xref: /freebsd/crypto/libecc/src/curves/aff_pt_edwards.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  *  Copyright (C) 2021 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *
8  *  This software is licensed under a dual BSD and GPL v2 license.
9  *  See LICENSE file at the root folder of the project.
10  */
11 #include <libecc/curves/aff_pt.h>
12 
13 /* NOTE: Edwards here implies Twisted Edwards curves
14  * (these in fact include/extend basic form Edwards curves).
15  */
16 
17 #define AFF_PT_EDWARDS_MAGIC ((word_t)(0x8390a9bc43d9ffabULL))
18 
19 /* Verify that an affine point has already been initialized
20  *
21  * Returns 0 on success, -1 on error.
22  */
23 int aff_pt_edwards_check_initialized(aff_pt_edwards_src_t in)
24 {
25 	int ret;
26 
27 	MUST_HAVE(((in != NULL) && (in->magic == AFF_PT_EDWARDS_MAGIC)), ret, err);
28 	ret = ec_edwards_crv_check_initialized(in->crv);
29 
30 err:
31 	return ret;
32 }
33 
34 /*
35  * Initialize pointed aff_pt_edwards structure to make it usable by library
36  * function on given curve.
37  *
38  * Returns 0 on success, -1 on error.
39  */
40 int aff_pt_edwards_init(aff_pt_edwards_t in, ec_edwards_crv_src_t curve)
41 {
42 	int ret;
43 
44 	MUST_HAVE((in != NULL), ret, err);
45 	ret = ec_edwards_crv_check_initialized(curve); EG(ret, err);
46 
47 	ret = fp_init(&(in->x), curve->a.ctx); EG(ret, err);
48 	ret = fp_init(&(in->y), curve->a.ctx); EG(ret, err);
49 
50 	in->crv = curve;
51 	in->magic = AFF_PT_EDWARDS_MAGIC;
52 
53 err:
54 	return ret;
55 }
56 
57 /*
58  * Initialize pointed aff_pt_edwards structure to make it usable by library
59  * function on given curve with explicit coordinates.
60  *
61  * Returns 0 on success, -1 on error.
62  */
63 int aff_pt_edwards_init_from_coords(aff_pt_edwards_t in,
64 			     ec_edwards_crv_src_t curve,
65 			     fp_src_t xcoord, fp_src_t ycoord)
66 {
67 	int ret;
68 
69 	ret = aff_pt_edwards_init(in, curve); EG(ret, err);
70 	ret = fp_copy(&(in->x), xcoord); EG(ret, err);
71 	ret = fp_copy(&(in->y), ycoord);
72 
73 err:
74 	return ret;
75 }
76 
77 /*
78  * Uninitialize pointed affine point to prevent further use (magic field
79  * in the structure is zeroized) and zeroize associated storage space.
80  * Note that the curve context pointed to by the point element (passed
81  * during init) is left untouched.
82  *
83  */
84 void aff_pt_edwards_uninit(aff_pt_edwards_t in)
85 {
86 	if ((in != NULL) && (in->magic == AFF_PT_EDWARDS_MAGIC) && (in->crv != NULL)) {
87 		fp_uninit(&(in->x));
88 		fp_uninit(&(in->y));
89 
90 		in->crv = NULL;
91 		in->magic = WORD(0);
92 	}
93 
94 	return;
95 }
96 
97 /*
98  * 'on_curve' set to 1 if the point of coordinates (u,v) is on the curve, i.e. if it
99  * verifies curve equation a*x^2 + y^2 = 1 + d*x^2*y^2. It is set to 0 otherwise.
100  * 'on_curve' is not meaningful on error.
101  *
102  * Returns 0 on success, -1 on error.
103  */
104 int is_on_edwards_curve(fp_src_t x, fp_src_t y,
105 			ec_edwards_crv_src_t curve,
106 			int *on_curve)
107 {
108 	fp x2, y2, tmp1, tmp2;
109 	int ret, cmp;
110 	x2.magic = y2.magic = tmp1.magic = tmp2.magic = WORD(0);
111 
112 	MUST_HAVE((on_curve != NULL), ret, err);
113 	ret = ec_edwards_crv_check_initialized(curve); EG(ret, err);
114 
115 	ret = fp_check_initialized(x); EG(ret, err);
116 	ret = fp_check_initialized(y); EG(ret, err);
117 
118 	MUST_HAVE((x->ctx == y->ctx), ret, err);
119 	MUST_HAVE((x->ctx == curve->a.ctx), ret, err);
120 
121 	ret = fp_init(&x2, x->ctx); EG(ret, err);
122 	ret = fp_sqr(&x2, x); EG(ret, err);
123 	ret = fp_init(&y2, x->ctx); EG(ret, err);
124 	ret = fp_sqr(&y2, y); EG(ret, err);
125 
126 	ret = fp_init(&tmp1, x->ctx); EG(ret, err);
127 	ret = fp_init(&tmp2, x->ctx); EG(ret, err);
128 
129 	ret = fp_mul(&tmp1, &x2, &y2); EG(ret, err);
130 	ret = fp_mul(&tmp1, &tmp1, &(curve->d)); EG(ret, err);
131 	ret = fp_inc(&tmp1, &tmp1); EG(ret, err);
132 
133 	ret = fp_mul(&tmp2, &x2, &(curve->a)); EG(ret, err);
134 	ret = fp_add(&tmp2, &tmp2, &y2); EG(ret, err);
135 
136 	ret = fp_cmp(&tmp1, &tmp2, &cmp);
137 
138 	if (!ret) {
139 		(*on_curve) = (!cmp);
140 	}
141 
142 err:
143 	fp_uninit(&x2);
144 	fp_uninit(&y2);
145 	fp_uninit(&tmp1);
146 	fp_uninit(&tmp2);
147 
148 	return ret;
149 }
150 
151 /*
152  * Checks if affine coordinates point is on an Edwards curve. 'on_curve' is set
153  * to 1 if yes, 0 if no. 'on_curve' is not meaningful in case of error.
154  *
155  * Returns 0 on success, -1 on error.
156  */
157 int aff_pt_edwards_is_on_curve(aff_pt_edwards_src_t pt, int *on_curve)
158 {
159 	int ret;
160 
161 	ret = aff_pt_edwards_check_initialized(pt); EG(ret, err);
162 
163 	ret = is_on_edwards_curve(&(pt->x), &(pt->y), pt->crv, on_curve);
164 
165 err:
166 	return ret;
167 }
168 
169 /*
170  * Copy an Edwards affine point in an output. The output is initialized properly.
171  *
172  * Returns 0 on success, -1 on error.
173  */
174 int ec_edwards_aff_copy(aff_pt_edwards_t out, aff_pt_edwards_src_t in)
175 {
176 	int ret;
177 
178 	ret = aff_pt_edwards_check_initialized(in); EG(ret, err);
179 	ret = aff_pt_edwards_init(out, in->crv); EG(ret, err);
180 
181 	ret = fp_copy(&(out->x), &(in->x)); EG(ret, err);
182 	ret = fp_copy(&(out->y), &(in->y));
183 
184 err:
185 	return ret;
186 }
187 
188 /*
189  * Compares two given affine points on an Edwards curve, it returns 0 in input
190  * 'cmp' if they correspond or not 0 if not. 'cmp' is not meaningful on error.
191  *
192  * Returns 0 on success, -1 on error.
193  */
194 int ec_edwards_aff_cmp(aff_pt_edwards_src_t in1, aff_pt_edwards_src_t in2,
195 		       int *cmp)
196 {
197 	int ret, cmp1, cmp2;
198 
199 	MUST_HAVE((cmp != NULL), ret, err);
200 	ret = aff_pt_edwards_check_initialized(in1); EG(ret, err);
201 	ret = aff_pt_edwards_check_initialized(in2); EG(ret, err);
202 
203 	MUST_HAVE((in1->crv == in2->crv), ret, err);
204 
205 	ret = fp_cmp(&(in1->x), &(in2->x), &cmp1); EG(ret, err);
206 	ret = fp_cmp(&(in1->y), &(in2->y), &cmp2);
207 
208 	if (!ret) {
209 		(*cmp) = (cmp1 | cmp2);
210 	}
211 
212 err:
213 	return ret;
214 }
215 
216 /*
217  * Import an Edwards affine point from a buffer with the following layout; the 2
218  * coordinates (elements of Fp) are each encoded on p_len bytes, where p_len
219  * is the size of p in bytes (e.g. 66 for a prime p of 521 bits). Each
220  * coordinate is encoded in big endian. Size of buffer must exactly match
221  * 2 * p_len.
222  *
223  * Returns 0 on success, -1 on error.
224  */
225 int aff_pt_edwards_import_from_buf(aff_pt_edwards_t pt,
226 				   const u8 *pt_buf,
227 				   u16 pt_buf_len, ec_edwards_crv_src_t crv)
228 {
229 	fp_ctx_src_t ctx;
230 	u16 coord_len;
231 	int ret, on_curve;
232 
233 	ret = ec_edwards_crv_check_initialized(crv); EG(ret, err);
234 	MUST_HAVE(((pt_buf != NULL) && (pt != NULL)), ret, err);
235 
236 	ctx = crv->a.ctx;
237 	coord_len = (u16)BYTECEIL(ctx->p_bitlen);
238 
239 	MUST_HAVE((pt_buf_len == (2 * coord_len)), ret, err);
240 
241 	ret = fp_init_from_buf(&(pt->x), ctx, pt_buf, coord_len); EG(ret, err);
242 	ret = fp_init_from_buf(&(pt->y), ctx, pt_buf + coord_len, coord_len); EG(ret, err);
243 
244 	/* Set the curve */
245 	pt->crv = crv;
246 
247 	/* Mark the point as initialized */
248 	pt->magic = AFF_PT_EDWARDS_MAGIC;
249 
250 	/* Check that the point is indeed on the provided curve, uninitialize it
251 	 * if this is not the case.
252 	 */
253 	ret = aff_pt_edwards_is_on_curve(pt, &on_curve); EG(ret, err);
254 	if (!on_curve) {
255 		aff_pt_edwards_uninit(pt);
256 		ret = -1;
257 	}
258 
259 err:
260 	return ret;
261 }
262 
263 
264 /* Export an Edwards affine point to a buffer with the following layout; the 2
265  * coordinates (elements of Fp) are each encoded on p_len bytes, where p_len
266  * is the size of p in bytes (e.g. 66 for a prime p of 521 bits). Each
267  * coordinate is encoded in big endian. Size of buffer must exactly match
268  * 2 * p_len.
269  *
270  * Returns 0 on success, -1 on error.
271  */
272 int aff_pt_edwards_export_to_buf(aff_pt_edwards_src_t pt,
273 				 u8 *pt_buf, u32 pt_buf_len)
274 {
275 	fp_ctx_src_t ctx;
276 	u16 coord_len;
277 	int ret, on_curve;
278 
279 	ret = aff_pt_edwards_check_initialized(pt); EG(ret, err);
280 	MUST_HAVE((pt_buf != NULL), ret, err);
281 
282 	/* The point to be exported must be on the curve */
283 	ret = aff_pt_edwards_is_on_curve(pt, &on_curve); EG(ret, err);
284 	MUST_HAVE(on_curve, ret, err);
285 
286 	ctx = pt->crv->a.ctx;
287 	coord_len = (u16)BYTECEIL(ctx->p_bitlen);
288 
289 	MUST_HAVE((pt_buf_len == (2 * coord_len)), ret, err);
290 
291 	/* Export the three coordinates */
292 	ret = fp_export_to_buf(pt_buf, coord_len, &(pt->x)); EG(ret, err);
293 	ret = fp_export_to_buf(pt_buf + coord_len, coord_len, &(pt->y));
294 
295 err:
296 	return ret;
297 }
298 
299 /*
300  * Mapping curves from twisted Edwards to Montgomery.
301  *
302  *  E{a, d} is mapped to M{A, B} using the formula:
303  *    A = 2(a+d)/(a-d)
304  *    B = 4/((a-d) * alpha^2)
305  *
306  * Returns 0 on success, -1 on error.
307  */
308 int curve_edwards_to_montgomery(ec_edwards_crv_src_t edwards_crv,
309 				ec_montgomery_crv_t montgomery_crv,
310 				fp_src_t alpha_edwards)
311 {
312 	fp tmp1, tmp2, A, B;
313 	int ret;
314 	tmp1.magic = tmp2.magic = A.magic = B.magic = WORD(0);
315 
316 	ret = ec_edwards_crv_check_initialized(edwards_crv); EG(ret, err);
317 	ret = fp_check_initialized(alpha_edwards); EG(ret, err);
318 	MUST_HAVE((edwards_crv->a.ctx == alpha_edwards->ctx), ret, err);
319 
320 	ret = fp_init(&tmp1, edwards_crv->a.ctx); EG(ret, err);
321 	ret = fp_init(&tmp2, edwards_crv->a.ctx); EG(ret, err);
322 	ret = fp_init(&A, edwards_crv->a.ctx); EG(ret, err);
323 	ret = fp_init(&B, edwards_crv->a.ctx); EG(ret, err);
324 
325 
326 	/* Compute Z = (alpha ^ 2) et T = 2 / ((a-d) * Z)
327 	 * and then:
328 	 *   A = 2(a+d)/(a-d) = Z * (a + d) * T
329 	 *   B = 4/((a-d) * alpha^2) = 2 * T
330 	 */
331 	ret = fp_sqr(&tmp1, alpha_edwards); EG(ret, err);
332 	ret = fp_sub(&tmp2, &(edwards_crv->a), &(edwards_crv->d)); EG(ret, err);
333 	ret = fp_mul(&tmp2, &tmp2, &tmp1); EG(ret, err);
334 	ret = fp_inv(&tmp2, &tmp2); EG(ret, err);
335 	ret = fp_set_word_value(&B, WORD(2)); EG(ret, err);
336 	ret = fp_mul(&tmp2, &tmp2, &B); EG(ret, err);
337 
338 	ret = fp_add(&A, &(edwards_crv->a), &(edwards_crv->d)); EG(ret, err);
339 	ret = fp_mul(&A, &A, &tmp1); EG(ret, err);
340 	ret = fp_mul(&A, &A, &tmp2); EG(ret, err);
341 	ret = fp_mul(&B, &B, &tmp2); EG(ret, err);
342 
343 	/* Initialize our Montgomery curve */
344 	ret = ec_montgomery_crv_init(montgomery_crv, &A, &B, &(edwards_crv->order));
345 
346 err:
347 	fp_uninit(&tmp1);
348 	fp_uninit(&tmp2);
349 	fp_uninit(&A);
350 	fp_uninit(&B);
351 
352 	return ret;
353 }
354 
355 /*
356  * Checks that an Edwards curve and Montgomery curve are compatible.
357  *
358  * Returns 0 on success, -1 on error.
359  */
360 int curve_edwards_montgomery_check(ec_edwards_crv_src_t e_crv,
361 				   ec_montgomery_crv_src_t m_crv,
362 				   fp_src_t alpha_edwards)
363 {
364 	int ret, cmp;
365 	ec_montgomery_crv check;
366 	check.magic = WORD(0);
367 
368 	ret = ec_montgomery_crv_check_initialized(m_crv); EG(ret, err);
369 	ret = curve_edwards_to_montgomery(e_crv, &check, alpha_edwards); EG(ret, err);
370 
371 	/* Check elements */
372 	MUST_HAVE((!fp_cmp(&(check.A), &(m_crv->A), &cmp)) && (!cmp), ret, err);
373 	MUST_HAVE((!fp_cmp(&(check.B), &(m_crv->B), &cmp)) && (!cmp), ret, err);
374 	MUST_HAVE((!nn_cmp(&(check.order), &(m_crv->order), &cmp)) && (!cmp), ret, err);
375 
376 err:
377 	ec_montgomery_crv_uninit(&check);
378 
379 	return ret;
380 }
381 
382 /*
383  * Mapping curves from Montgomery to twisted Edwards.
384  *
385  *  M{A, B} is mapped to E{a, d} using the formula:
386  *    a = (A+2)/(B * alpha^2)
387  *    d = (A-2)/(B * alpha^2)
388  *
389  *  Or the inverse (switch a and d roles).
390  *
391  * Returns 0 on success, -1 on error.
392  */
393 int curve_montgomery_to_edwards(ec_montgomery_crv_src_t m_crv,
394 				ec_edwards_crv_t e_crv,
395 				fp_src_t alpha_edwards)
396 {
397 	int ret, cmp;
398 	fp tmp, tmp2, a, d;
399 	tmp.magic = tmp2.magic = a.magic = d.magic = WORD(0);
400 
401 	ret = ec_montgomery_crv_check_initialized(m_crv); EG(ret, err);
402 	ret = fp_check_initialized(alpha_edwards); EG(ret, err);
403 	MUST_HAVE((m_crv->A.ctx == alpha_edwards->ctx), ret, err);
404 
405 	ret = fp_init(&tmp, m_crv->A.ctx); EG(ret, err);
406 	ret = fp_init(&tmp2, m_crv->A.ctx); EG(ret, err);
407 	ret = fp_init(&a, m_crv->A.ctx); EG(ret, err);
408 	ret = fp_init(&d, m_crv->A.ctx); EG(ret, err);
409 
410 	ret = fp_set_word_value(&tmp, WORD(2)); EG(ret, err);
411 	ret = fp_mul(&tmp2, &(m_crv->B), alpha_edwards); EG(ret, err);
412 	ret = fp_mul(&tmp2, &tmp2, alpha_edwards); EG(ret, err);
413 	ret = fp_inv(&tmp2, &tmp2); EG(ret, err);
414 
415 	/* a = (A+2)/(B * alpha^2) */
416 	ret = fp_add(&a, &(m_crv->A), &tmp); EG(ret, err);
417 	ret = fp_mul(&a, &a, &tmp2); EG(ret, err);
418 
419 	/* d = (A-2)/(B * alpha^2) */
420 	ret = fp_sub(&d, &(m_crv->A), &tmp); EG(ret, err);
421 	ret = fp_mul(&d, &d, &tmp2); EG(ret, err);
422 
423 	/* Initialize our Edwards curve */
424 	/* Check if we have to inverse a and d */
425 	ret = fp_one(&tmp); EG(ret, err);
426 	ret = fp_cmp(&d, &tmp, &cmp); EG(ret, err);
427 	if (cmp == 0) {
428 		ret = ec_edwards_crv_init(e_crv, &d, &a, &(m_crv->order));
429 	} else {
430 		ret = ec_edwards_crv_init(e_crv, &a, &d, &(m_crv->order));
431 	}
432 
433 err:
434 	fp_uninit(&tmp);
435 	fp_uninit(&tmp2);
436 	fp_uninit(&a);
437 	fp_uninit(&d);
438 
439 	return ret;
440 }
441 
442 /*
443  * Mapping curve from Edwards to short Weierstrass.
444  *
445  * Returns 0 on success, -1 on error.
446  */
447 int curve_edwards_to_shortw(ec_edwards_crv_src_t edwards_crv,
448 			    ec_shortw_crv_t shortw_crv,
449 			    fp_src_t alpha_edwards)
450 {
451 	int ret;
452 	ec_montgomery_crv montgomery_crv;
453 	montgomery_crv.magic = WORD(0);
454 
455 	ret = curve_edwards_to_montgomery(edwards_crv, &montgomery_crv, alpha_edwards); EG(ret, err);
456 	ret = curve_montgomery_to_shortw(&montgomery_crv, shortw_crv);
457 
458 err:
459 	ec_montgomery_crv_uninit(&montgomery_crv);
460 
461 	return ret;
462 }
463 
464 /* Checking if an Edwards curve and short Weierstrass curve are compliant (through Montgomery mapping).
465  *
466  * Returns 0 on success, -1 on error.
467  */
468 int curve_edwards_shortw_check(ec_edwards_crv_src_t edwards_crv,
469 			       ec_shortw_crv_src_t shortw_crv,
470 			       fp_src_t alpha_edwards)
471 {
472 	int ret;
473 	ec_montgomery_crv montgomery_crv;
474 	montgomery_crv.magic = WORD(0);
475 
476 	ret = curve_edwards_to_montgomery(edwards_crv, &montgomery_crv, alpha_edwards); EG(ret, err);
477 
478 	ret = curve_montgomery_shortw_check(&montgomery_crv, shortw_crv);
479 
480 err:
481 	ec_montgomery_crv_uninit(&montgomery_crv);
482 
483 	return ret;
484 }
485 
486 /*
487  * Mapping curve from short Weierstrass to Edwards.
488  *
489  * Returns 0 on success, -1 on error.
490  */
491 int curve_shortw_to_edwards(ec_shortw_crv_src_t shortw_crv,
492 			    ec_edwards_crv_t edwards_crv,
493 			    fp_src_t alpha_montgomery,
494 			    fp_src_t gamma_montgomery,
495 			    fp_src_t alpha_edwards)
496 {
497 	int ret;
498 	ec_montgomery_crv montgomery_crv;
499 	montgomery_crv.magic = WORD(0);
500 
501 	ret = curve_shortw_to_montgomery(shortw_crv, &montgomery_crv, alpha_montgomery, gamma_montgomery); EG(ret, err);
502 
503 	ret = curve_montgomery_to_edwards(&montgomery_crv, edwards_crv, alpha_edwards);
504 
505 err:
506 	ec_montgomery_crv_uninit(&montgomery_crv);
507 
508 	return ret;
509 }
510 
511 /*
512  * Mapping points from twisted Edwards to Montgomery.
513  *   Point E(x, y) is mapped to M(u, v) with the formula:
514  *       - (0, 1) mapped to the point at infinity (not possible in our affine coordinates)
515  *       - (0, -1) mapped to (0, 0)
516  *       - (u, v) mapped to ((1+y)/(1-y), alpha * (1+y)/((1-y)x))
517  *
518  * Returns 0 on success, -1 on error.
519  */
520 int aff_pt_edwards_to_montgomery(aff_pt_edwards_src_t in_edwards,
521 				 ec_montgomery_crv_src_t montgomery_crv,
522 				 aff_pt_montgomery_t out_montgomery,
523 				 fp_src_t alpha_edwards)
524 {
525 	/* NOTE: we attempt to perform the (0, -1) -> (0, 0) mapping in constant time.
526 	 * Hence the weird table selection.
527 	 */
528 	int ret, iszero, on_curve, cmp;
529 	fp tmp, tmp2, x, y;
530 	fp tab_x[2];
531 	fp_src_t tab_x_t[2] = { &tab_x[0], &tab_x[1] };
532 	fp tab_y[2];
533 	fp_src_t tab_y_t[2] = { &tab_y[0], &tab_y[1] };
534 	u8 idx = 0;
535 	tmp.magic = tmp2.magic = x.magic = y.magic = WORD(0);
536 	tab_x[0].magic = tab_x[1].magic = WORD(0);
537 	tab_y[0].magic = tab_y[1].magic = WORD(0);
538 
539 	ret = ec_montgomery_crv_check_initialized(montgomery_crv); EG(ret, err);
540 
541 	/* Check input point is on its curve */
542 	ret = aff_pt_edwards_is_on_curve(in_edwards, &on_curve); EG(ret, err);
543 	MUST_HAVE(on_curve, ret, err);
544 
545 	ret = curve_edwards_montgomery_check(in_edwards->crv, montgomery_crv, alpha_edwards); EG(ret, err);
546 
547 	ret = fp_init(&tmp, in_edwards->crv->a.ctx); EG(ret, err);
548 	ret = fp_init(&tmp2, in_edwards->crv->a.ctx); EG(ret, err);
549 	ret = fp_init(&x, in_edwards->crv->a.ctx); EG(ret, err);
550 	ret = fp_init(&y, in_edwards->crv->a.ctx); EG(ret, err);
551 	ret = fp_init(&tab_x[0], in_edwards->crv->a.ctx); EG(ret, err);
552 	ret = fp_init(&tab_x[1], in_edwards->crv->a.ctx); EG(ret, err);
553 	ret = fp_init(&tab_y[0], in_edwards->crv->a.ctx); EG(ret, err);
554 	ret = fp_init(&tab_y[1], in_edwards->crv->a.ctx); EG(ret, err);
555 
556 	ret = fp_one(&tmp); EG(ret, err);
557 	/* We do not handle point at infinity in affine coordinates */
558 	ret = fp_iszero(&(in_edwards->x), &iszero); EG(ret, err);
559 	ret = fp_cmp(&(in_edwards->y), &tmp, &cmp); EG(ret, err);
560 	MUST_HAVE(!(iszero && (cmp == 0)), ret, err);
561 	/* Map (0, -1) to (0, 0) */
562 	ret = fp_zero(&tmp2); EG(ret, err);
563 	ret = fp_sub(&tmp2, &tmp2, &tmp); EG(ret, err);
564 	/* Copy 1 as x as dummy value */
565 	ret = fp_one(&tab_x[0]); EG(ret, err);
566 	ret = fp_copy(&tab_x[1], &(in_edwards->x)); EG(ret, err);
567 	/* Copy -1 as y to produce (0, 0) */
568 	ret = fp_copy(&tab_y[0], &tmp2); EG(ret, err);
569 	ret = fp_copy(&tab_y[1], &(in_edwards->y)); EG(ret, err);
570 
571 	ret = fp_iszero(&(in_edwards->x), &iszero); EG(ret, err);
572 	ret = fp_cmp(&(in_edwards->y), &tmp2, &cmp); EG(ret, err);
573 	idx = !(iszero && cmp);
574 	ret = fp_tabselect(&x, idx, tab_x_t, 2); EG(ret, err);
575 	ret = fp_tabselect(&y, idx, tab_y_t, 2); EG(ret, err);
576 
577 	ret = aff_pt_montgomery_init(out_montgomery, montgomery_crv); EG(ret, err);
578 	/* Compute general case */
579 	ret = fp_copy(&tmp2, &tmp); EG(ret, err);
580 	/* Put 1/(1-y) in tmp */
581 	ret = fp_sub(&tmp, &tmp, &y); EG(ret, err);
582 	ret = fp_inv(&tmp, &tmp); EG(ret, err);
583 	/* Put (1+y) in tmp2 */
584 	ret = fp_add(&tmp2, &tmp2, &y); EG(ret, err);
585 	/* u = (1+y) / (1-y) */
586 	ret = fp_mul(&(out_montgomery->u), &tmp, &tmp2); EG(ret, err);
587 	/* v = alpha_edwards * (1+y)/((1-y)x) */
588 	ret = fp_inv(&(out_montgomery->v), &x); EG(ret, err);
589 	ret = fp_mul(&(out_montgomery->v), &(out_montgomery->v), alpha_edwards); EG(ret, err);
590 	ret = fp_mul(&(out_montgomery->v), &(out_montgomery->u), &(out_montgomery->v)); EG(ret, err);
591 
592 	/* Final check that the point is on the curve */
593 	ret = aff_pt_montgomery_is_on_curve(out_montgomery, &on_curve); EG(ret, err);
594 	if (!on_curve) {
595 		ret = -1;
596 	}
597 
598 err:
599 	fp_uninit(&tmp);
600 	fp_uninit(&tmp2);
601 	fp_uninit(&x);
602 	fp_uninit(&y);
603 	fp_uninit(&tab_x[0]);
604 	fp_uninit(&tab_x[1]);
605 	fp_uninit(&tab_y[0]);
606 	fp_uninit(&tab_y[1]);
607 
608 	return ret;
609 }
610 
611 /*
612  * Mapping points from Montgomery to twisted Edwards.
613  *   Point M(u, v) is mapped to E(x, y) with the formula:
614  *       - Point at infinity mapped to (0, 1) (not possible in our affine coordinates)
615  *       - (0, 0) mapped to (0, -1)
616  *       - (x, y) mapped to (alpha * (u/v), (u-1)/(u+1))
617  *
618  * Returns 0 on success, -1 on error.
619  */
620 int aff_pt_montgomery_to_edwards(aff_pt_montgomery_src_t in_montgomery,
621 				 ec_edwards_crv_src_t edwards_crv,
622 				 aff_pt_edwards_t out_edwards,
623 				 fp_src_t alpha)
624 {
625 	/* NOTE: we attempt to perform the (0, 0) -> (0, -1) mapping in constant time.
626 	 * Hence the weird table selection.
627 	 */
628 	int ret, iszero1, iszero2, on_curve;
629 	fp tmp, u, v;
630 	fp tab_u[2];
631 	fp_src_t tab_u_t[2] = { &tab_u[0], &tab_u[1] };
632 	fp tab_v[2];
633 	fp_src_t tab_v_t[2] = { &tab_v[0], &tab_v[1] };
634 	u8 idx = 0;
635 	tmp.magic = u.magic = v.magic  = 0;
636 	tab_u[0].magic = tab_u[1].magic = WORD(0);
637 	tab_v[0].magic = tab_v[1].magic = WORD(0);
638 
639 	ret = ec_edwards_crv_check_initialized(edwards_crv); EG(ret, err);
640 
641 	/* Check input point is on its curve */
642 	ret = aff_pt_montgomery_is_on_curve(in_montgomery, &on_curve); EG(ret, err);
643 	MUST_HAVE(on_curve, ret, err);
644 
645 	ret = curve_edwards_montgomery_check(edwards_crv, in_montgomery->crv, alpha); EG(ret, err);
646 
647 	ret = fp_init(&tmp, in_montgomery->crv->A.ctx); EG(ret, err);
648 	ret = fp_init(&u, in_montgomery->crv->A.ctx); EG(ret, err);
649 	ret = fp_init(&v, in_montgomery->crv->A.ctx); EG(ret, err);
650 	ret = fp_init(&tab_u[0], in_montgomery->crv->A.ctx); EG(ret, err);
651 	ret = fp_init(&tab_u[1], in_montgomery->crv->A.ctx); EG(ret, err);
652 	ret = fp_init(&tab_v[0], in_montgomery->crv->A.ctx); EG(ret, err);
653 	ret = fp_init(&tab_v[1], in_montgomery->crv->A.ctx); EG(ret, err);
654 
655 	ret = fp_one(&tmp); EG(ret, err);
656 	/* Map (0, 0) to (0, -1) */
657 	/* Copy 0 as u as dummy value */
658 	ret = fp_zero(&tab_u[0]); EG(ret, err);
659 	ret = fp_copy(&tab_u[1], &(in_montgomery->u)); EG(ret, err);
660 	/* Copy 1 as v dummy value to produce (0, -1) */
661 	ret = fp_copy(&tab_v[0], &tmp); EG(ret, err);
662 	ret = fp_copy(&tab_v[1], &(in_montgomery->v)); EG(ret, err);
663 
664 	ret = fp_iszero(&(in_montgomery->u), &iszero1); EG(ret, err);
665 	ret = fp_iszero(&(in_montgomery->v), &iszero2); EG(ret, err);
666 	idx = (iszero1 && iszero2) ? 0 : 1;
667 	ret = fp_tabselect(&u, idx, tab_u_t, 2); EG(ret, err);
668 	ret = fp_tabselect(&v, idx, tab_v_t, 2); EG(ret, err);
669 
670 	ret = aff_pt_edwards_init(out_edwards, edwards_crv); EG(ret, err);
671 	/* x = alpha * (u / v) */
672 	ret = fp_inv(&(out_edwards->x), &v); EG(ret, err);
673 	ret = fp_mul(&(out_edwards->x), &(out_edwards->x), alpha); EG(ret, err);
674 	ret = fp_mul(&(out_edwards->x), &(out_edwards->x), &u); EG(ret, err);
675 	/* y = (u-1)/(u+1) */
676 	ret = fp_add(&(out_edwards->y), &u, &tmp); EG(ret, err);
677 	ret = fp_inv(&(out_edwards->y), &(out_edwards->y)); EG(ret, err);
678 	ret = fp_sub(&tmp, &u, &tmp); EG(ret, err);
679 	ret = fp_mul(&(out_edwards->y), &(out_edwards->y), &tmp); EG(ret, err);
680 
681 	/* Final check that the point is on the curve */
682 	ret = aff_pt_edwards_is_on_curve(out_edwards, &on_curve); EG(ret, err);
683 	if (!on_curve) {
684 		ret = -1;
685 	}
686 
687 err:
688 	fp_uninit(&tmp);
689 	fp_uninit(&u);
690 	fp_uninit(&v);
691 	fp_uninit(&tab_u[0]);
692 	fp_uninit(&tab_u[1]);
693 	fp_uninit(&tab_v[0]);
694 	fp_uninit(&tab_v[1]);
695 
696 	return ret;
697 }
698 
699 
700 /*
701  * Map points from Edwards to short Weierstrass through Montgomery (composition mapping).
702  *
703  * Returns 0 on success, -1 on error.
704  */
705 int aff_pt_edwards_to_shortw(aff_pt_edwards_src_t in_edwards,
706 			     ec_shortw_crv_src_t shortw_crv,
707 			     aff_pt_t out_shortw, fp_src_t alpha_edwards)
708 {
709 	int ret;
710 	aff_pt_montgomery inter_montgomery;
711 	ec_montgomery_crv inter_montgomery_crv;
712 	inter_montgomery.magic = inter_montgomery_crv.magic = WORD(0);
713 
714 	/* First, map from Edwards to Montgomery */
715 	ret = aff_pt_edwards_check_initialized(in_edwards); EG(ret, err);
716 	ret = curve_edwards_to_montgomery(in_edwards->crv, &inter_montgomery_crv, alpha_edwards); EG(ret, err);
717 	ret = aff_pt_edwards_to_montgomery(in_edwards, &inter_montgomery_crv, &inter_montgomery, alpha_edwards); EG(ret, err);
718 
719 	/* Then map from Montgomery to short Weierstrass */
720 	ret = aff_pt_montgomery_to_shortw(&inter_montgomery, shortw_crv, out_shortw);
721 
722 err:
723 	aff_pt_montgomery_uninit(&inter_montgomery);
724 	ec_montgomery_crv_uninit(&inter_montgomery_crv);
725 
726 	return ret;
727 }
728 
729 /*
730  * Map points from projective short Weierstrass to Edwards through Montgomery (composition mapping).
731  *
732  * Returns 0 on success, -1 on error.
733  */
734 int aff_pt_shortw_to_edwards(aff_pt_src_t in_shortw,
735 			     ec_edwards_crv_src_t edwards_crv,
736 			     aff_pt_edwards_t out_edwards,
737 			     fp_src_t alpha_edwards)
738 {
739 	int ret;
740 	aff_pt_montgomery inter_montgomery;
741 	ec_montgomery_crv inter_montgomery_crv;
742 	inter_montgomery.magic = inter_montgomery_crv.magic = WORD(0);
743 
744 	/* First, map from short Weierstrass to Montgomery */
745 	ret = curve_edwards_to_montgomery(edwards_crv, &inter_montgomery_crv, alpha_edwards); EG(ret, err);
746 	ret = aff_pt_shortw_to_montgomery(in_shortw, &inter_montgomery_crv, &inter_montgomery); EG(ret, err);
747 
748 	/* Then map from Montgomery to Edwards */
749 	ret = aff_pt_montgomery_to_edwards(&inter_montgomery, edwards_crv, out_edwards, alpha_edwards);
750 
751 err:
752 	aff_pt_montgomery_uninit(&inter_montgomery);
753 	ec_montgomery_crv_uninit(&inter_montgomery_crv);
754 
755 	return ret;
756 }
757 
758 /*
759  * Recover the two possible y coordinates from one x on a given
760  * curve.
761  * The two outputs y1 and y2 are initialized in the function.
762  *
763  * The function returns -1 on error, 0 on success.
764  *
765  */
766 int aff_pt_edwards_y_from_x(fp_t y1, fp_t y2, fp_src_t x, ec_edwards_crv_src_t crv)
767 {
768         int ret;
769 	fp tmp;
770 	tmp.magic = WORD(0);
771 
772 	/* Sanity checks */
773 	ret = fp_check_initialized(x); EG(ret, err);
774 	ret = ec_edwards_crv_check_initialized(crv); EG(ret, err);
775 	MUST_HAVE((x->ctx == crv->a.ctx) && (x->ctx == crv->d.ctx), ret, err);
776 	MUST_HAVE((y1 != NULL) && (y2 != NULL), ret, err);
777 	/* Aliasing is not supported */
778 	MUST_HAVE((y1 != y2) && (y1 != x), ret, err);
779 
780 	ret = fp_init(y1, x->ctx); EG(ret, err);
781 	ret = fp_init(y2, x->ctx); EG(ret, err);
782 	ret = fp_init(&tmp, x->ctx); EG(ret, err);
783 
784 	/* In order to find our two possible y, we have to find the square
785 	 * roots of (1 - a x**2) / (1 - d * x**2).
786 	 */
787 	ret = fp_one(&tmp); EG(ret, err);
788 	/* (1 - a x**2) */
789 	ret = fp_mul(y1, x, &(crv->a)); EG(ret, err);
790 	ret = fp_mul(y1, y1, x); EG(ret, err);
791 	ret = fp_sub(y1, &tmp, y1); EG(ret, err);
792 	/* 1 / (1 - d * x**2) */
793 	ret = fp_mul(y2, x, &(crv->d)); EG(ret, err);
794 	ret = fp_mul(y2, y2, x); EG(ret, err);
795 	ret = fp_sub(y2, &tmp, y2); EG(ret, err);
796 	ret = fp_inv(y2, y2); EG(ret, err);
797 
798 	ret = fp_mul(&tmp, y1, y2); EG(ret, err);
799 
800 	ret = fp_sqrt(y1, y2, &tmp);
801 
802 err:
803 	fp_uninit(&tmp);
804 
805 	return ret;
806 }
807 
808 /*
809  * Recover the two possible x coordinates from one y on a given
810  * curve.
811  * The two outputs x1 and x2 are initialized in the function.
812  *
813  * The function returns -1 on error, 0 on success.
814  *
815  */
816 int aff_pt_edwards_x_from_y(fp_t x1, fp_t x2, fp_src_t y, ec_edwards_crv_src_t crv)
817 {
818         int ret;
819 	fp tmp;
820 	tmp.magic = WORD(0);
821 
822 	/* Sanity checks */
823 	ret = fp_check_initialized(y); EG(ret, err);
824 	ret = ec_edwards_crv_check_initialized(crv); EG(ret, err);
825 	MUST_HAVE((y->ctx == crv->a.ctx) && (y->ctx == crv->d.ctx), ret, err);
826 	MUST_HAVE((x1 != NULL) && (x2 != NULL), ret, err);
827 	/* Aliasing is not supported */
828 	MUST_HAVE((x1 != x2) && (x1 != y), ret, err);
829 
830 	ret = fp_init(x1, y->ctx); EG(ret, err);
831 	ret = fp_init(x2, y->ctx); EG(ret, err);
832 	ret = fp_init(&tmp, y->ctx); EG(ret, err);
833 
834 	/* In order to find our two possible y, we have to find the square
835 	 * roots of (1 - y**2) / (a - d * y**2).
836 	 */
837 	ret = fp_one(&tmp); EG(ret, err);
838 	/* (1 - y**2) */
839 	ret = fp_mul(x1, y, y); EG(ret, err);
840 	ret = fp_sub(x1, &tmp, x1); EG(ret, err);
841 	/* 1 / (a - d * x**2) */
842 	ret = fp_mul(x2, y, &(crv->d)); EG(ret, err);
843 	ret = fp_mul(x2, x2, y); EG(ret, err);
844 	ret = fp_sub(x2, &(crv->a), x2); EG(ret, err);
845 	ret = fp_inv(x2, x2); EG(ret, err);
846 
847 	ret = fp_mul(&tmp, x1, x2); EG(ret, err);
848 
849 	ret = fp_sqrt(x1, x2, &tmp);
850 
851 err:
852 	fp_uninit(&tmp);
853 
854 	return ret;
855 }
856