
186 	 *
187 	 */
188 	ret = prj_pt_to_aff(&T, &C); EG(ret, err);
189 	ret = prj_pt_is_on_curve(&C, &is_oncurve); EG(ret, err);
190 	if (!is_oncurve) {
191 		ext_printf("Error: C = A+B is not on the %s curve!\n",
192 			   curve_params.curve_name);
193 		ret = -1;
194 		goto err;
195 	}
196 	ret = aff_pt_is_on_curve(&T, &is_oncurve); EG(ret, err);
197 	if (!is_oncurve) {
198 		ext_printf("Error: C = A+B is not on the %s curve!\n",
199 			   curve_params.curve_name);
200 		ret = -1;
201 		goto err;
202 	}
203 	/*
204 	 * If the cofactor of the curve is 1, this means that the order of the
205 	 * generator is the cardinal of the curve (and hence the order of the
206 	 * curve points group). This means that for any point P on the curve,
207 	 * we should have qP = 0 (the inifinity point, i.e. the zero neutral
208 	 * element of the curve additive group).
209 	 */
210 	ret = prj_pt_add(&C, &A, &B); EG(ret, err);
211 	ret = prj_pt_dbl(&D, &A); EG(ret, err);
212 	ret = nn_isone(&(curve_params.ec_gen_cofactor), &isone); EG(ret, err);
213 	if (isone) {
214 		ret = prj_pt_mul(&TMP, &(curve_params.ec_gen_order), &A); EG(ret, err);
215 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
216 		if (!iszero) {
217 			ext_printf("Error: qA is not 0! (regular mul)\n");
218 			ret = -1;
219 			goto err;
220 		}
221 		/**/
222 		ret = prj_pt_mul_blind(&TMP, &(curve_params.ec_gen_order), &A); EG(ret, err);
223 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
224 		if (!iszero) {
225 			ext_printf("Error: qA is not 0! (regular blind mul)\n");
226 			ret = -1;
227 			goto err;
228 		}
229 		/**/
230 		ret = prj_pt_mul(&TMP, &(curve_params.ec_gen_order), &B); EG(ret, err);
231 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
232 		if (!iszero) {
233 			ext_printf("Error: qB is not 0! (regular mul)\n");
234 			ret = -1;
235 			goto err;
236 		}
237 		/**/
238 		ret = prj_pt_mul_blind(&TMP, &(curve_params.ec_gen_order), &B); EG(ret, err);
239 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
240 		if (!iszero) {
241 			ext_printf("Error: qB is not 0! (regular blind mul)\n");
242 			ret = -1;
243 			goto err;
244 		}
245 		/**/
246 		ret = prj_pt_mul(&TMP, &(curve_params.ec_gen_order), &C); EG(ret, err);
247 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
248 		if (!iszero) {
249 			ext_printf("Error: qC is not 0! (regular mul)\n");
250 			ret = -1;
251 			goto err;
252 		}
253 		/**/
254 		ret = prj_pt_mul_blind(&TMP, &(curve_params.ec_gen_order), &C); EG(ret, err);
255 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
256 		if (!iszero) {
257 			ext_printf("Error: qC is not 0! (regular bind mul)\n");
258 			ret = -1;
259 			goto err;
260 		}
261 		/**/
262 		ret = prj_pt_mul(&TMP, &(curve_params.ec_gen_order), &D); EG(ret, err);
263 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
264 		if (!iszero) {
265 			ext_printf("Error: qD is not 0! (regular mul)\n");
266 			ret = -1;
267 			goto err;
268 		}
269 		/**/
270 		ret = prj_pt_mul_blind(&TMP, &(curve_params.ec_gen_order), &D); EG(ret, err);
271 		ret = prj_pt_iszero(&TMP, &iszero); EG(ret, err);
272 		if (!iszero) {
273 			ext_printf("Error: qD is not 0! (regular blind mul)\n");
274 			ret = -1;
275 			goto err;
276 		}
277 	}
278 	/* Let's do some performance tests for point addition and doubling!
279 	 * We compute kA many times to have a decent performance measurement,
280 	 * where k is chose random at each iteration. We also check that kA
281 	 * is indeed on the curve.
282 	 */
283 	ret = nn_init(&nn_k, 0); EG(ret, err);
284 	/**/
285 	if (get_ms_time(&t1)) {
286 		ext_printf("Error: cannot get time with get_ms_time\n");
287 		ret = -1;
288 		goto err;
289 	}
290 	for (i = 0; i < PERF_SCALAR_MUL; i++) {
291 		/* k = random mod (q) */
292 		ret = nn_get_random_mod(&nn_k, &(curve_params.ec_gen_order)); EG(ret, err);
293 		/* Compute kA with montgomery implementation w/o blinding */
294 		ret = prj_pt_mul(&TMP, &nn_k, &A); EG(ret, err);
295 		ret = prj_pt_to_aff(&T, &TMP); EG(ret, err);
296 		ret = prj_pt_is_on_curve(&TMP, &is_oncurve); EG(ret, err);
297 		if (!is_oncurve) {
298 			ext_printf("Error: kA is not on the %s curve!\n",
299 				   curve_params.curve_name);
300 			nn_print("k=", &nn_k);
301 			ret = -1;
302 			goto err;
303 		}
304 		ret = aff_pt_is_on_curve(&T, &is_oncurve); EG(ret, err);
305 		if (!is_oncurve) {
306 			ext_printf("Error: kA is not on the %s curve!\n",
307 				   curve_params.curve_name);
308 			nn_print("k=", &nn_k);
309 			ret = -1;
310 			goto err;
311 		}
312 	}
313 	if (get_ms_time(&t2)) {
314 		ext_printf("Error: cannot get time with get_ms_time\n");
315 		ret = -1;
316 		goto err;
317 	}
318 	ext_printf("  [*] Regular EC scalar multiplication took %f seconds "
319 		   "on average\n",
320 		   (double)(t2 - t1) / (double)(PERF_SCALAR_MUL * 1000ULL));
321 	/**/
322 	if (get_ms_time(&t1)) {
323 		ext_printf("Error: cannot get time with get_ms_time\n");
324 		ret = -1;
325 		goto err;
326 	}
327 	for (i = 0; i < PERF_SCALAR_MUL; i++) {
328 		/* k = random mod (q) */
329 		ret = nn_get_random_mod(&nn_k, &(curve_params.ec_gen_order)); EG(ret, err);
330 		/* Compute kA using montgomery implementation w/ blinding */
331 		ret = prj_pt_mul_blind(&TMP, &nn_k, &A); EG(ret, err);
332 		ret = prj_pt_to_aff(&T, &TMP); EG(ret, err);
333 		ret = prj_pt_is_on_curve(&TMP, &is_oncurve); EG(ret, err);
334 		if (!is_oncurve) {
335 			ext_printf("Error: kA is not on the %s curve!\n",
336 				   curve_params.curve_name);
337 			nn_print("k=", &nn_k);
338 			ret = -1;
339 			goto err;
340 		}
341 		ret = aff_pt_is_on_curve(&T, &is_oncurve); EG(ret, err);
342 		if (!is_oncurve) {
343 			ext_printf("Error: kA is not on the %s curve!\n",
344 				   curve_params.curve_name);
345 			nn_print("k=", &nn_k);
346 			ret = -1;
347 			goto err;
348 		}
349 	}
350 	if (get_ms_time(&t2)) {
351 		ext_printf("Error: cannot get time with get_ms_time\n");
352 		ret = -1;
353 		goto err;
354 	}
355 	ext_printf("  [*] Regular blind EC scalar multiplication took %f seconds "
356 		   "on average\n",
357 		   (double)(t2 - t1) / (double)(PERF_SCALAR_MUL * 1000ULL));
358 
359 err:
360 	prj_pt_uninit(&A);
361 	prj_pt_uninit(&B);
362 	prj_pt_uninit(&C);
363 	prj_pt_uninit(&D);
364 	prj_pt_uninit(&TMP);
365 	aff_pt_uninit(&T);
366 	nn_uninit(&nn_k);
367 
368 	return ret;
369 }
370 
371 #ifdef CURVE_BASIC_EXAMPLES
372 int main(int argc, char *argv[])
373 {
374 	unsigned int i;
375 	u8 curve_name[MAX_CURVE_NAME_LEN] = { 0 };
376 	FORCE_USED_VAR(argc);
377 	FORCE_USED_VAR(argv);
378 
379 	/* Traverse all the possible curves we have at our disposal (known curves and
380 	 * user defined curves).
381 	 */
382 	for (i = 0; i < EC_CURVES_NUM; i++) {
383 		/* All our possible curves are in ../curves/curves_list.h
384 		 * We can get the curve name from its internal type.
385 		 */
386 		if(ec_get_curve_name_by_type(ec_maps[i].type, curve_name,
387 					  sizeof(curve_name))){
388 			ext_printf("Error when treating %s\n", curve_name);
389 			return -1;
390 		}
391 		/* Check our curve! */
392 		ext_printf("[+] Checking curve %s\n", curve_name);
393 		if (check_curve(curve_name)) {
394 			ext_printf("Error: error performing check on "
395 				   "curve %s\n", curve_name);
396 			return -1;
397 		}
398 	}
399 	return 0;
400 }
401 #endif
402