xref: /freebsd/crypto/libecc/src/arithmetic_tests/arithmetic_tests_generator.py (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1#/*
2# *  Copyright (C) 2017 - This file is part of libecc project
3# *
4# *  Authors:
5# *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6# *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7# *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8# *
9# *  Contributors:
10# *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11# *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12# *
13# *  This software is licensed under a dual BSD and GPL v2 license.
14# *  See LICENSE file at the root folder of the project.
15# */
16#! /usr/bin/env python
17
18import random, sys, re, math, socket, os, select, signal
19from datetime import datetime
20
21# Pre generated primes
22first_primes_list = [
23     2,      3,      5,      7,     11,     13,     17,     19,     23,     29,
24    31,     37,     41,     43,     47,     53,     59,     61,     67,     71,
25    73,     79,     83,     89,     97,    101,    103,    107,    109,    113,
26   127,    131,    137,    139,    149,    151,    157,    163,    167,    173,
27   179,    181,    191,    193,    197,    199,    211,    223,    227,    229,
28   233,    239,    241,    251,    257,    263,    269,    271,    277,    281,
29   283,    293,    307,    311,    313,    317,    331,    337,    347,    349,
30   353,    359,    367,    373,    379,    383,    389,    397,    401,    409,
31   419,    421,    431,    433,    439,    443,    449,    457,    461,    463,
32   467,    479,    487,    491,    499,    503,    509,    521,    523,    541,
33   547,    557,    563,    569,    571,    577,    587,    593,    599,    601,
34   607,    613,    617,    619,    631,    641,    643,    647,    653,    659,
35   661,    673,    677,    683,    691,    701,    709,    719,    727,    733,
36   739,    743,    751,    757,    761,    769,    773,    787,    797,    809,
37   811,    821,    823,    827,    829,    839,    853,    857,    859,    863,
38   877,    881,    883,    887,    907,    911,    919,    929,    937,    941,
39   947,    953,    967,    971,    977,    983,    991,    997,   1009,   1013,
40  1019,   1021,   1031,   1033,   1039,   1049,   1051,   1061,   1063,   1069,
41  1087,   1091,   1093,   1097,   1103,   1109,   1117,   1123,   1129,   1151,
42  1153,   1163,   1171,   1181,   1187,   1193,   1201,   1213,   1217,   1223,
43  1229,   1231,   1237,   1249,   1259,   1277,   1279,   1283,   1289,   1291,
44  1297,   1301,   1303,   1307,   1319,   1321,   1327,   1361,   1367,   1373,
45  1381,   1399,   1409,   1423,   1427,   1429,   1433,   1439,   1447,   1451,
46  1453,   1459,   1471,   1481,   1483,   1487,   1489,   1493,   1499,   1511,
47  1523,   1531,   1543,   1549,   1553,   1559,   1567,   1571,   1579,   1583,
48  1597,   1601,   1607,   1609,   1613,   1619,   1621,   1627,   1637,   1657,
49  1663,   1667,   1669,   1693,   1697,   1699,   1709,   1721,   1723,   1733,
50  1741,   1747,   1753,   1759,   1777,   1783,   1787,   1789,   1801,   1811,
51  1823,   1831,   1847,   1861,   1867,   1871,   1873,   1877,   1879,   1889,
52  1901,   1907,   1913,   1931,   1933,   1949,   1951,   1973,   1979,   1987,
53  1993,   1997,   1999,   2003,   2011,   2017,   2027,   2029,   2039,   2053,
54  2063,   2069,   2081,   2083,   2087,   2089,   2099,   2111,   2113,   2129,
55  2131,   2137,   2141,   2143,   2153,   2161,   2179,   2203,   2207,   2213,
56  2221,   2237,   2239,   2243,   2251,   2267,   2269,   2273,   2281,   2287,
57  2293,   2297,   2309,   2311,   2333,   2339,   2341,   2347,   2351,   2357,
58  2371,   2377,   2381,   2383,   2389,   2393,   2399,   2411,   2417,   2423,
59  2437,   2441,   2447,   2459,   2467,   2473,   2477,   2503,   2521,   2531,
60  2539,   2543,   2549,   2551,   2557,   2579,   2591,   2593,   2609,   2617,
61  2621,   2633,   2647,   2657,   2659,   2663,   2671,   2677,   2683,   2687,
62  2689,   2693,   2699,   2707,   2711,   2713,   2719,   2729,   2731,   2741,
63  2749,   2753,   2767,   2777,   2789,   2791,   2797,   2801,   2803,   2819,
64  2833,   2837,   2843,   2851,   2857,   2861,   2879,   2887,   2897,   2903,
65  2909,   2917,   2927,   2939,   2953,   2957,   2963,   2969,   2971,   2999,
66  3001,   3011,   3019,   3023,   3037,   3041,   3049,   3061,   3067,   3079,
67  3083,   3089,   3109,   3119,   3121,   3137,   3163,   3167,   3169,   3181,
68  3187,   3191,   3203,   3209,   3217,   3221,   3229,   3251,   3253,   3257,
69  3259,   3271,   3299,   3301,   3307,   3313,   3319,   3323,   3329,   3331,
70  3343,   3347,   3359,   3361,   3371,   3373,   3389,   3391,   3407,   3413,
71  3433,   3449,   3457,   3461,   3463,   3467,   3469,   3491,   3499,   3511,
72  3517,   3527,   3529,   3533,   3539,   3541,   3547,   3557,   3559,   3571,
73  3581,   3583,   3593,   3607,   3613,   3617,   3623,   3631,   3637,   3643,
74  3659,   3671,   3673,   3677,   3691,   3697,   3701,   3709,   3719,   3727,
75  3733,   3739,   3761,   3767,   3769,   3779,   3793,   3797,   3803,   3821,
76  3823,   3833,   3847,   3851,   3853,   3863,   3877,   3881,   3889,   3907,
77  3911,   3917,   3919,   3923,   3929,   3931,   3943,   3947,   3967,   3989,
78  4001,   4003,   4007,   4013,   4019,   4021,   4027,   4049,   4051,   4057,
79  4073,   4079,   4091,   4093,   4099,   4111,   4127,   4129,   4133,   4139,
80  4153,   4157,   4159,   4177,   4201,   4211,   4217,   4219,   4229,   4231,
81  4241,   4243,   4253,   4259,   4261,   4271,   4273,   4283,   4289,   4297,
82  4327,   4337,   4339,   4349,   4357,   4363,   4373,   4391,   4397,   4409,
83  4421,   4423,   4441,   4447,   4451,   4457,   4463,   4481,   4483,   4493,
84  4507,   4513,   4517,   4519,   4523,   4547,   4549,   4561,   4567,   4583,
85  4591,   4597,   4603,   4621,   4637,   4639,   4643,   4649,   4651,   4657,
86  4663,   4673,   4679,   4691,   4703,   4721,   4723,   4729,   4733,   4751,
87  4759,   4783,   4787,   4789,   4793,   4799,   4801,   4813,   4817,   4831,
88  4861,   4871,   4877,   4889,   4903,   4909,   4919,   4931,   4933,   4937,
89  4943,   4951,   4957,   4967,   4969,   4973,   4987,   4993,   4999,   5003,
90  5009,   5011,   5021,   5023,   5039,   5051,   5059,   5077,   5081,   5087,
91  5099,   5101,   5107,   5113,   5119,   5147,   5153,   5167,   5171,   5179,
92  5189,   5197,   5209,   5227,   5231,   5233,   5237,   5261,   5273,   5279,
93  5281,   5297,   5303,   5309,   5323,   5333,   5347,   5351,   5381,   5387,
94  5393,   5399,   5407,   5413,   5417,   5419,   5431,   5437,   5441,   5443,
95  5449,   5471,   5477,   5479,   5483,   5501,   5503,   5507,   5519,   5521,
96  5527,   5531,   5557,   5563,   5569,   5573,   5581,   5591,   5623,   5639,
97  5641,   5647,   5651,   5653,   5657,   5659,   5669,   5683,   5689,   5693,
98  5701,   5711,   5717,   5737,   5741,   5743,   5749,   5779,   5783,   5791,
99  5801,   5807,   5813,   5821,   5827,   5839,   5843,   5849,   5851,   5857,
100  5861,   5867,   5869,   5879,   5881,   5897,   5903,   5923,   5927,   5939,
101  5953,   5981,   5987,   6007,   6011,   6029,   6037,   6043,   6047,   6053,
102  6067,   6073,   6079,   6089,   6091,   6101,   6113,   6121,   6131,   6133,
103  6143,   6151,   6163,   6173,   6197,   6199,   6203,   6211,   6217,   6221,
104  6229,   6247,   6257,   6263,   6269,   6271,   6277,   6287,   6299,   6301,
105  6311,   6317,   6323,   6329,   6337,   6343,   6353,   6359,   6361,   6367,
106  6373,   6379,   6389,   6397,   6421,   6427,   6449,   6451,   6469,   6473,
107  6481,   6491,   6521,   6529,   6547,   6551,   6553,   6563,   6569,   6571,
108  6577,   6581,   6599,   6607,   6619,   6637,   6653,   6659,   6661,   6673,
109  6679,   6689,   6691,   6701,   6703,   6709,   6719,   6733,   6737,   6761,
110  6763,   6779,   6781,   6791,   6793,   6803,   6823,   6827,   6829,   6833,
111  6841,   6857,   6863,   6869,   6871,   6883,   6899,   6907,   6911,   6917,
112  6947,   6949,   6959,   6961,   6967,   6971,   6977,   6983,   6991,   6997,
113  7001,   7013,   7019,   7027,   7039,   7043,   7057,   7069,   7079,   7103,
114  7109,   7121,   7127,   7129,   7151,   7159,   7177,   7187,   7193,   7207,
115  7211,   7213,   7219,   7229,   7237,   7243,   7247,   7253,   7283,   7297,
116  7307,   7309,   7321,   7331,   7333,   7349,   7351,   7369,   7393,   7411,
117  7417,   7433,   7451,   7457,   7459,   7477,   7481,   7487,   7489,   7499,
118  7507,   7517,   7523,   7529,   7537,   7541,   7547,   7549,   7559,   7561,
119  7573,   7577,   7583,   7589,   7591,   7603,   7607,   7621,   7639,   7643,
120  7649,   7669,   7673,   7681,   7687,   7691,   7699,   7703,   7717,   7723,
121  7727,   7741,   7753,   7757,   7759,   7789,   7793,   7817,   7823,   7829,
122  7841,   7853,   7867,   7873,   7877,   7879,   7883,   7901,   7907,   7919,
123  7927,   7933,   7937,   7949,   7951,   7963,   7993,   8009,   8011,   8017,
124  8039,   8053,   8059,   8069,   8081,   8087,   8089,   8093,   8101,   8111,
125  8117,   8123,   8147,   8161,   8167,   8171,   8179,   8191,   8209,   8219,
126  8221,   8231,   8233,   8237,   8243,   8263,   8269,   8273,   8287,   8291,
127  8293,   8297,   8311,   8317,   8329,   8353,   8363,   8369,   8377,   8387,
128  8389,   8419,   8423,   8429,   8431,   8443,   8447,   8461,   8467,   8501,
129  8513,   8521,   8527,   8537,   8539,   8543,   8563,   8573,   8581,   8597,
130  8599,   8609,   8623,   8627,   8629,   8641,   8647,   8663,   8669,   8677,
131  8681,   8689,   8693,   8699,   8707,   8713,   8719,   8731,   8737,   8741,
132  8747,   8753,   8761,   8779,   8783,   8803,   8807,   8819,   8821,   8831,
133  8837,   8839,   8849,   8861,   8863,   8867,   8887,   8893,   8923,   8929,
134  8933,   8941,   8951,   8963,   8969,   8971,   8999,   9001,   9007,   9011,
135  9013,   9029,   9041,   9043,   9049,   9059,   9067,   9091,   9103,   9109,
136  9127,   9133,   9137,   9151,   9157,   9161,   9173,   9181,   9187,   9199,
137  9203,   9209,   9221,   9227,   9239,   9241,   9257,   9277,   9281,   9283,
138  9293,   9311,   9319,   9323,   9337,   9341,   9343,   9349,   9371,   9377,
139  9391,   9397,   9403,   9413,   9419,   9421,   9431,   9433,   9437,   9439,
140  9461,   9463,   9467,   9473,   9479,   9491,   9497,   9511,   9521,   9533,
141  9539,   9547,   9551,   9587,   9601,   9613,   9619,   9623,   9629,   9631,
142  9643,   9649,   9661,   9677,   9679,   9689,   9697,   9719,   9721,   9733,
143  9739,   9743,   9749,   9767,   9769,   9781,   9787,   9791,   9803,   9811,
144  9817,   9829,   9833,   9839,   9851,   9857,   9859,   9871,   9883,   9887,
145  9901,   9907,   9923,   9929,   9931,   9941,   9949,   9967,   9973,  10007,
146 10009,  10037,  10039,  10061,  10067,  10069,  10079,  10091,  10093,  10099,
147 10103,  10111,  10133,  10139,  10141,  10151,  10159,  10163,  10169,  10177,
148 10181,  10193,  10211,  10223,  10243,  10247,  10253,  10259,  10267,  10271,
149 10273,  10289,  10301,  10303,  10313,  10321,  10331,  10333,  10337,  10343,
150 10357,  10369,  10391,  10399,  10427,  10429,  10433,  10453,  10457,  10459,
151 10463,  10477,  10487,  10499,  10501,  10513,  10529,  10531,  10559,  10567,
152 10589,  10597,  10601,  10607,  10613,  10627,  10631,  10639,  10651,  10657,
153 10663,  10667,  10687,  10691,  10709,  10711,  10723,  10729,  10733,  10739,
154 10753,  10771,  10781,  10789,  10799,  10831,  10837,  10847,  10853,  10859,
155 10861,  10867,  10883,  10889,  10891,  10903,  10909,  10937,  10939,  10949,
156 10957,  10973,  10979,  10987,  10993,  11003,  11027,  11047,  11057,  11059,
157 11069,  11071,  11083,  11087,  11093,  11113,  11117,  11119,  11131,  11149,
158 11159,  11161,  11171,  11173,  11177,  11197,  11213,  11239,  11243,  11251,
159 11257,  11261,  11273,  11279,  11287,  11299,  11311,  11317,  11321,  11329,
160 11351,  11353,  11369,  11383,  11393,  11399,  11411,  11423,  11437,  11443,
161 11447,  11467,  11471,  11483,  11489,  11491,  11497,  11503,  11519,  11527,
162 11549,  11551,  11579,  11587,  11593,  11597,  11617,  11621,  11633,  11657,
163 11677,  11681,  11689,  11699,  11701,  11717,  11719,  11731,  11743,  11777,
164 11779,  11783,  11789,  11801,  11807,  11813,  11821,  11827,  11831,  11833,
165 11839,  11863,  11867,  11887,  11897,  11903,  11909,  11923,  11927,  11933,
166 11939,  11941,  11953,  11959,  11969,  11971,  11981,  11987,  12007,  12011,
167 12037,  12041,  12043,  12049,  12071,  12073,  12097,  12101,  12107,  12109,
168 12113,  12119,  12143,  12149,  12157,  12161,  12163,  12197,  12203,  12211,
169 12227,  12239,  12241,  12251,  12253,  12263,  12269,  12277,  12281,  12289,
170 12301,  12323,  12329,  12343,  12347,  12373,  12377,  12379,  12391,  12401,
171 12409,  12413,  12421,  12433,  12437,  12451,  12457,  12473,  12479,  12487,
172 12491,  12497,  12503,  12511,  12517,  12527,  12539,  12541,  12547,  12553,
173 12569,  12577,  12583,  12589,  12601,  12611,  12613,  12619,  12637,  12641,
174 12647,  12653,  12659,  12671,  12689,  12697,  12703,  12713,  12721,  12739,
175 12743,  12757,  12763,  12781,  12791,  12799,  12809,  12821,  12823,  12829,
176 12841,  12853,  12889,  12893,  12899,  12907,  12911,  12917,  12919,  12923,
177 12941,  12953,  12959,  12967,  12973,  12979,  12983,  13001,  13003,  13007,
178 13009,  13033,  13037,  13043,  13049,  13063,  13093,  13099,  13103,  13109,
179 13121,  13127,  13147,  13151,  13159,  13163,  13171,  13177,  13183,  13187,
180 13217,  13219,  13229,  13241,  13249,  13259,  13267,  13291,  13297,  13309,
181 13313,  13327,  13331,  13337,  13339,  13367,  13381,  13397,  13399,  13411,
182 13417,  13421,  13441,  13451,  13457,  13463,  13469,  13477,  13487,  13499,
183 13513,  13523,  13537,  13553,  13567,  13577,  13591,  13597,  13613,  13619,
184 13627,  13633,  13649,  13669,  13679,  13681,  13687,  13691,  13693,  13697,
185 13709,  13711,  13721,  13723,  13729,  13751,  13757,  13759,  13763,  13781,
186 13789,  13799,  13807,  13829,  13831,  13841,  13859,  13873,  13877,  13879,
187 13883,  13901,  13903,  13907,  13913,  13921,  13931,  13933,  13963,  13967,
188 13997,  13999,  14009,  14011,  14029,  14033,  14051,  14057,  14071,  14081,
189 14083,  14087,  14107,  14143,  14149,  14153,  14159,  14173,  14177,  14197,
190 14207,  14221,  14243,  14249,  14251,  14281,  14293,  14303,  14321,  14323,
191 14327,  14341,  14347,  14369,  14387,  14389,  14401,  14407,  14411,  14419,
192 14423,  14431,  14437,  14447,  14449,  14461,  14479,  14489,  14503,  14519,
193 14533,  14537,  14543,  14549,  14551,  14557,  14561,  14563,  14591,  14593,
194 14621,  14627,  14629,  14633,  14639,  14653,  14657,  14669,  14683,  14699,
195 14713,  14717,  14723,  14731,  14737,  14741,  14747,  14753,  14759,  14767,
196 14771,  14779,  14783,  14797,  14813,  14821,  14827,  14831,  14843,  14851,
197 14867,  14869,  14879,  14887,  14891,  14897,  14923,  14929,  14939,  14947,
198 14951,  14957,  14969,  14983,  15013,  15017,  15031,  15053,  15061,  15073,
199 15077,  15083,  15091,  15101,  15107,  15121,  15131,  15137,  15139,  15149,
200 15161,  15173,  15187,  15193,  15199,  15217,  15227,  15233,  15241,  15259,
201 15263,  15269,  15271,  15277,  15287,  15289,  15299,  15307,  15313,  15319,
202 15329,  15331,  15349,  15359,  15361,  15373,  15377,  15383,  15391,  15401,
203 15413,  15427,  15439,  15443,  15451,  15461,  15467,  15473,  15493,  15497,
204 15511,  15527,  15541,  15551,  15559,  15569,  15581,  15583,  15601,  15607,
205 15619,  15629,  15641,  15643,  15647,  15649,  15661,  15667,  15671,  15679,
206 15683,  15727,  15731,  15733,  15737,  15739,  15749,  15761,  15767,  15773,
207 15787,  15791,  15797,  15803,  15809,  15817,  15823,  15859,  15877,  15881,
208 15887,  15889,  15901,  15907,  15913,  15919,  15923,  15937,  15959,  15971,
209 15973,  15991,  16001,  16007,  16033,  16057,  16061,  16063,  16067,  16069,
210 16073,  16087,  16091,  16097,  16103,  16111,  16127,  16139,  16141,  16183,
211 16187,  16189,  16193,  16217,  16223,  16229,  16231,  16249,  16253,  16267,
212 16273,  16301,  16319,  16333,  16339,  16349,  16361,  16363,  16369,  16381,
213 16411,  16417,  16421,  16427,  16433,  16447,  16451,  16453,  16477,  16481,
214 16487,  16493,  16519,  16529,  16547,  16553,  16561,  16567,  16573,  16603,
215 16607,  16619,  16631,  16633,  16649,  16651,  16657,  16661,  16673,  16691,
216 16693,  16699,  16703,  16729,  16741,  16747,  16759,  16763,  16787,  16811,
217 16823,  16829,  16831,  16843,  16871,  16879,  16883,  16889,  16901,  16903,
218 16921,  16927,  16931,  16937,  16943,  16963,  16979,  16981,  16987,  16993,
219 17011,  17021,  17027,  17029,  17033,  17041,  17047,  17053,  17077,  17093,
220 17099,  17107,  17117,  17123,  17137,  17159,  17167,  17183,  17189,  17191,
221 17203,  17207,  17209,  17231,  17239,  17257,  17291,  17293,  17299,  17317,
222 17321,  17327,  17333,  17341,  17351,  17359,  17377,  17383,  17387,  17389,
223 17393,  17401,  17417,  17419,  17431,  17443,  17449,  17467,  17471,  17477,
224 17483,  17489,  17491,  17497,  17509,  17519,  17539,  17551,  17569,  17573,
225 17579,  17581,  17597,  17599,  17609,  17623,  17627,  17657,  17659,  17669,
226 17681,  17683,  17707,  17713,  17729,  17737,  17747,  17749,  17761,  17783,
227 17789,  17791,  17807,  17827,  17837,  17839,  17851,  17863,  17881,  17891,
228 17903,  17909,  17911,  17921,  17923,  17929,  17939,  17957,  17959,  17971,
229 17977,  17981,  17987,  17989,  18013,  18041,  18043,  18047,  18049,  18059,
230 18061,  18077,  18089,  18097,  18119,  18121,  18127,  18131,  18133,  18143,
231 18149,  18169,  18181,  18191,  18199,  18211,  18217,  18223,  18229,  18233,
232 18251,  18253,  18257,  18269,  18287,  18289,  18301,  18307,  18311,  18313,
233 18329,  18341,  18353,  18367,  18371,  18379,  18397,  18401,  18413,  18427,
234 18433,  18439,  18443,  18451,  18457,  18461,  18481,  18493,  18503,  18517,
235 18521,  18523,  18539,  18541,  18553,  18583,  18587,  18593,  18617,  18637,
236 18661,  18671,  18679,  18691,  18701,  18713,  18719,  18731,  18743,  18749,
237 18757,  18773,  18787,  18793,  18797,  18803,  18839,  18859,  18869,  18899,
238 18911,  18913,  18917,  18919,  18947,  18959,  18973,  18979,  19001,  19009,
239 19013,  19031,  19037,  19051,  19069,  19073,  19079,  19081,  19087,  19121,
240 19139,  19141,  19157,  19163,  19181,  19183,  19207,  19211,  19213,  19219,
241 19231,  19237,  19249,  19259,  19267,  19273,  19289,  19301,  19309,  19319,
242 19333,  19373,  19379,  19381,  19387,  19391,  19403,  19417,  19421,  19423,
243 19427,  19429,  19433,  19441,  19447,  19457,  19463,  19469,  19471,  19477,
244 19483,  19489,  19501,  19507,  19531,  19541,  19543,  19553,  19559,  19571,
245 19577,  19583,  19597,  19603,  19609,  19661,  19681,  19687,  19697,  19699,
246 19709,  19717,  19727,  19739,  19751,  19753,  19759,  19763,  19777,  19793,
247 19801,  19813,  19819,  19841,  19843,  19853,  19861,  19867,  19889,  19891,
248 19913,  19919,  19927,  19937,  19949,  19961,  19963,  19973,  19979,  19991,
249 19993,  19997,  20011,  20021,  20023,  20029,  20047,  20051,  20063,  20071,
250 20089,  20101,  20107,  20113,  20117,  20123,  20129,  20143,  20147,  20149,
251 20161,  20173,  20177,  20183,  20201,  20219,  20231,  20233,  20249,  20261,
252 20269,  20287,  20297,  20323,  20327,  20333,  20341,  20347,  20353,  20357,
253 20359,  20369,  20389,  20393,  20399,  20407,  20411,  20431,  20441,  20443,
254 20477,  20479,  20483,  20507,  20509,  20521,  20533,  20543,  20549,  20551,
255 20563,  20593,  20599,  20611,  20627,  20639,  20641,  20663,  20681,  20693,
256 20707,  20717,  20719,  20731,  20743,  20747,  20749,  20753,  20759,  20771,
257 20773,  20789,  20807,  20809,  20849,  20857,  20873,  20879,  20887,  20897,
258 20899,  20903,  20921,  20929,  20939,  20947,  20959,  20963,  20981,  20983,
259 21001,  21011,  21013,  21017,  21019,  21023,  21031,  21059,  21061,  21067,
260 21089,  21101,  21107,  21121,  21139,  21143,  21149,  21157,  21163,  21169,
261 21179,  21187,  21191,  21193,  21211,  21221,  21227,  21247,  21269,  21277,
262 21283,  21313,  21317,  21319,  21323,  21341,  21347,  21377,  21379,  21383,
263 21391,  21397,  21401,  21407,  21419,  21433,  21467,  21481,  21487,  21491,
264 21493,  21499,  21503,  21517,  21521,  21523,  21529,  21557,  21559,  21563,
265 21569,  21577,  21587,  21589,  21599,  21601,  21611,  21613,  21617,  21647,
266 21649,  21661,  21673,  21683,  21701,  21713,  21727,  21737,  21739,  21751,
267 21757,  21767,  21773,  21787,  21799,  21803,  21817,  21821,  21839,  21841,
268 21851,  21859,  21863,  21871,  21881,  21893,  21911,  21929,  21937,  21943,
269 21961,  21977,  21991,  21997,  22003,  22013,  22027,  22031,  22037,  22039,
270 22051,  22063,  22067,  22073,  22079,  22091,  22093,  22109,  22111,  22123,
271 22129,  22133,  22147,  22153,  22157,  22159,  22171,  22189,  22193,  22229,
272 22247,  22259,  22271,  22273,  22277,  22279,  22283,  22291,  22303,  22307,
273 22343,  22349,  22367,  22369,  22381,  22391,  22397,  22409,  22433,  22441,
274 22447,  22453,  22469,  22481,  22483,  22501,  22511,  22531,  22541,  22543,
275 22549,  22567,  22571,  22573,  22613,  22619,  22621,  22637,  22639,  22643,
276 22651,  22669,  22679,  22691,  22697,  22699,  22709,  22717,  22721,  22727,
277 22739,  22741,  22751,  22769,  22777,  22783,  22787,  22807,  22811,  22817,
278 22853,  22859,  22861,  22871,  22877,  22901,  22907,  22921,  22937,  22943,
279 22961,  22963,  22973,  22993,  23003,  23011,  23017,  23021,  23027,  23029,
280 23039,  23041,  23053,  23057,  23059,  23063,  23071,  23081,  23087,  23099,
281 23117,  23131,  23143,  23159,  23167,  23173,  23189,  23197,  23201,  23203,
282 23209,  23227,  23251,  23269,  23279,  23291,  23293,  23297,  23311,  23321,
283 23327,  23333,  23339,  23357,  23369,  23371,  23399,  23417,  23431,  23447,
284 23459,  23473,  23497,  23509,  23531,  23537,  23539,  23549,  23557,  23561,
285 23563,  23567,  23581,  23593,  23599,  23603,  23609,  23623,  23627,  23629,
286 23633,  23663,  23669,  23671,  23677,  23687,  23689,  23719,  23741,  23743,
287 23747,  23753,  23761,  23767,  23773,  23789,  23801,  23813,  23819,  23827,
288 23831,  23833,  23857,  23869,  23873,  23879,  23887,  23893,  23899,  23909,
289 23911,  23917,  23929,  23957,  23971,  23977,  23981,  23993,  24001,  24007,
290 24019,  24023,  24029,  24043,  24049,  24061,  24071,  24077,  24083,  24091,
291 24097,  24103,  24107,  24109,  24113,  24121,  24133,  24137,  24151,  24169,
292 24179,  24181,  24197,  24203,  24223,  24229,  24239,  24247,  24251,  24281,
293 24317,  24329,  24337,  24359,  24371,  24373,  24379,  24391,  24407,  24413,
294 24419,  24421,  24439,  24443,  24469,  24473,  24481,  24499,  24509,  24517,
295 24527,  24533,  24547,  24551,  24571,  24593,  24611,  24623,  24631,  24659,
296 24671,  24677,  24683,  24691,  24697,  24709,  24733,  24749,  24763,  24767,
297 24781,  24793,  24799,  24809,  24821,  24841,  24847,  24851,  24859,  24877,
298 24889,  24907,  24917,  24919,  24923,  24943,  24953,  24967,  24971,  24977,
299 24979,  24989,  25013,  25031,  25033,  25037,  25057,  25073,  25087,  25097,
300 25111,  25117,  25121,  25127,  25147,  25153,  25163,  25169,  25171,  25183,
301 25189,  25219,  25229,  25237,  25243,  25247,  25253,  25261,  25301,  25303,
302 25307,  25309,  25321,  25339,  25343,  25349,  25357,  25367,  25373,  25391,
303 25409,  25411,  25423,  25439,  25447,  25453,  25457,  25463,  25469,  25471,
304 25523,  25537,  25541,  25561,  25577,  25579,  25583,  25589,  25601,  25603,
305 25609,  25621,  25633,  25639,  25643,  25657,  25667,  25673,  25679,  25693,
306 25703,  25717,  25733,  25741,  25747,  25759,  25763,  25771,  25793,  25799,
307 25801,  25819,  25841,  25847,  25849,  25867,  25873,  25889,  25903,  25913,
308 25919,  25931,  25933,  25939,  25943,  25951,  25969,  25981,  25997,  25999,
309 26003,  26017,  26021,  26029,  26041,  26053,  26083,  26099,  26107,  26111,
310 26113,  26119,  26141,  26153,  26161,  26171,  26177,  26183,  26189,  26203,
311 26209,  26227,  26237,  26249,  26251,  26261,  26263,  26267,  26293,  26297,
312 26309,  26317,  26321,  26339,  26347,  26357,  26371,  26387,  26393,  26399,
313 26407,  26417,  26423,  26431,  26437,  26449,  26459,  26479,  26489,  26497,
314 26501,  26513,  26539,  26557,  26561,  26573,  26591,  26597,  26627,  26633,
315 26641,  26647,  26669,  26681,  26683,  26687,  26693,  26699,  26701,  26711,
316 26713,  26717,  26723,  26729,  26731,  26737,  26759,  26777,  26783,  26801,
317 26813,  26821,  26833,  26839,  26849,  26861,  26863,  26879,  26881,  26891,
318 26893,  26903,  26921,  26927,  26947,  26951,  26953,  26959,  26981,  26987,
319 26993,  27011,  27017,  27031,  27043,  27059,  27061,  27067,  27073,  27077,
320 27091,  27103,  27107,  27109,  27127,  27143,  27179,  27191,  27197,  27211,
321 27239,  27241,  27253,  27259,  27271,  27277,  27281,  27283,  27299,  27329,
322 27337,  27361,  27367,  27397,  27407,  27409,  27427,  27431,  27437,  27449,
323 27457,  27479,  27481,  27487,  27509,  27527,  27529,  27539,  27541,  27551,
324 27581,  27583,  27611,  27617,  27631,  27647,  27653,  27673,  27689,  27691,
325 27697,  27701,  27733,  27737,  27739,  27743,  27749,  27751,  27763,  27767,
326 27773,  27779,  27791,  27793,  27799,  27803,  27809,  27817,  27823,  27827,
327 27847,  27851,  27883,  27893,  27901,  27917,  27919,  27941,  27943,  27947,
328 27953,  27961,  27967,  27983,  27997,  28001,  28019,  28027,  28031,  28051,
329 28057,  28069,  28081,  28087,  28097,  28099,  28109,  28111,  28123,  28151,
330 28163,  28181,  28183,  28201,  28211,  28219,  28229,  28277,  28279,  28283,
331 28289,  28297,  28307,  28309,  28319,  28349,  28351,  28387,  28393,  28403,
332 28409,  28411,  28429,  28433,  28439,  28447,  28463,  28477,  28493,  28499,
333 28513,  28517,  28537,  28541,  28547,  28549,  28559,  28571,  28573,  28579,
334 28591,  28597,  28603,  28607,  28619,  28621,  28627,  28631,  28643,  28649,
335 28657,  28661,  28663,  28669,  28687,  28697,  28703,  28711,  28723,  28729,
336 28751,  28753,  28759,  28771,  28789,  28793,  28807,  28813,  28817,  28837,
337 28843,  28859,  28867,  28871,  28879,  28901,  28909,  28921,  28927,  28933,
338 28949,  28961,  28979,  29009,  29017,  29021,  29023,  29027,  29033,  29059,
339 29063,  29077,  29101,  29123,  29129,  29131,  29137,  29147,  29153,  29167,
340 29173,  29179,  29191,  29201,  29207,  29209,  29221,  29231,  29243,  29251,
341 29269,  29287,  29297,  29303,  29311,  29327,  29333,  29339,  29347,  29363,
342 29383,  29387,  29389,  29399,  29401,  29411,  29423,  29429,  29437,  29443,
343 29453,  29473,  29483,  29501,  29527,  29531,  29537,  29567,  29569,  29573,
344 29581,  29587,  29599,  29611,  29629,  29633,  29641,  29663,  29669,  29671,
345 29683,  29717,  29723,  29741,  29753,  29759,  29761,  29789,  29803,  29819,
346 29833,  29837,  29851,  29863,  29867,  29873,  29879,  29881,  29917,  29921,
347 29927,  29947,  29959,  29983,  29989,  30011,  30013,  30029,  30047,  30059,
348 30071,  30089,  30091,  30097,  30103,  30109,  30113,  30119,  30133,  30137,
349 30139,  30161,  30169,  30181,  30187,  30197,  30203,  30211,  30223,  30241,
350 30253,  30259,  30269,  30271,  30293,  30307,  30313,  30319,  30323,  30341,
351 30347,  30367,  30389,  30391,  30403,  30427,  30431,  30449,  30467,  30469,
352 30491,  30493,  30497,  30509,  30517,  30529,  30539,  30553,  30557,  30559,
353 30577,  30593,  30631,  30637,  30643,  30649,  30661,  30671,  30677,  30689,
354 30697,  30703,  30707,  30713,  30727,  30757,  30763,  30773,  30781,  30803,
355 30809,  30817,  30829,  30839,  30841,  30851,  30853,  30859,  30869,  30871,
356 30881,  30893,  30911,  30931,  30937,  30941,  30949,  30971,  30977,  30983,
357 31013,  31019,  31033,  31039,  31051,  31063,  31069,  31079,  31081,  31091,
358 31121,  31123,  31139,  31147,  31151,  31153,  31159,  31177,  31181,  31183,
359 31189,  31193,  31219,  31223,  31231,  31237,  31247,  31249,  31253,  31259,
360 31267,  31271,  31277,  31307,  31319,  31321,  31327,  31333,  31337,  31357,
361 31379,  31387,  31391,  31393,  31397,  31469,  31477,  31481,  31489,  31511,
362 31513,  31517,  31531,  31541,  31543,  31547,  31567,  31573,  31583,  31601,
363 31607,  31627,  31643,  31649,  31657,  31663,  31667,  31687,  31699,  31721,
364 31723,  31727,  31729,  31741,  31751,  31769,  31771,  31793,  31799,  31817,
365 31847,  31849,  31859,  31873,  31883,  31891,  31907,  31957,  31963,  31973,
366 31981,  31991,  32003,  32009,  32027,  32029,  32051,  32057,  32059,  32063,
367 32069,  32077,  32083,  32089,  32099,  32117,  32119,  32141,  32143,  32159,
368 32173,  32183,  32189,  32191,  32203,  32213,  32233,  32237,  32251,  32257,
369 32261,  32297,  32299,  32303,  32309,  32321,  32323,  32327,  32341,  32353,
370 32359,  32363,  32369,  32371,  32377,  32381,  32401,  32411,  32413,  32423,
371 32429,  32441,  32443,  32467,  32479,  32491,  32497,  32503,  32507,  32531,
372 32533,  32537,  32561,  32563,  32569,  32573,  32579,  32587,  32603,  32609,
373 32611,  32621,  32633,  32647,  32653,  32687,  32693,  32707,  32713,  32717,
374 32719,  32749,  32771,  32779,  32783,  32789,  32797,  32801,  32803,  32831,
375 32833,  32839,  32843,  32869,  32887,  32909,  32911,  32917,  32933,  32939,
376 32941,  32957,  32969,  32971,  32983,  32987,  32993,  32999,  33013,  33023,
377 33029,  33037,  33049,  33053,  33071,  33073,  33083,  33091,  33107,  33113,
378 33119,  33149,  33151,  33161,  33179,  33181,  33191,  33199,  33203,  33211,
379 33223,  33247,  33287,  33289,  33301,  33311,  33317,  33329,  33331,  33343,
380 33347,  33349,  33353,  33359,  33377,  33391,  33403,  33409,  33413,  33427,
381 33457,  33461,  33469,  33479,  33487,  33493,  33503,  33521,  33529,  33533,
382 33547,  33563,  33569,  33577,  33581,  33587,  33589,  33599,  33601,  33613,
383 33617,  33619,  33623,  33629,  33637,  33641,  33647,  33679,  33703,  33713,
384 33721,  33739,  33749,  33751,  33757,  33767,  33769,  33773,  33791,  33797,
385 33809,  33811,  33827,  33829,  33851,  33857,  33863,  33871,  33889,  33893,
386 33911,  33923,  33931,  33937,  33941,  33961,  33967,  33997,  34019,  34031,
387 34033,  34039,  34057,  34061,  34123,  34127,  34129,  34141,  34147,  34157,
388 34159,  34171,  34183,  34211,  34213,  34217,  34231,  34253,  34259,  34261,
389 34267,  34273,  34283,  34297,  34301,  34303,  34313,  34319,  34327,  34337,
390 34351,  34361,  34367,  34369,  34381,  34403,  34421,  34429,  34439,  34457,
391 34469,  34471,  34483,  34487,  34499,  34501,  34511,  34513,  34519,  34537,
392 34543,  34549,  34583,  34589,  34591,  34603,  34607,  34613,  34631,  34649,
393 34651,  34667,  34673,  34679,  34687,  34693,  34703,  34721,  34729,  34739,
394 34747,  34757,  34759,  34763,  34781,  34807,  34819,  34841,  34843,  34847,
395 34849,  34871,  34877,  34883,  34897,  34913,  34919,  34939,  34949,  34961,
396 34963,  34981,  35023,  35027,  35051,  35053,  35059,  35069,  35081,  35083,
397 35089,  35099,  35107,  35111,  35117,  35129,  35141,  35149,  35153,  35159,
398 35171,  35201,  35221,  35227,  35251,  35257,  35267,  35279,  35281,  35291,
399 35311,  35317,  35323,  35327,  35339,  35353,  35363,  35381,  35393,  35401,
400 35407,  35419,  35423,  35437,  35447,  35449,  35461,  35491,  35507,  35509,
401 35521,  35527,  35531,  35533,  35537,  35543,  35569,  35573,  35591,  35593,
402 35597,  35603,  35617,  35671,  35677,  35729,  35731,  35747,  35753,  35759,
403 35771,  35797,  35801,  35803,  35809,  35831,  35837,  35839,  35851,  35863,
404 35869,  35879,  35897,  35899,  35911,  35923,  35933,  35951,  35963,  35969,
405 35977,  35983,  35993,  35999,  36007,  36011,  36013,  36017,  36037,  36061,
406 36067,  36073,  36083,  36097,  36107,  36109,  36131,  36137,  36151,  36161,
407 36187,  36191,  36209,  36217,  36229,  36241,  36251,  36263,  36269,  36277,
408 36293,  36299,  36307,  36313,  36319,  36341,  36343,  36353,  36373,  36383,
409 36389,  36433,  36451,  36457,  36467,  36469,  36473,  36479,  36493,  36497,
410 36523,  36527,  36529,  36541,  36551,  36559,  36563,  36571,  36583,  36587,
411 36599,  36607,  36629,  36637,  36643,  36653,  36671,  36677,  36683,  36691,
412 36697,  36709,  36713,  36721,  36739,  36749,  36761,  36767,  36779,  36781,
413 36787,  36791,  36793,  36809,  36821,  36833,  36847,  36857,  36871,  36877,
414 36887,  36899,  36901,  36913,  36919,  36923,  36929,  36931,  36943,  36947,
415 36973,  36979,  36997,  37003,  37013,  37019,  37021,  37039,  37049,  37057,
416 37061,  37087,  37097,  37117,  37123,  37139,  37159,  37171,  37181,  37189,
417 37199,  37201,  37217,  37223,  37243,  37253,  37273,  37277,  37307,  37309,
418 37313,  37321,  37337,  37339,  37357,  37361,  37363,  37369,  37379,  37397,
419 37409,  37423,  37441,  37447,  37463,  37483,  37489,  37493,  37501,  37507,
420 37511,  37517,  37529,  37537,  37547,  37549,  37561,  37567,  37571,  37573,
421 37579,  37589,  37591,  37607,  37619,  37633,  37643,  37649,  37657,  37663,
422 37691,  37693,  37699,  37717,  37747,  37781,  37783,  37799,  37811,  37813,
423 37831,  37847,  37853,  37861,  37871,  37879,  37889,  37897,  37907,  37951,
424 37957,  37963,  37967,  37987,  37991,  37993,  37997,  38011,  38039,  38047,
425 38053,  38069,  38083,  38113,  38119,  38149,  38153,  38167,  38177,  38183,
426 38189,  38197,  38201,  38219,  38231,  38237,  38239,  38261,  38273,  38281,
427 38287,  38299,  38303,  38317,  38321,  38327,  38329,  38333,  38351,  38371,
428 38377,  38393,  38431,  38447,  38449,  38453,  38459,  38461,  38501,  38543,
429 38557,  38561,  38567,  38569,  38593,  38603,  38609,  38611,  38629,  38639,
430 38651,  38653,  38669,  38671,  38677,  38693,  38699,  38707,  38711,  38713,
431 38723,  38729,  38737,  38747,  38749,  38767,  38783,  38791,  38803,  38821,
432 38833,  38839,  38851,  38861,  38867,  38873,  38891,  38903,  38917,  38921,
433 38923,  38933,  38953,  38959,  38971,  38977,  38993,  39019,  39023,  39041,
434 39043,  39047,  39079,  39089,  39097,  39103,  39107,  39113,  39119,  39133,
435 39139,  39157,  39161,  39163,  39181,  39191,  39199,  39209,  39217,  39227,
436 39229,  39233,  39239,  39241,  39251,  39293,  39301,  39313,  39317,  39323,
437 39341,  39343,  39359,  39367,  39371,  39373,  39383,  39397,  39409,  39419,
438 39439,  39443,  39451,  39461,  39499,  39503,  39509,  39511,  39521,  39541,
439 39551,  39563,  39569,  39581,  39607,  39619,  39623,  39631,  39659,  39667,
440 39671,  39679,  39703,  39709,  39719,  39727,  39733,  39749,  39761,  39769,
441 39779,  39791,  39799,  39821,  39827,  39829,  39839,  39841,  39847,  39857,
442 39863,  39869,  39877,  39883,  39887,  39901,  39929,  39937,  39953,  39971,
443 39979,  39983,  39989,  40009,  40013,  40031,  40037,  40039,  40063,  40087,
444 40093,  40099,  40111,  40123,  40127,  40129,  40151,  40153,  40163,  40169,
445 40177,  40189,  40193,  40213,  40231,  40237,  40241,  40253,  40277,  40283,
446 40289,  40343,  40351,  40357,  40361,  40387,  40423,  40427,  40429,  40433,
447 40459,  40471,  40483,  40487,  40493,  40499,  40507,  40519,  40529,  40531,
448 40543,  40559,  40577,  40583,  40591,  40597,  40609,  40627,  40637,  40639,
449 40693,  40697,  40699,  40709,  40739,  40751,  40759,  40763,  40771,  40787,
450 40801,  40813,  40819,  40823,  40829,  40841,  40847,  40849,  40853,  40867,
451 40879,  40883,  40897,  40903,  40927,  40933,  40939,  40949,  40961,  40973,
452 40993,  41011,  41017,  41023,  41039,  41047,  41051,  41057,  41077,  41081,
453 41113,  41117,  41131,  41141,  41143,  41149,  41161,  41177,  41179,  41183,
454 41189,  41201,  41203,  41213,  41221,  41227,  41231,  41233,  41243,  41257,
455 41263,  41269,  41281,  41299,  41333,  41341,  41351,  41357,  41381,  41387,
456 41389,  41399,  41411,  41413,  41443,  41453,  41467,  41479,  41491,  41507,
457 41513,  41519,  41521,  41539,  41543,  41549,  41579,  41593,  41597,  41603,
458 41609,  41611,  41617,  41621,  41627,  41641,  41647,  41651,  41659,  41669,
459 41681,  41687,  41719,  41729,  41737,  41759,  41761,  41771,  41777,  41801,
460 41809,  41813,  41843,  41849,  41851,  41863,  41879,  41887,  41893,  41897,
461 41903,  41911,  41927,  41941,  41947,  41953,  41957,  41959,  41969,  41981,
462 41983,  41999,  42013,  42017,  42019,  42023,  42043,  42061,  42071,  42073,
463 42083,  42089,  42101,  42131,  42139,  42157,  42169,  42179,  42181,  42187,
464 42193,  42197,  42209,  42221,  42223,  42227,  42239,  42257,  42281,  42283,
465 42293,  42299,  42307,  42323,  42331,  42337,  42349,  42359,  42373,  42379,
466 42391,  42397,  42403,  42407,  42409,  42433,  42437,  42443,  42451,  42457,
467 42461,  42463,  42467,  42473,  42487,  42491,  42499,  42509,  42533,  42557,
468 42569,  42571,  42577,  42589,  42611,  42641,  42643,  42649,  42667,  42677,
469 42683,  42689,  42697,  42701,  42703,  42709,  42719,  42727,  42737,  42743,
470 42751,  42767,  42773,  42787,  42793,  42797,  42821,  42829,  42839,  42841,
471 42853,  42859,  42863,  42899,  42901,  42923,  42929,  42937,  42943,  42953,
472 42961,  42967,  42979,  42989,  43003,  43013,  43019,  43037,  43049,  43051,
473 43063,  43067,  43093,  43103,  43117,  43133,  43151,  43159,  43177,  43189,
474 43201,  43207,  43223,  43237,  43261,  43271,  43283,  43291,  43313,  43319,
475 43321,  43331,  43391,  43397,  43399,  43403,  43411,  43427,  43441,  43451,
476 43457,  43481,  43487,  43499,  43517,  43541,  43543,  43573,  43577,  43579,
477 43591,  43597,  43607,  43609,  43613,  43627,  43633,  43649,  43651,  43661,
478 43669,  43691,  43711,  43717,  43721,  43753,  43759,  43777,  43781,  43783,
479 43787,  43789,  43793,  43801,  43853,  43867,  43889,  43891,  43913,  43933,
480 43943,  43951,  43961,  43963,  43969,  43973,  43987,  43991,  43997,  44017,
481 44021,  44027,  44029,  44041,  44053,  44059,  44071,  44087,  44089,  44101,
482 44111,  44119,  44123,  44129,  44131,  44159,  44171,  44179,  44189,  44201,
483 44203,  44207,  44221,  44249,  44257,  44263,  44267,  44269,  44273,  44279,
484 44281,  44293,  44351,  44357,  44371,  44381,  44383,  44389,  44417,  44449,
485 44453,  44483,  44491,  44497,  44501,  44507,  44519,  44531,  44533,  44537,
486 44543,  44549,  44563,  44579,  44587,  44617,  44621,  44623,  44633,  44641,
487 44647,  44651,  44657,  44683,  44687,  44699,  44701,  44711,  44729,  44741,
488 44753,  44771,  44773,  44777,  44789,  44797,  44809,  44819,  44839,  44843,
489 44851,  44867,  44879,  44887,  44893,  44909,  44917,  44927,  44939,  44953,
490 44959,  44963,  44971,  44983,  44987,  45007,  45013,  45053,  45061,  45077,
491 45083,  45119,  45121,  45127,  45131,  45137,  45139,  45161,  45179,  45181,
492 45191,  45197,  45233,  45247,  45259,  45263,  45281,  45289,  45293,  45307,
493 45317,  45319,  45329,  45337,  45341,  45343,  45361,  45377,  45389,  45403,
494 45413,  45427,  45433,  45439,  45481,  45491,  45497,  45503,  45523,  45533,
495 45541,  45553,  45557,  45569,  45587,  45589,  45599,  45613,  45631,  45641,
496 45659,  45667,  45673,  45677,  45691,  45697,  45707,  45737,  45751,  45757,
497 45763,  45767,  45779,  45817,  45821,  45823,  45827,  45833,  45841,  45853,
498 45863,  45869,  45887,  45893,  45943,  45949,  45953,  45959,  45971,  45979,
499 45989,  46021,  46027,  46049,  46051,  46061,  46073,  46091,  46093,  46099,
500 46103,  46133,  46141,  46147,  46153,  46171,  46181,  46183,  46187,  46199,
501 46219,  46229,  46237,  46261,  46271,  46273,  46279,  46301,  46307,  46309,
502 46327,  46337,  46349,  46351,  46381,  46399,  46411,  46439,  46441,  46447,
503 46451,  46457,  46471,  46477,  46489,  46499,  46507,  46511,  46523,  46549,
504 46559,  46567,  46573,  46589,  46591,  46601,  46619,  46633,  46639,  46643,
505 46649,  46663,  46679,  46681,  46687,  46691,  46703,  46723,  46727,  46747,
506 46751,  46757,  46769,  46771,  46807,  46811,  46817,  46819,  46829,  46831,
507 46853,  46861,  46867,  46877,  46889,  46901,  46919,  46933,  46957,  46993,
508 46997,  47017,  47041,  47051,  47057,  47059,  47087,  47093,  47111,  47119,
509 47123,  47129,  47137,  47143,  47147,  47149,  47161,  47189,  47207,  47221,
510 47237,  47251,  47269,  47279,  47287,  47293,  47297,  47303,  47309,  47317,
511 47339,  47351,  47353,  47363,  47381,  47387,  47389,  47407,  47417,  47419,
512 47431,  47441,  47459,  47491,  47497,  47501,  47507,  47513,  47521,  47527,
513 47533,  47543,  47563,  47569,  47581,  47591,  47599,  47609,  47623,  47629,
514 47639,  47653,  47657,  47659,  47681,  47699,  47701,  47711,  47713,  47717,
515 47737,  47741,  47743,  47777,  47779,  47791,  47797,  47807,  47809,  47819,
516 47837,  47843,  47857,  47869,  47881,  47903,  47911,  47917,  47933,  47939,
517 47947,  47951,  47963,  47969,  47977,  47981,  48017,  48023,  48029,  48049,
518 48073,  48079,  48091,  48109,  48119,  48121,  48131,  48157,  48163,  48179,
519 48187,  48193,  48197,  48221,  48239,  48247,  48259,  48271,  48281,  48299,
520 48311,  48313,  48337,  48341,  48353,  48371,  48383,  48397,  48407,  48409,
521 48413,  48437,  48449,  48463,  48473,  48479,  48481,  48487,  48491,  48497,
522 48523,  48527,  48533,  48539,  48541,  48563,  48571,  48589,  48593,  48611,
523 48619,  48623,  48647,  48649,  48661,  48673,  48677,  48679,  48731,  48733,
524 48751,  48757,  48761,  48767,  48779,  48781,  48787,  48799,  48809,  48817,
525 48821,  48823,  48847,  48857,  48859,  48869,  48871,  48883,  48889,  48907,
526 48947,  48953,  48973,  48989,  48991,  49003,  49009,  49019,  49031,  49033,
527 49037,  49043,  49057,  49069,  49081,  49103,  49109,  49117,  49121,  49123,
528 49139,  49157,  49169,  49171,  49177,  49193,  49199,  49201,  49207,  49211,
529 49223,  49253,  49261,  49277,  49279,  49297,  49307,  49331,  49333,  49339,
530 49363,  49367,  49369,  49391,  49393,  49409,  49411,  49417,  49429,  49433,
531 49451,  49459,  49463,  49477,  49481,  49499,  49523,  49529,  49531,  49537,
532 49547,  49549,  49559,  49597,  49603,  49613,  49627,  49633,  49639,  49663,
533 49667,  49669,  49681,  49697,  49711,  49727,  49739,  49741,  49747,  49757,
534 49783,  49787,  49789,  49801,  49807,  49811,  49823,  49831,  49843,  49853,
535 49871,  49877,  49891,  49919,  49921,  49927,  49937,  49939,  49943,  49957,
536 49991,  49993,  49999,  50021,  50023,  50033,  50047,  50051,  50053,  50069,
537 50077,  50087,  50093,  50101,  50111,  50119,  50123,  50129,  50131,  50147,
538 50153,  50159,  50177,  50207,  50221,  50227,  50231,  50261,  50263,  50273,
539 50287,  50291,  50311,  50321,  50329,  50333,  50341,  50359,  50363,  50377,
540 50383,  50387,  50411,  50417,  50423,  50441,  50459,  50461,  50497,  50503,
541 50513,  50527,  50539,  50543,  50549,  50551,  50581,  50587,  50591,  50593,
542 50599,  50627,  50647,  50651,  50671,  50683,  50707,  50723,  50741,  50753,
543 50767,  50773,  50777,  50789,  50821,  50833,  50839,  50849,  50857,  50867,
544 50873,  50891,  50893,  50909,  50923,  50929,  50951,  50957,  50969,  50971,
545 50989,  50993,  51001,  51031,  51043,  51047,  51059,  51061,  51071,  51109,
546 51131,  51133,  51137,  51151,  51157,  51169,  51193,  51197,  51199,  51203,
547 51217,  51229,  51239,  51241,  51257,  51263,  51283,  51287,  51307,  51329,
548 51341,  51343,  51347,  51349,  51361,  51383,  51407,  51413,  51419,  51421,
549 51427,  51431,  51437,  51439,  51449,  51461,  51473,  51479,  51481,  51487,
550 51503,  51511,  51517,  51521,  51539,  51551,  51563,  51577,  51581,  51593,
551 51599,  51607,  51613,  51631,  51637,  51647,  51659,  51673,  51679,  51683,
552 51691,  51713,  51719,  51721,  51749,  51767,  51769,  51787,  51797,  51803,
553 51817,  51827,  51829,  51839,  51853,  51859,  51869,  51871,  51893,  51899,
554 51907,  51913,  51929,  51941,  51949,  51971,  51973,  51977,  51991,  52009,
555 52021,  52027,  52051,  52057,  52067,  52069,  52081,  52103,  52121,  52127,
556 52147,  52153,  52163,  52177,  52181,  52183,  52189,  52201,  52223,  52237,
557 52249,  52253,  52259,  52267,  52289,  52291,  52301,  52313,  52321,  52361,
558 52363,  52369,  52379,  52387,  52391,  52433,  52453,  52457,  52489,  52501,
559 52511,  52517,  52529,  52541,  52543,  52553,  52561,  52567,  52571,  52579,
560 52583,  52609,  52627,  52631,  52639,  52667,  52673,  52691,  52697,  52709,
561 52711,  52721,  52727,  52733,  52747,  52757,  52769,  52783,  52807,  52813,
562 52817,  52837,  52859,  52861,  52879,  52883,  52889,  52901,  52903,  52919,
563 52937,  52951,  52957,  52963,  52967,  52973,  52981,  52999,  53003,  53017,
564 53047,  53051,  53069,  53077,  53087,  53089,  53093,  53101,  53113,  53117,
565 53129,  53147,  53149,  53161,  53171,  53173,  53189,  53197,  53201,  53231,
566 53233,  53239,  53267,  53269,  53279,  53281,  53299,  53309,  53323,  53327,
567 53353,  53359,  53377,  53381,  53401,  53407,  53411,  53419,  53437,  53441,
568 53453,  53479,  53503,  53507,  53527,  53549,  53551,  53569,  53591,  53593,
569 53597,  53609,  53611,  53617,  53623,  53629,  53633,  53639,  53653,  53657,
570 53681,  53693,  53699,  53717,  53719,  53731,  53759,  53773,  53777,  53783,
571 53791,  53813,  53819,  53831,  53849,  53857,  53861,  53881,  53887,  53891,
572 53897,  53899,  53917,  53923,  53927,  53939,  53951,  53959,  53987,  53993,
573 54001,  54011,  54013,  54037,  54049,  54059,  54083,  54091,  54101,  54121,
574 54133,  54139,  54151,  54163,  54167,  54181,  54193,  54217,  54251,  54269,
575 54277,  54287,  54293,  54311,  54319,  54323,  54331,  54347,  54361,  54367,
576 54371,  54377,  54401,  54403,  54409,  54413,  54419,  54421,  54437,  54443,
577 54449,  54469,  54493,  54497,  54499,  54503,  54517,  54521,  54539,  54541,
578 54547,  54559,  54563,  54577,  54581,  54583,  54601,  54617,  54623,  54629,
579 54631,  54647,  54667,  54673,  54679,  54709,  54713,  54721,  54727,  54751,
580 54767,  54773,  54779,  54787,  54799,  54829,  54833,  54851,  54869,  54877,
581 54881,  54907,  54917,  54919,  54941,  54949,  54959,  54973,  54979,  54983,
582 55001,  55009,  55021,  55049,  55051,  55057,  55061,  55073,  55079,  55103,
583 55109,  55117,  55127,  55147,  55163,  55171,  55201,  55207,  55213,  55217,
584 55219,  55229,  55243,  55249,  55259,  55291,  55313,  55331,  55333,  55337,
585 55339,  55343,  55351,  55373,  55381,  55399,  55411,  55439,  55441,  55457,
586 55469,  55487,  55501,  55511,  55529,  55541,  55547,  55579,  55589,  55603,
587 55609,  55619,  55621,  55631,  55633,  55639,  55661,  55663,  55667,  55673,
588 55681,  55691,  55697,  55711,  55717,  55721,  55733,  55763,  55787,  55793,
589 55799,  55807,  55813,  55817,  55819,  55823,  55829,  55837,  55843,  55849,
590 55871,  55889,  55897,  55901,  55903,  55921,  55927,  55931,  55933,  55949,
591 55967,  55987,  55997,  56003,  56009,  56039,  56041,  56053,  56081,  56087,
592 56093,  56099,  56101,  56113,  56123,  56131,  56149,  56167,  56171,  56179,
593 56197,  56207,  56209,  56237,  56239,  56249,  56263,  56267,  56269,  56299,
594 56311,  56333,  56359,  56369,  56377,  56383,  56393,  56401,  56417,  56431,
595 56437,  56443,  56453,  56467,  56473,  56477,  56479,  56489,  56501,  56503,
596 56509,  56519,  56527,  56531,  56533,  56543,  56569,  56591,  56597,  56599,
597 56611,  56629,  56633,  56659,  56663,  56671,  56681,  56687,  56701,  56711,
598 56713,  56731,  56737,  56747,  56767,  56773,  56779,  56783,  56807,  56809,
599 56813,  56821,  56827,  56843,  56857,  56873,  56891,  56893,  56897,  56909,
600 56911,  56921,  56923,  56929,  56941,  56951,  56957,  56963,  56983,  56989,
601 56993,  56999,  57037,  57041,  57047,  57059,  57073,  57077,  57089,  57097,
602 57107,  57119,  57131,  57139,  57143,  57149,  57163,  57173,  57179,  57191,
603 57193,  57203,  57221,  57223,  57241,  57251,  57259,  57269,  57271,  57283,
604 57287,  57301,  57329,  57331,  57347,  57349,  57367,  57373,  57383,  57389,
605 57397,  57413,  57427,  57457,  57467,  57487,  57493,  57503,  57527,  57529,
606 57557,  57559,  57571,  57587,  57593,  57601,  57637,  57641,  57649,  57653,
607 57667,  57679,  57689,  57697,  57709,  57713,  57719,  57727,  57731,  57737,
608 57751,  57773,  57781,  57787,  57791,  57793,  57803,  57809,  57829,  57839,
609 57847,  57853,  57859,  57881,  57899,  57901,  57917,  57923,  57943,  57947,
610 57973,  57977,  57991,  58013,  58027,  58031,  58043,  58049,  58057,  58061,
611 58067,  58073,  58099,  58109,  58111,  58129,  58147,  58151,  58153,  58169,
612 58171,  58189,  58193,  58199,  58207,  58211,  58217,  58229,  58231,  58237,
613 58243,  58271,  58309,  58313,  58321,  58337,  58363,  58367,  58369,  58379,
614 58391,  58393,  58403,  58411,  58417,  58427,  58439,  58441,  58451,  58453,
615 58477,  58481,  58511,  58537,  58543,  58549,  58567,  58573,  58579,  58601,
616 58603,  58613,  58631,  58657,  58661,  58679,  58687,  58693,  58699,  58711,
617 58727,  58733,  58741,  58757,  58763,  58771,  58787,  58789,  58831,  58889,
618 58897,  58901,  58907,  58909,  58913,  58921,  58937,  58943,  58963,  58967,
619 58979,  58991,  58997,  59009,  59011,  59021,  59023,  59029,  59051,  59053,
620 59063,  59069,  59077,  59083,  59093,  59107,  59113,  59119,  59123,  59141,
621 59149,  59159,  59167,  59183,  59197,  59207,  59209,  59219,  59221,  59233,
622 59239,  59243,  59263,  59273,  59281,  59333,  59341,  59351,  59357,  59359,
623 59369,  59377,  59387,  59393,  59399,  59407,  59417,  59419,  59441,  59443,
624 59447,  59453,  59467,  59471,  59473,  59497,  59509,  59513,  59539,  59557,
625 59561,  59567,  59581,  59611,  59617,  59621,  59627,  59629,  59651,  59659,
626 59663,  59669,  59671,  59693,  59699,  59707,  59723,  59729,  59743,  59747,
627 59753,  59771,  59779,  59791,  59797,  59809,  59833,  59863,  59879,  59887,
628 59921,  59929,  59951,  59957,  59971,  59981,  59999,  60013,  60017,  60029,
629 60037,  60041,  60077,  60083,  60089,  60091,  60101,  60103,  60107,  60127,
630 60133,  60139,  60149,  60161,  60167,  60169,  60209,  60217,  60223,  60251,
631 60257,  60259,  60271,  60289,  60293,  60317,  60331,  60337,  60343,  60353,
632 60373,  60383,  60397,  60413,  60427,  60443,  60449,  60457,  60493,  60497,
633 60509,  60521,  60527,  60539,  60589,  60601,  60607,  60611,  60617,  60623,
634 60631,  60637,  60647,  60649,  60659,  60661,  60679,  60689,  60703,  60719,
635 60727,  60733,  60737,  60757,  60761,  60763,  60773,  60779,  60793,  60811,
636 60821,  60859,  60869,  60887,  60889,  60899,  60901,  60913,  60917,  60919,
637 60923,  60937,  60943,  60953,  60961,  61001,  61007,  61027,  61031,  61043,
638 61051,  61057,  61091,  61099,  61121,  61129,  61141,  61151,  61153,  61169,
639 61211,  61223,  61231,  61253,  61261,  61283,  61291,  61297,  61331,  61333,
640 61339,  61343,  61357,  61363,  61379,  61381,  61403,  61409,  61417,  61441,
641 61463,  61469,  61471,  61483,  61487,  61493,  61507,  61511,  61519,  61543,
642 61547,  61553,  61559,  61561,  61583,  61603,  61609,  61613,  61627,  61631,
643 61637,  61643,  61651,  61657,  61667,  61673,  61681,  61687,  61703,  61717,
644 61723,  61729,  61751,  61757,  61781,  61813,  61819,  61837,  61843,  61861,
645 61871,  61879,  61909,  61927,  61933,  61949,  61961,  61967,  61979,  61981,
646 61987,  61991,  62003,  62011,  62017,  62039,  62047,  62053,  62057,  62071,
647 62081,  62099,  62119,  62129,  62131,  62137,  62141,  62143,  62171,  62189,
648 62191,  62201,  62207,  62213,  62219,  62233,  62273,  62297,  62299,  62303,
649 62311,  62323,  62327,  62347,  62351,  62383,  62401,  62417,  62423,  62459,
650 62467,  62473,  62477,  62483,  62497,  62501,  62507,  62533,  62539,  62549,
651 62563,  62581,  62591,  62597,  62603,  62617,  62627,  62633,  62639,  62653,
652 62659,  62683,  62687,  62701,  62723,  62731,  62743,  62753,  62761,  62773,
653 62791,  62801,  62819,  62827,  62851,  62861,  62869,  62873,  62897,  62903,
654 62921,  62927,  62929,  62939,  62969,  62971,  62981,  62983,  62987,  62989,
655 63029,  63031,  63059,  63067,  63073,  63079,  63097,  63103,  63113,  63127,
656 63131,  63149,  63179,  63197,  63199,  63211,  63241,  63247,  63277,  63281,
657 63299,  63311,  63313,  63317,  63331,  63337,  63347,  63353,  63361,  63367,
658 63377,  63389,  63391,  63397,  63409,  63419,  63421,  63439,  63443,  63463,
659 63467,  63473,  63487,  63493,  63499,  63521,  63527,  63533,  63541,  63559,
660 63577,  63587,  63589,  63599,  63601,  63607,  63611,  63617,  63629,  63647,
661 63649,  63659,  63667,  63671,  63689,  63691,  63697,  63703,  63709,  63719,
662 63727,  63737,  63743,  63761,  63773,  63781,  63793,  63799,  63803,  63809,
663 63823,  63839,  63841,  63853,  63857,  63863,  63901,  63907,  63913,  63929,
664 63949,  63977,  63997,  64007,  64013,  64019,  64033,  64037,  64063,  64067,
665 64081,  64091,  64109,  64123,  64151,  64153,  64157,  64171,  64187,  64189,
666 64217,  64223,  64231,  64237,  64271,  64279,  64283,  64301,  64303,  64319,
667 64327,  64333,  64373,  64381,  64399,  64403,  64433,  64439,  64451,  64453,
668 64483,  64489,  64499,  64513,  64553,  64567,  64577,  64579,  64591,  64601,
669 64609,  64613,  64621,  64627,  64633,  64661,  64663,  64667,  64679,  64693,
670 64709,  64717,  64747,  64763,  64781,  64783,  64793,  64811,  64817,  64849,
671 64853,  64871,  64877,  64879,  64891,  64901,  64919,  64921,  64927,  64937,
672 64951,  64969,  64997,  65003,  65011,  65027,  65029,  65033,  65053,  65063,
673 65071,  65089,  65099,  65101,  65111,  65119,  65123,  65129,  65141,  65147,
674 65167,  65171,  65173,  65179,  65183,  65203,  65213,  65239,  65257,  65267,
675 65269,  65287,  65293,  65309,  65323,  65327,  65353,  65357,  65371,  65381,
676 65393,  65407,  65413,  65419,  65423,  65437,  65447,  65449,  65479,  65497,
677 65519,  65521,  65537,  65539,  65543,  65551,  65557,  65563,  65579,  65581,
678 65587,  65599,  65609,  65617,  65629,  65633,  65647,  65651,  65657,  65677,
679 65687,  65699,  65701,  65707,  65713,  65717,  65719,  65729,  65731,  65761,
680 65777,  65789,  65809,  65827,  65831,  65837,  65839,  65843,  65851,  65867,
681 65881,  65899,  65921,  65927,  65929,  65951,  65957,  65963,  65981,  65983,
682 65993,  66029,  66037,  66041,  66047,  66067,  66071,  66083,  66089,  66103,
683 66107,  66109,  66137,  66161,  66169,  66173,  66179,  66191,  66221,  66239,
684 66271,  66293,  66301,  66337,  66343,  66347,  66359,  66361,  66373,  66377,
685 66383,  66403,  66413,  66431,  66449,  66457,  66463,  66467,  66491,  66499,
686 66509,  66523,  66529,  66533,  66541,  66553,  66569,  66571,  66587,  66593,
687 66601,  66617,  66629,  66643,  66653,  66683,  66697,  66701,  66713,  66721,
688 66733,  66739,  66749,  66751,  66763,  66791,  66797,  66809,  66821,  66841,
689 66851,  66853,  66863,  66877,  66883,  66889,  66919,  66923,  66931,  66943,
690 66947,  66949,  66959,  66973,  66977,  67003,  67021,  67033,  67043,  67049,
691 67057,  67061,  67073,  67079,  67103,  67121,  67129,  67139,  67141,  67153,
692 67157,  67169,  67181,  67187,  67189,  67211,  67213,  67217,  67219,  67231,
693 67247,  67261,  67271,  67273,  67289,  67307,  67339,  67343,  67349,  67369,
694 67391,  67399,  67409,  67411,  67421,  67427,  67429,  67433,  67447,  67453,
695 67477,  67481,  67489,  67493,  67499,  67511,  67523,  67531,  67537,  67547,
696 67559,  67567,  67577,  67579,  67589,  67601,  67607,  67619,  67631,  67651,
697 67679,  67699,  67709,  67723,  67733,  67741,  67751,  67757,  67759,  67763,
698 67777,  67783,  67789,  67801,  67807,  67819,  67829,  67843,  67853,  67867,
699 67883,  67891,  67901,  67927,  67931,  67933,  67939,  67943,  67957,  67961,
700 67967,  67979,  67987,  67993,  68023,  68041,  68053,  68059,  68071,  68087,
701 68099,  68111,  68113,  68141,  68147,  68161,  68171,  68207,  68209,  68213,
702 68219,  68227,  68239,  68261,  68279,  68281,  68311,  68329,  68351,  68371,
703 68389,  68399,  68437,  68443,  68447,  68449,  68473,  68477,  68483,  68489,
704 68491,  68501,  68507,  68521,  68531,  68539,  68543,  68567,  68581,  68597,
705 68611,  68633,  68639,  68659,  68669,  68683,  68687,  68699,  68711,  68713,
706 68729,  68737,  68743,  68749,  68767,  68771,  68777,  68791,  68813,  68819,
707 68821,  68863,  68879,  68881,  68891,  68897,  68899,  68903,  68909,  68917,
708 68927,  68947,  68963,  68993,  69001,  69011,  69019,  69029,  69031,  69061,
709 69067,  69073,  69109,  69119,  69127,  69143,  69149,  69151,  69163,  69191,
710 69193,  69197,  69203,  69221,  69233,  69239,  69247,  69257,  69259,  69263,
711 69313,  69317,  69337,  69341,  69371,  69379,  69383,  69389,  69401,  69403,
712 69427,  69431,  69439,  69457,  69463,  69467,  69473,  69481,  69491,  69493,
713 69497,  69499,  69539,  69557,  69593,  69623,  69653,  69661,  69677,  69691,
714 69697,  69709,  69737,  69739,  69761,  69763,  69767,  69779,  69809,  69821,
715 69827,  69829,  69833,  69847,  69857,  69859,  69877,  69899,  69911,  69929,
716 69931,  69941,  69959,  69991,  69997,  70001,  70003,  70009,  70019,  70039,
717 70051,  70061,  70067,  70079,  70099,  70111,  70117,  70121,  70123,  70139,
718 70141,  70157,  70163,  70177,  70181,  70183,  70199,  70201,  70207,  70223,
719 70229,  70237,  70241,  70249,  70271,  70289,  70297,  70309,  70313,  70321,
720 70327,  70351,  70373,  70379,  70381,  70393,  70423,  70429,  70439,  70451,
721 70457,  70459,  70481,  70487,  70489,  70501,  70507,  70529,  70537,  70549,
722 70571,  70573,  70583,  70589,  70607,  70619,  70621,  70627,  70639,  70657,
723 70663,  70667,  70687,  70709,  70717,  70729,  70753,  70769,  70783,  70793,
724 70823,  70841,  70843,  70849,  70853,  70867,  70877,  70879,  70891,  70901,
725 70913,  70919,  70921,  70937,  70949,  70951,  70957,  70969,  70979,  70981,
726 70991,  70997,  70999,  71011,  71023,  71039,  71059,  71069,  71081,  71089,
727 71119,  71129,  71143,  71147,  71153,  71161,  71167,  71171,  71191,  71209,
728 71233,  71237,  71249,  71257,  71261,  71263,  71287,  71293,  71317,  71327,
729 71329,  71333,  71339,  71341,  71347,  71353,  71359,  71363,  71387,  71389,
730 71399,  71411,  71413,  71419,  71429,  71437,  71443,  71453,  71471,  71473,
731 71479,  71483,  71503,  71527,  71537,  71549,  71551,  71563,  71569,  71593,
732 71597,  71633,  71647,  71663,  71671,  71693,  71699,  71707,  71711,  71713,
733 71719,  71741,  71761,  71777,  71789,  71807,  71809,  71821,  71837,  71843,
734 71849,  71861,  71867,  71879,  71881,  71887,  71899,  71909,  71917,  71933,
735 71941,  71947,  71963,  71971,  71983,  71987,  71993,  71999,  72019,  72031,
736 72043,  72047,  72053,  72073,  72077,  72089,  72091,  72101,  72103,  72109,
737 72139,  72161,  72167,  72169,  72173,  72211,  72221,  72223,  72227,  72229,
738 72251,  72253,  72269,  72271,  72277,  72287,  72307,  72313,  72337,  72341,
739 72353,  72367,  72379,  72383,  72421,  72431,  72461,  72467,  72469,  72481,
740 72493,  72497,  72503,  72533,  72547,  72551,  72559,  72577,  72613,  72617,
741 72623,  72643,  72647,  72649,  72661,  72671,  72673,  72679,  72689,  72701,
742 72707,  72719,  72727,  72733,  72739,  72763,  72767,  72797,  72817,  72823,
743 72859,  72869,  72871,  72883,  72889,  72893,  72901,  72907,  72911,  72923,
744 72931,  72937,  72949,  72953,  72959,  72973,  72977,  72997,  73009,  73013,
745 73019,  73037,  73039,  73043,  73061,  73063,  73079,  73091,  73121,  73127,
746 73133,  73141,  73181,  73189,  73237,  73243,  73259,  73277,  73291,  73303,
747 73309,  73327,  73331,  73351,  73361,  73363,  73369,  73379,  73387,  73417,
748 73421,  73433,  73453,  73459,  73471,  73477,  73483,  73517,  73523,  73529,
749 73547,  73553,  73561,  73571,  73583,  73589,  73597,  73607,  73609,  73613,
750 73637,  73643,  73651,  73673,  73679,  73681,  73693,  73699,  73709,  73721,
751 73727,  73751,  73757,  73771,  73783,  73819,  73823,  73847,  73849,  73859,
752 73867,  73877,  73883,  73897,  73907,  73939,  73943,  73951,  73961,  73973,
753 73999,  74017,  74021,  74027,  74047,  74051,  74071,  74077,  74093,  74099,
754 74101,  74131,  74143,  74149,  74159,  74161,  74167,  74177,  74189,  74197,
755 74201,  74203,  74209,  74219,  74231,  74257,  74279,  74287,  74293,  74297,
756 74311,  74317,  74323,  74353,  74357,  74363,  74377,  74381,  74383,  74411,
757 74413,  74419,  74441,  74449,  74453,  74471,  74489,  74507,  74509,  74521,
758 74527,  74531,  74551,  74561,  74567,  74573,  74587,  74597,  74609,  74611,
759 74623,  74653,  74687,  74699,  74707,  74713,  74717,  74719,  74729,  74731,
760 74747,  74759,  74761,  74771,  74779,  74797,  74821,  74827,  74831,  74843,
761 74857,  74861,  74869,  74873,  74887,  74891,  74897,  74903,  74923,  74929,
762 74933,  74941,  74959,  75011,  75013,  75017,  75029,  75037,  75041,  75079,
763 75083,  75109,  75133,  75149,  75161,  75167,  75169,  75181,  75193,  75209,
764 75211,  75217,  75223,  75227,  75239,  75253,  75269,  75277,  75289,  75307,
765 75323,  75329,  75337,  75347,  75353,  75367,  75377,  75389,  75391,  75401,
766 75403,  75407,  75431,  75437,  75479,  75503,  75511,  75521,  75527,  75533,
767 75539,  75541,  75553,  75557,  75571,  75577,  75583,  75611,  75617,  75619,
768 75629,  75641,  75653,  75659,  75679,  75683,  75689,  75703,  75707,  75709,
769 75721,  75731,  75743,  75767,  75773,  75781,  75787,  75793,  75797,  75821,
770 75833,  75853,  75869,  75883,  75913,  75931,  75937,  75941,  75967,  75979,
771 75983,  75989,  75991,  75997,  76001,  76003,  76031,  76039,  76079,  76081,
772 76091,  76099,  76103,  76123,  76129,  76147,  76157,  76159,  76163,  76207,
773 76213,  76231,  76243,  76249,  76253,  76259,  76261,  76283,  76289,  76303,
774 76333,  76343,  76367,  76369,  76379,  76387,  76403,  76421,  76423,  76441,
775 76463,  76471,  76481,  76487,  76493,  76507,  76511,  76519,  76537,  76541,
776 76543,  76561,  76579,  76597,  76603,  76607,  76631,  76649,  76651,  76667,
777 76673,  76679,  76697,  76717,  76733,  76753,  76757,  76771,  76777,  76781,
778 76801,  76819,  76829,  76831,  76837,  76847,  76871,  76873,  76883,  76907,
779 76913,  76919,  76943,  76949,  76961,  76963,  76991,  77003,  77017,  77023,
780 77029,  77041,  77047,  77069,  77081,  77093,  77101,  77137,  77141,  77153,
781 77167,  77171,  77191,  77201,  77213,  77237,  77239,  77243,  77249,  77261,
782 77263,  77267,  77269,  77279,  77291,  77317,  77323,  77339,  77347,  77351,
783 77359,  77369,  77377,  77383,  77417,  77419,  77431,  77447,  77471,  77477,
784 77479,  77489,  77491,  77509,  77513,  77521,  77527,  77543,  77549,  77551,
785 77557,  77563,  77569,  77573,  77587,  77591,  77611,  77617,  77621,  77641,
786 77647,  77659,  77681,  77687,  77689,  77699,  77711,  77713,  77719,  77723,
787 77731,  77743,  77747,  77761,  77773,  77783,  77797,  77801,  77813,  77839,
788 77849,  77863,  77867,  77893,  77899,  77929,  77933,  77951,  77969,  77977,
789 77983,  77999,  78007,  78017,  78031,  78041,  78049,  78059,  78079,  78101,
790 78121,  78137,  78139,  78157,  78163,  78167,  78173,  78179,  78191,  78193,
791 78203,  78229,  78233,  78241,  78259,  78277,  78283,  78301,  78307,  78311,
792 78317,  78341,  78347,  78367,  78401,  78427,  78437,  78439,  78467,  78479,
793 78487,  78497,  78509,  78511,  78517,  78539,  78541,  78553,  78569,  78571,
794 78577,  78583,  78593,  78607,  78623,  78643,  78649,  78653,  78691,  78697,
795 78707,  78713,  78721,  78737,  78779,  78781,  78787,  78791,  78797,  78803,
796 78809,  78823,  78839,  78853,  78857,  78877,  78887,  78889,  78893,  78901,
797 78919,  78929,  78941,  78977,  78979,  78989,  79031,  79039,  79043,  79063,
798 79087,  79103,  79111,  79133,  79139,  79147,  79151,  79153,  79159,  79181,
799 79187,  79193,  79201,  79229,  79231,  79241,  79259,  79273,  79279,  79283,
800 79301,  79309,  79319,  79333,  79337,  79349,  79357,  79367,  79379,  79393,
801 79397,  79399,  79411,  79423,  79427,  79433,  79451,  79481,  79493,  79531,
802 79537,  79549,  79559,  79561,  79579,  79589,  79601,  79609,  79613,  79621,
803 79627,  79631,  79633,  79657,  79669,  79687,  79691,  79693,  79697,  79699,
804 79757,  79769,  79777,  79801,  79811,  79813,  79817,  79823,  79829,  79841,
805 79843,  79847,  79861,  79867,  79873,  79889,  79901,  79903,  79907,  79939,
806 79943,  79967,  79973,  79979,  79987,  79997,  79999,  80021,  80039,  80051,
807 80071,  80077,  80107,  80111,  80141,  80147,  80149,  80153,  80167,  80173,
808 80177,  80191,  80207,  80209,  80221,  80231,  80233,  80239,  80251,  80263,
809 80273,  80279,  80287,  80309,  80317,  80329,  80341,  80347,  80363,  80369,
810 80387,  80407,  80429,  80447,  80449,  80471,  80473,  80489,  80491,  80513,
811 80527,  80537,  80557,  80567,  80599,  80603,  80611,  80621,  80627,  80629,
812 80651,  80657,  80669,  80671,  80677,  80681,  80683,  80687,  80701,  80713,
813 80737,  80747,  80749,  80761,  80777,  80779,  80783,  80789,  80803,  80809,
814 80819,  80831,  80833,  80849,  80863,  80897,  80909,  80911,  80917,  80923,
815 80929,  80933,  80953,  80963,  80989,  81001,  81013,  81017,  81019,  81023,
816 81031,  81041,  81043,  81047,  81049,  81071,  81077,  81083,  81097,  81101,
817 81119,  81131,  81157,  81163,  81173,  81181,  81197,  81199,  81203,  81223,
818 81233,  81239,  81281,  81283,  81293,  81299,  81307,  81331,  81343,  81349,
819 81353,  81359,  81371,  81373,  81401,  81409,  81421,  81439,  81457,  81463,
820 81509,  81517,  81527,  81533,  81547,  81551,  81553,  81559,  81563,  81569,
821 81611,  81619,  81629,  81637,  81647,  81649,  81667,  81671,  81677,  81689,
822 81701,  81703,  81707,  81727,  81737,  81749,  81761,  81769,  81773,  81799,
823 81817,  81839,  81847,  81853,  81869,  81883,  81899,  81901,  81919,  81929,
824 81931,  81937,  81943,  81953,  81967,  81971,  81973,  82003,  82007,  82009,
825 82013,  82021,  82031,  82037,  82039,  82051,  82067,  82073,  82129,  82139,
826 82141,  82153,  82163,  82171,  82183,  82189,  82193,  82207,  82217,  82219,
827 82223,  82231,  82237,  82241,  82261,  82267,  82279,  82301,  82307,  82339,
828 82349,  82351,  82361,  82373,  82387,  82393,  82421,  82457,  82463,  82469,
829 82471,  82483,  82487,  82493,  82499,  82507,  82529,  82531,  82549,  82559,
830 82561,  82567,  82571,  82591,  82601,  82609,  82613,  82619,  82633,  82651,
831 82657,  82699,  82721,  82723,  82727,  82729,  82757,  82759,  82763,  82781,
832 82787,  82793,  82799,  82811,  82813,  82837,  82847,  82883,  82889,  82891,
833 82903,  82913,  82939,  82963,  82981,  82997,  83003,  83009,  83023,  83047,
834 83059,  83063,  83071,  83077,  83089,  83093,  83101,  83117,  83137,  83177,
835 83203,  83207,  83219,  83221,  83227,  83231,  83233,  83243,  83257,  83267,
836 83269,  83273,  83299,  83311,  83339,  83341,  83357,  83383,  83389,  83399,
837 83401,  83407,  83417,  83423,  83431,  83437,  83443,  83449,  83459,  83471,
838 83477,  83497,  83537,  83557,  83561,  83563,  83579,  83591,  83597,  83609,
839 83617,  83621,  83639,  83641,  83653,  83663,  83689,  83701,  83717,  83719,
840 83737,  83761,  83773,  83777,  83791,  83813,  83833,  83843,  83857,  83869,
841 83873,  83891,  83903,  83911,  83921,  83933,  83939,  83969,  83983,  83987,
842 84011,  84017,  84047,  84053,  84059,  84061,  84067,  84089,  84121,  84127,
843 84131,  84137,  84143,  84163,  84179,  84181,  84191,  84199,  84211,  84221,
844 84223,  84229,  84239,  84247,  84263,  84299,  84307,  84313,  84317,  84319,
845 84347,  84349,  84377,  84389,  84391,  84401,  84407,  84421,  84431,  84437,
846 84443,  84449,  84457,  84463,  84467,  84481,  84499,  84503,  84509,  84521,
847 84523,  84533,  84551,  84559,  84589,  84629,  84631,  84649,  84653,  84659,
848 84673,  84691,  84697,  84701,  84713,  84719,  84731,  84737,  84751,  84761,
849 84787,  84793,  84809,  84811,  84827,  84857,  84859,  84869,  84871,  84913,
850 84919,  84947,  84961,  84967,  84977,  84979,  84991,  85009,  85021,  85027,
851 85037,  85049,  85061,  85081,  85087,  85091,  85093,  85103,  85109,  85121,
852 85133,  85147,  85159,  85193,  85199,  85201,  85213,  85223,  85229,  85237,
853 85243,  85247,  85259,  85297,  85303,  85313,  85331,  85333,  85361,  85363,
854 85369,  85381,  85411,  85427,  85429,  85439,  85447,  85451,  85453,  85469,
855 85487,  85513,  85517,  85523,  85531,  85549,  85571,  85577,  85597,  85601,
856 85607,  85619,  85621,  85627,  85639,  85643,  85661,  85667,  85669,  85691,
857 85703,  85711,  85717,  85733,  85751,  85781,  85793,  85817,  85819,  85829,
858 85831,  85837,  85843,  85847,  85853,  85889,  85903,  85909,  85931,  85933,
859 85991,  85999,  86011,  86017,  86027,  86029,  86069,  86077,  86083,  86111,
860 86113,  86117,  86131,  86137,  86143,  86161,  86171,  86179,  86183,  86197,
861 86201,  86209,  86239,  86243,  86249,  86257,  86263,  86269,  86287,  86291,
862 86293,  86297,  86311,  86323,  86341,  86351,  86353,  86357,  86369,  86371,
863 86381,  86389,  86399,  86413,  86423,  86441,  86453,  86461,  86467,  86477,
864 86491,  86501,  86509,  86531,  86533,  86539,  86561,  86573,  86579,  86587,
865 86599,  86627,  86629,  86677,  86689,  86693,  86711,  86719,  86729,  86743,
866 86753,  86767,  86771,  86783,  86813,  86837,  86843,  86851,  86857,  86861,
867 86869,  86923,  86927,  86929,  86939,  86951,  86959,  86969,  86981,  86993,
868 87011,  87013,  87037,  87041,  87049,  87071,  87083,  87103,  87107,  87119,
869 87121,  87133,  87149,  87151,  87179,  87181,  87187,  87211,  87221,  87223,
870 87251,  87253,  87257,  87277,  87281,  87293,  87299,  87313,  87317,  87323,
871 87337,  87359,  87383,  87403,  87407,  87421,  87427,  87433,  87443,  87473,
872 87481,  87491,  87509,  87511,  87517,  87523,  87539,  87541,  87547,  87553,
873 87557,  87559,  87583,  87587,  87589,  87613,  87623,  87629,  87631,  87641,
874 87643,  87649,  87671,  87679,  87683,  87691,  87697,  87701,  87719,  87721,
875 87739,  87743,  87751,  87767,  87793,  87797,  87803,  87811,  87833,  87853,
876 87869,  87877,  87881,  87887,  87911,  87917,  87931,  87943,  87959,  87961,
877 87973,  87977,  87991,  88001,  88003,  88007,  88019,  88037,  88069,  88079,
878 88093,  88117,  88129,  88169,  88177,  88211,  88223,  88237,  88241,  88259,
879 88261,  88289,  88301,  88321,  88327,  88337,  88339,  88379,  88397,  88411,
880 88423,  88427,  88463,  88469,  88471,  88493,  88499,  88513,  88523,  88547,
881 88589,  88591,  88607,  88609,  88643,  88651,  88657,  88661,  88663,  88667,
882 88681,  88721,  88729,  88741,  88747,  88771,  88789,  88793,  88799,  88801,
883 88807,  88811,  88813,  88817,  88819,  88843,  88853,  88861,  88867,  88873,
884 88883,  88897,  88903,  88919,  88937,  88951,  88969,  88993,  88997,  89003,
885 89009,  89017,  89021,  89041,  89051,  89057,  89069,  89071,  89083,  89087,
886 89101,  89107,  89113,  89119,  89123,  89137,  89153,  89189,  89203,  89209,
887 89213,  89227,  89231,  89237,  89261,  89269,  89273,  89293,  89303,  89317,
888 89329,  89363,  89371,  89381,  89387,  89393,  89399,  89413,  89417,  89431,
889 89443,  89449,  89459,  89477,  89491,  89501,  89513,  89519,  89521,  89527,
890 89533,  89561,  89563,  89567,  89591,  89597,  89599,  89603,  89611,  89627,
891 89633,  89653,  89657,  89659,  89669,  89671,  89681,  89689,  89753,  89759,
892 89767,  89779,  89783,  89797,  89809,  89819,  89821,  89833,  89839,  89849,
893 89867,  89891,  89897,  89899,  89909,  89917,  89923,  89939,  89959,  89963,
894 89977,  89983,  89989,  90001,  90007,  90011,  90017,  90019,  90023,  90031,
895 90053,  90059,  90067,  90071,  90073,  90089,  90107,  90121,  90127,  90149,
896 90163,  90173,  90187,  90191,  90197,  90199,  90203,  90217,  90227,  90239,
897 90247,  90263,  90271,  90281,  90289,  90313,  90353,  90359,  90371,  90373,
898 90379,  90397,  90401,  90403,  90407,  90437,  90439,  90469,  90473,  90481,
899 90499,  90511,  90523,  90527,  90529,  90533,  90547,  90583,  90599,  90617,
900 90619,  90631,  90641,  90647,  90659,  90677,  90679,  90697,  90703,  90709,
901 90731,  90749,  90787,  90793,  90803,  90821,  90823,  90833,  90841,  90847,
902 90863,  90887,  90901,  90907,  90911,  90917,  90931,  90947,  90971,  90977,
903 90989,  90997,  91009,  91019,  91033,  91079,  91081,  91097,  91099,  91121,
904 91127,  91129,  91139,  91141,  91151,  91153,  91159,  91163,  91183,  91193,
905 91199,  91229,  91237,  91243,  91249,  91253,  91283,  91291,  91297,  91303,
906 91309,  91331,  91367,  91369,  91373,  91381,  91387,  91393,  91397,  91411,
907 91423,  91433,  91453,  91457,  91459,  91463,  91493,  91499,  91513,  91529,
908 91541,  91571,  91573,  91577,  91583,  91591,  91621,  91631,  91639,  91673,
909 91691,  91703,  91711,  91733,  91753,  91757,  91771,  91781,  91801,  91807,
910 91811,  91813,  91823,  91837,  91841,  91867,  91873,  91909,  91921,  91939,
911 91943,  91951,  91957,  91961,  91967,  91969,  91997,  92003,  92009,  92033,
912 92041,  92051,  92077,  92083,  92107,  92111,  92119,  92143,  92153,  92173,
913 92177,  92179,  92189,  92203,  92219,  92221,  92227,  92233,  92237,  92243,
914 92251,  92269,  92297,  92311,  92317,  92333,  92347,  92353,  92357,  92363,
915 92369,  92377,  92381,  92383,  92387,  92399,  92401,  92413,  92419,  92431,
916 92459,  92461,  92467,  92479,  92489,  92503,  92507,  92551,  92557,  92567,
917 92569,  92581,  92593,  92623,  92627,  92639,  92641,  92647,  92657,  92669,
918 92671,  92681,  92683,  92693,  92699,  92707,  92717,  92723,  92737,  92753,
919 92761,  92767,  92779,  92789,  92791,  92801,  92809,  92821,  92831,  92849,
920 92857,  92861,  92863,  92867,  92893,  92899,  92921,  92927,  92941,  92951,
921 92957,  92959,  92987,  92993,  93001,  93047,  93053,  93059,  93077,  93083,
922 93089,  93097,  93103,  93113,  93131,  93133,  93139,  93151,  93169,  93179,
923 93187,  93199,  93229,  93239,  93241,  93251,  93253,  93257,  93263,  93281,
924 93283,  93287,  93307,  93319,  93323,  93329,  93337,  93371,  93377,  93383,
925 93407,  93419,  93427,  93463,  93479,  93481,  93487,  93491,  93493,  93497,
926 93503,  93523,  93529,  93553,  93557,  93559,  93563,  93581,  93601,  93607,
927 93629,  93637,  93683,  93701,  93703,  93719,  93739,  93761,  93763,  93787,
928 93809,  93811,  93827,  93851,  93871,  93887,  93889,  93893,  93901,  93911,
929 93913,  93923,  93937,  93941,  93949,  93967,  93971,  93979,  93983,  93997,
930 94007,  94009,  94033,  94049,  94057,  94063,  94079,  94099,  94109,  94111,
931 94117,  94121,  94151,  94153,  94169,  94201,  94207,  94219,  94229,  94253,
932 94261,  94273,  94291,  94307,  94309,  94321,  94327,  94331,  94343,  94349,
933 94351,  94379,  94397,  94399,  94421,  94427,  94433,  94439,  94441,  94447,
934 94463,  94477,  94483,  94513,  94529,  94531,  94541,  94543,  94547,  94559,
935 94561,  94573,  94583,  94597,  94603,  94613,  94621,  94649,  94651,  94687,
936 94693,  94709,  94723,  94727,  94747,  94771,  94777,  94781,  94789,  94793,
937 94811,  94819,  94823,  94837,  94841,  94847,  94849,  94873,  94889,  94903,
938 94907,  94933,  94949,  94951,  94961,  94993,  94999,  95003,  95009,  95021,
939 95027,  95063,  95071,  95083,  95087,  95089,  95093,  95101,  95107,  95111,
940 95131,  95143,  95153,  95177,  95189,  95191,  95203,  95213,  95219,  95231,
941 95233,  95239,  95257,  95261,  95267,  95273,  95279,  95287,  95311,  95317,
942 95327,  95339,  95369,  95383,  95393,  95401,  95413,  95419,  95429,  95441,
943 95443,  95461,  95467,  95471,  95479,  95483,  95507,  95527,  95531,  95539,
944 95549,  95561,  95569,  95581,  95597,  95603,  95617,  95621,  95629,  95633,
945 95651,  95701,  95707,  95713,  95717,  95723,  95731,  95737,  95747,  95773,
946 95783,  95789,  95791,  95801,  95803,  95813,  95819,  95857,  95869,  95873,
947 95881,  95891,  95911,  95917,  95923,  95929,  95947,  95957,  95959,  95971,
948 95987,  95989,  96001,  96013,  96017,  96043,  96053,  96059,  96079,  96097,
949 96137,  96149,  96157,  96167,  96179,  96181,  96199,  96211,  96221,  96223,
950 96233,  96259,  96263,  96269,  96281,  96289,  96293,  96323,  96329,  96331,
951 96337,  96353,  96377,  96401,  96419,  96431,  96443,  96451,  96457,  96461,
952 96469,  96479,  96487,  96493,  96497,  96517,  96527,  96553,  96557,  96581,
953 96587,  96589,  96601,  96643,  96661,  96667,  96671,  96697,  96703,  96731,
954 96737,  96739,  96749,  96757,  96763,  96769,  96779,  96787,  96797,  96799,
955 96821,  96823,  96827,  96847,  96851,  96857,  96893,  96907,  96911,  96931,
956 96953,  96959,  96973,  96979,  96989,  96997,  97001,  97003,  97007,  97021,
957 97039,  97073,  97081,  97103,  97117,  97127,  97151,  97157,  97159,  97169,
958 97171,  97177,  97187,  97213,  97231,  97241,  97259,  97283,  97301,  97303,
959 97327,  97367,  97369,  97373,  97379,  97381,  97387,  97397,  97423,  97429,
960 97441,  97453,  97459,  97463,  97499,  97501,  97511,  97523,  97547,  97549,
961 97553,  97561,  97571,  97577,  97579,  97583,  97607,  97609,  97613,  97649,
962 97651,  97673,  97687,  97711,  97729,  97771,  97777,  97787,  97789,  97813,
963 97829,  97841,  97843,  97847,  97849,  97859,  97861,  97871,  97879,  97883,
964 97919,  97927,  97931,  97943,  97961,  97967,  97973,  97987,  98009,  98011,
965 98017,  98041,  98047,  98057,  98081,  98101,  98123,  98129,  98143,  98179,
966 98207,  98213,  98221,  98227,  98251,  98257,  98269,  98297,  98299,  98317,
967 98321,  98323,  98327,  98347,  98369,  98377,  98387,  98389,  98407,  98411,
968 98419,  98429,  98443,  98453,  98459,  98467,  98473,  98479,  98491,  98507,
969 98519,  98533,  98543,  98561,  98563,  98573,  98597,  98621,  98627,  98639,
970 98641,  98663,  98669,  98689,  98711,  98713,  98717,  98729,  98731,  98737,
971 98773,  98779,  98801,  98807,  98809,  98837,  98849,  98867,  98869,  98873,
972 98887,  98893,  98897,  98899,  98909,  98911,  98927,  98929,  98939,  98947,
973 98953,  98963,  98981,  98993,  98999,  99013,  99017,  99023,  99041,  99053,
974 99079,  99083,  99089,  99103,  99109,  99119,  99131,  99133,  99137,  99139,
975 99149,  99173,  99181,  99191,  99223,  99233,  99241,  99251,  99257,  99259,
976 99277,  99289,  99317,  99347,  99349,  99367,  99371,  99377,  99391,  99397,
977 99401,  99409,  99431,  99439,  99469,  99487,  99497,  99523,  99527,  99529,
978 99551,  99559,  99563,  99571,  99577,  99581,  99607,  99611,  99623,  99643,
979 99661,  99667,  99679,  99689,  99707,  99709,  99713,  99719,  99721,  99733,
980 99761,  99767,  99787,  99793,  99809,  99817,  99823,  99829,  99833,  99839,
981 99859,  99871,  99877,  99881,  99901,  99907,  99923,  99929,  99961,  99971,
982 99989,  99991, 100003, 100019, 100043, 100049, 100057, 100069, 100103, 100109,
983100129, 100151, 100153, 100169, 100183, 100189, 100193, 100207, 100213, 100237,
984100267, 100271, 100279, 100291, 100297, 100313, 100333, 100343, 100357, 100361,
985100363, 100379, 100391, 100393, 100403, 100411, 100417, 100447, 100459, 100469,
986100483, 100493, 100501, 100511, 100517, 100519, 100523, 100537, 100547, 100549,
987100559, 100591, 100609, 100613, 100621, 100649, 100669, 100673, 100693, 100699,
988100703, 100733, 100741, 100747, 100769, 100787, 100799, 100801, 100811, 100823,
989100829, 100847, 100853, 100907, 100913, 100927, 100931, 100937, 100943, 100957,
990100981, 100987, 100999, 101009, 101021, 101027, 101051, 101063, 101081, 101089,
991101107, 101111, 101113, 101117, 101119, 101141, 101149, 101159, 101161, 101173,
992101183, 101197, 101203, 101207, 101209, 101221, 101267, 101273, 101279, 101281,
993101287, 101293, 101323, 101333, 101341, 101347, 101359, 101363, 101377, 101383,
994101399, 101411, 101419, 101429, 101449, 101467, 101477, 101483, 101489, 101501,
995101503, 101513, 101527, 101531, 101533, 101537, 101561, 101573, 101581, 101599,
996101603, 101611, 101627, 101641, 101653, 101663, 101681, 101693, 101701, 101719,
997101723, 101737, 101741, 101747, 101749, 101771, 101789, 101797, 101807, 101833,
998101837, 101839, 101863, 101869, 101873, 101879, 101891, 101917, 101921, 101929,
999101939, 101957, 101963, 101977, 101987, 101999, 102001, 102013, 102019, 102023,
1000102031, 102043, 102059, 102061, 102071, 102077, 102079, 102101, 102103, 102107,
1001102121, 102139, 102149, 102161, 102181, 102191, 102197, 102199, 102203, 102217,
1002102229, 102233, 102241, 102251, 102253, 102259, 102293, 102299, 102301, 102317,
1003102329, 102337, 102359, 102367, 102397, 102407, 102409, 102433, 102437, 102451,
1004102461, 102481, 102497, 102499, 102503, 102523, 102533, 102539, 102547, 102551,
1005102559, 102563, 102587, 102593, 102607, 102611, 102643, 102647, 102653, 102667,
1006102673, 102677, 102679, 102701, 102761, 102763, 102769, 102793, 102797, 102811,
1007102829, 102841, 102859, 102871, 102877, 102881, 102911, 102913, 102929, 102931,
1008102953, 102967, 102983, 103001, 103007, 103043, 103049, 103067, 103069, 103079,
1009103087, 103091, 103093, 103099, 103123, 103141, 103171, 103177, 103183, 103217,
1010103231, 103237, 103289, 103291, 103307, 103319, 103333, 103349, 103357, 103387,
1011103391, 103393, 103399, 103409, 103421, 103423, 103451, 103457, 103471, 103483,
1012103511, 103529, 103549, 103553, 103561, 103567, 103573, 103577, 103583, 103591,
1013103613, 103619, 103643, 103651, 103657, 103669, 103681, 103687, 103699, 103703,
1014103723, 103769, 103787, 103801, 103811, 103813, 103837, 103841, 103843, 103867,
1015103889, 103903, 103913, 103919, 103951, 103963, 103967, 103969, 103979, 103981,
1016103991, 103993, 103997, 104003, 104009, 104021, 104033, 104047, 104053, 104059,
1017104087, 104089, 104107, 104113, 104119, 104123, 104147, 104149, 104161, 104173,
1018104179, 104183, 104207, 104231, 104233, 104239, 104243, 104281, 104287, 104297,
1019104309, 104311, 104323, 104327, 104347, 104369, 104381, 104383, 104393, 104399,
1020104417, 104459, 104471, 104473, 104479, 104491, 104513, 104527, 104537, 104543,
1021104549, 104551, 104561, 104579, 104593, 104597, 104623, 104639, 104651, 104659,
1022104677, 104681, 104683, 104693, 104701, 104707, 104711, 104717, 104723, 104729,
1023]
1024
1025
1026
1027### Ctrl-C handler
1028def handler(signal, frame):
1029    sys.tracebacklimit = 0
1030    exit(0)
1031
1032DEFBUFSIZE=32768
1033
1034def get_cpu_count():
1035    """
1036    Try and estimate the number of CPU on the host. First using multiprocessing
1037    native function, other using content of /proc/cpuinfo. If none of those
1038    methods did work, 4 is returned.
1039    """
1040    try:
1041        import multiprocessing
1042        cpucount = multiprocessing.cpu_count()
1043    except:
1044        try:
1045            s = open("/proc/cpuinfo").read()
1046            cpucount = int(s.split('processor')[-1].split(":")[1].split("\n")[0])
1047            cpucount += 1
1048        except:
1049            cpucount = 4
1050    return cpucount
1051
1052# Simple helper to remove comments from a C program
1053def C_comment_remover(text):
1054    def replacer(match):
1055        s = match.group(0)
1056        if s.startswith('/'):
1057            return " " # note: a space and not an empty string
1058        else:
1059            return s
1060    regexp = r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"'
1061    pattern = re.compile(regexp, re.DOTALL | re.MULTILINE)
1062    return re.sub(pattern, replacer, text)
1063
1064
1065def egcd(b, n):
1066    x0, x1, y0, y1 = 1, 0, 0, 1
1067    while n != 0:
1068        q, b, n = b // n, n, b % n
1069        x0, x1 = x1, x0 - q * x1
1070        y0, y1 = y1, y0 - q * y1
1071    return  b, x0, y0
1072
1073def modinv(a, m):
1074    g, x, y = egcd(a, m)
1075    if g != 1:
1076        raise Exception('modular inverse does not exist')
1077    else:
1078        return x % m
1079
1080def is_probprime(n):
1081    # ensure n is odd
1082    if n % 2 == 0:
1083        return False
1084    # write n-1 as 2**s * d
1085    # repeatedly try to divide n-1 by 2
1086    s = 0
1087    d = n-1
1088    while True:
1089        quotient, remainder = divmod(d, 2)
1090        if remainder == 1:
1091            break
1092        s += 1
1093        d = quotient
1094    assert(2**s * d == n-1)
1095    # test the base a to see whether it is a witness for the compositeness of n
1096    def try_composite(a):
1097        if pow(a, d, n) == 1:
1098            return False
1099        for i in range(s):
1100            if pow(a, 2**i * d, n) == n-1:
1101                return False
1102        return True # n is definitely composite
1103    for i in range(5):
1104        a = random.randrange(2, n)
1105        if try_composite(a):
1106            return False
1107    return True # no base tested showed n as composite
1108
1109def compute_monty_coef(nn_p, p_bitsize):
1110    """
1111    Compute montgomery coeff r, r^2 and mpinv. p_bitsize is the size
1112    of p in bits. It is expected to be a multiple of word
1113    bit size.
1114    """
1115    r = (1 << p_bitsize) % nn_p
1116    r_square = (1 << (2 * p_bitsize)) % nn_p
1117    mpinv = 2**wlen - (modinv(nn_p, 2**wlen))
1118    return r, r_square, mpinv
1119
1120def compute_div_coef(nn_p, p_bitsize):
1121    """
1122    Compute division coeffs p_normalized, p_shift and p_reciprocal.
1123    """
1124    tmp = nn_p
1125    cnt = 0
1126    while tmp != 0:
1127        tmp = tmp >> 1
1128        cnt += 1
1129    pshift = p_bitsize - cnt
1130    nn_pnorm = nn_p << pshift
1131    B = 2**wlen
1132    prec = B**3 // ((nn_pnorm >> (p_bitsize - 2*wlen)) + 1) - B
1133    return pshift, nn_pnorm, prec
1134
1135def getbitlen(bint):
1136    """
1137    Returns the number of bits encoding an integer
1138    """
1139    if bint == 0:
1140        return 1
1141    else:
1142        return int(bint).bit_length()
1143
1144def getwlenbitlen(bint, wlen):
1145    """
1146    Returns the number of bits encoding an integer
1147    """
1148    rounded_wlen_bitlen = ((getbitlen(bint) + wlen - 1) // wlen) * wlen
1149    if(rounded_wlen_bitlen == 0):
1150        rounded_wlen_bitlen = wlen
1151    return rounded_wlen_bitlen
1152
1153def legendre_symbol(a, p):
1154    ls = pow(a, (p - 1) // 2, p)
1155    return -1 if ls == p - 1 else ls
1156
1157# Tonelli-Shanks algorithm to find square roots
1158# over prime fields
1159def mod_sqrt(a, p):
1160    # Simple cases
1161    if legendre_symbol(a, p) != 1:
1162        # No quadratic residue
1163        return None
1164    elif a == 0:
1165        return 0
1166    elif p == 2:
1167        return a
1168    elif p % 4 == 3:
1169        return pow(a, (p + 1) // 4, p)
1170    s = p - 1
1171    e = 0
1172    while s % 2 == 0:
1173        s = s // 2
1174        e += 1
1175    n = 2
1176    while legendre_symbol(n, p) != -1:
1177        n += 1
1178    x = pow(a, (s + 1) // 2, p)
1179    b = pow(a, s, p)
1180    g = pow(n, s, p)
1181    r = e
1182    while True:
1183        t = b
1184        m = 0
1185        for m in xrange(r):
1186            if t == 1:
1187                break
1188            t = pow(t, 2, p)
1189        if m == 0:
1190            return x
1191        gs = pow(g, 2 ** (r - m - 1), p)
1192        g = (gs * gs) % p
1193        x = (x * gs) % p
1194        b = (b * g) % p
1195        r = m
1196
1197def format_int_string(bint, wlen):
1198    """
1199    Returns the string format of an integer rounded to wlen
1200    """
1201    rounded_bytelen = (wlen/8) * ((getbitlen(bint) + wlen - 1) // wlen)
1202    # Special case of zero bit length
1203    if(rounded_bytelen == 0):
1204        rounded_bytelen = wlen//8
1205    return (("%%0%dx" % (2 * rounded_bytelen)) % bint)
1206
1207def get_random_bigint(wlen, maxwlensize):
1208    nn_nwords = random.randint(1, maxwlensize)
1209    nn_maxval = 2 ** (nn_nwords * wlen) - 1
1210    return random.randint(0, nn_maxval)
1211
1212# Eratostene sieve for fast candidates
1213def get_random_prime_sieve_candidate(wlen, maxwlensize):
1214    global first_primes_list
1215    while True:
1216        # Choose a random odd number
1217        r = get_random_bigint(wlen, maxwlensize) | 1
1218        for divisor in first_primes_list:
1219            if (r % divisor) == 0 and (divisor**2 <= r):
1220                break
1221            else:
1222                # r is a suitable candidate
1223                return r
1224
1225def get_random_prime(wlen, maxwlensize):
1226    while True:
1227        # Get a random integer
1228        r = get_random_prime_sieve_candidate(wlen, maxwlensize)
1229        # Check its primality
1230        if is_probprime(r):
1231            return r
1232
1233if ((len(sys.argv) != 5) and (len(sys.argv) != 6)):
1234    sys.stderr.write("Usage: %s outfile wlen ntests [tests]\n" % sys.argv[0])
1235    sys.stderr.write("with\n")
1236    sys.stderr.write(" outfile: file in which generated tests will be stored\n")
1237    sys.stderr.write(" wlen   : target architecture word length in bits (64, 32 or 16)\n")
1238    sys.stderr.write(" maxlen : maximum bit length of tests (e.g. 521 bits, ...)\n")
1239    sys.stderr.write(" ntests : a multiplier for the number of tests to perform\n")
1240    sys.stderr.write(" tests  : (optional) specific tests to perform (regexp opcodes) OR\n")
1241    sys.stderr.write("          a '.c' file where to get the implemented tests. filename\n")
1242    sys.stderr.write("          is given using e.g. file=fp_pow.c\n")
1243    sys.exit(-1)
1244
1245testfile = sys.argv[1]
1246wlen = int(sys.argv[2])
1247maxlen = int(sys.argv[3])
1248ntests = int(sys.argv[4])
1249
1250nn_logical_tests = ["NN_SHIFT_RIGHT", "NN_SHIFT_LEFT", "NN_ROTATE_RIGHT", "NN_ROTATE_LEFT",
1251                    "NN_AND", "NN_XOR", "NN_OR", "NN_NOT"]
1252nn_addition_tests = ["NN_ADD", "NN_SUB", "NN_INC", "NN_DEC", "NN_MOD_ADD", "NN_MOD_SUB", "NN_MOD_INC", "NN_MOD_DEC"]
1253nn_mul_tests = ["NN_MUL", "NN_SQR", "NN_MUL_REDC1", "NN_COEF_REDC1", "NN_COEF_DIV", "NN_MOD_MUL", "NN_MOD_POW"]
1254nn_div_tests = ["NN_MOD", "NN_DIVREM", "NN_MODINV", "NN_MODINV_2EXP", "NN_XGCD", "NN_GCD"]
1255
1256nn_tests = nn_logical_tests + nn_addition_tests + nn_mul_tests + nn_div_tests
1257
1258fp_add_tests  = ["FP_ADD", "FP_SUB"]
1259fp_mul_tests  = ["FP_MUL", "FP_SQR", "FP_DIV", "FP_MUL_MONTY", "FP_SQR_MONTY", "FP_POW"]
1260fp_sqrt_tests = ["FP_SQRT"]
1261
1262fp_tests = fp_add_tests + fp_mul_tests + fp_sqrt_tests
1263
1264all_tests = nn_tests + fp_tests
1265
1266# Get optional specific parameters
1267asked_tests = all_tests
1268if (len(sys.argv) == 6):
1269    # Do we have a .c file given as input?
1270    if (sys.argv[5])[:5] == "file=":
1271        file_name = (sys.argv[5])[5:]
1272        # Open the .c file
1273        C_string = C_comment_remover(open(file_name, 'r').read())
1274        # Grep the interesting tests
1275        lines = C_string.split("\n")
1276        asked_tests = []
1277        for line in lines:
1278            if line[:13] == "GENERIC_TEST(":
1279                # Get second argument, which is the opcode
1280                the_test = line.split(",")[1].replace(" ", "")
1281                asked_tests += [the_test]
1282    # We have a list of opcode regexps
1283    else:
1284        def check_regexp(regexp, string):
1285            return re.match(regexp+"$", string)
1286        asked_tests = []
1287        asked_tests_regexps = ((sys.argv[5]).replace(" ", "")).split(",")
1288        # Check for regexps
1289        for regexp in asked_tests_regexps:
1290            # Asked operations must be known
1291            match = [x for x in all_tests if check_regexp(regexp, x)]
1292            if match == []:
1293                print "Warning: regexp matches no known operation ", regexp
1294            asked_tests += match
1295
1296# Unnecessary test (we can keep it though)
1297if len(list(set(asked_tests) & set(all_tests))) != len(asked_tests):
1298    print "Error: unknown asked tests ", list(set(asked_tests) - set(all_tests))
1299    exit(-1)
1300
1301# Delta to use on word boundaries.
1302WORD_BOUNDARY_DELTA=3
1303
1304# Max size (in words) of input numbers (nn, fp) on which to perform tests
1305MAX_INPUT_PARAM_WLEN= ((maxlen + wlen - 1) // wlen)
1306
1307test_funcs = { }
1308
1309# Generate tests for NN_SHIFT_RIGHT and NN_SHIFT_LEFT operations.
1310def test_NN_SHIFT(op):
1311    nn_nwords = random.randint(1, MAX_INPUT_PARAM_WLEN)
1312    nn_maxval = 2 ** (nn_nwords * wlen) - 1
1313    nn_nbits = nn_nwords * wlen
1314
1315    nn_val = random.randint(0, nn_maxval)
1316
1317    res = []
1318
1319    # try and consider all possible words boundary on input ...
1320    for boundary in range(0, (nn_nwords + 1) * wlen, wlen):
1321        # and generate shift for bitcount in an interval around
1322        # that boundary, i.e. [boundary - delta, boundary + delta]
1323        min_cnt = max(0, boundary - WORD_BOUNDARY_DELTA)
1324        max_cnt = min(nn_nbits, boundary + WORD_BOUNDARY_DELTA)
1325        cnt = random.randint(min_cnt, max_cnt);
1326        msk = nn_maxval
1327
1328        # we try different bitlen for output
1329        for outbitlen in [boundary - wlen, boundary, boundary + wlen]:
1330            if outbitlen <= wlen:
1331                outbitlen = wlen
1332
1333            # Depending on the type of shift operation we consider,
1334            # we adapt the & mask
1335            if (op == "NN_SHIFT_RIGHT_FIXEDLEN"): # NN_SHIFT_RIGHT_FIXEDLEN
1336                msk = (2 ** outbitlen) - 1
1337                out = (nn_val >> cnt) & msk
1338            elif (op == "NN_SHIFT_LEFT_FIXEDLEN"): # NN_SHIFT_LEFT_FIXEDLEN
1339                msk = (2 ** outbitlen) - 1
1340                out = (nn_val << cnt) & msk
1341            elif (op == "NN_SHIFT_RIGHT"): # NN_SHIFT_RIGHT
1342                outbitlen = nn_nbits
1343                msk = (2 ** outbitlen) - 1
1344                out = (nn_val >> cnt) & msk
1345            else: # NN_SHIFT_LEFT
1346                outbitlen = nn_nbits + cnt
1347		# Round the bit length to the word boundary
1348		outbitlen = ((outbitlen + wlen - 1) // wlen) * wlen
1349                msk = (2 ** outbitlen) - 1
1350                out = (nn_val << cnt) & msk
1351
1352            fmt = "%s nnu %s %s %d\n"
1353            res.append(fmt % (op, format_int_string(out, wlen), format_int_string(nn_val, wlen), cnt))
1354
1355    return res
1356
1357test_funcs["NN_SHIFT_RIGHT_FIXEDLEN"] = test_NN_SHIFT
1358test_funcs["NN_SHIFT_LEFT_FIXEDLEN"]  = test_NN_SHIFT
1359test_funcs["NN_SHIFT_RIGHT"] = test_NN_SHIFT
1360test_funcs["NN_SHIFT_LEFT"]  = test_NN_SHIFT
1361
1362# Generate tests for NN_ROTATE_LEFT and NN_ROTATE_RIGHT operations.
1363def test_NN_ROTATE(op):
1364    # random value for both input numbers
1365    nn_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1366    bitlen = random.randint(1, getbitlen(nn_val))
1367    cnt = random.randint(0, bitlen-1)
1368
1369    res = []
1370
1371    if (op == "NN_ROTATE_LEFT"):  # NN_ROTATE_LEFT
1372        nn_exp_res = ((nn_val << cnt) ^ (nn_val >> (bitlen - cnt))) & (2**bitlen - 1)
1373    else: 			  # NN_ROTATE_RIGHT
1374        nn_exp_res = ((nn_val >> cnt) ^ (nn_val << (bitlen - cnt))) & (2**bitlen - 1)
1375
1376    fmt = "%s nnuu %s %s %d %d\n"
1377    res.append(fmt % (op, format_int_string(nn_exp_res, wlen), format_int_string(nn_val, wlen), cnt, bitlen))
1378
1379    return res
1380
1381test_funcs["NN_ROTATE_LEFT"] = test_NN_ROTATE
1382test_funcs["NN_ROTATE_RIGHT"] = test_NN_ROTATE
1383
1384
1385# Generate tests for NN_XOR, NN_OR and NN_AND operations.
1386def test_NN_XOR_OR_AND(op):
1387    # random value for both input numbers
1388    nn1_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1389    nn2_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1390
1391    res = []
1392
1393    if (op == "NN_XOR"):  # NN_XOR
1394        nn_exp_res = nn1_val ^ nn2_val
1395    elif (op == "NN_OR"): # NN_OR
1396        nn_exp_res = nn1_val | nn2_val
1397    else:                 # NN_AND
1398        nn_exp_res = nn1_val & nn2_val
1399
1400    fmt = "%s nnn %s %s %s\n"
1401    res.append(fmt % (op, format_int_string(nn1_val, wlen), format_int_string(nn2_val, wlen), format_int_string(nn_exp_res, wlen)))
1402
1403    return res
1404
1405test_funcs["NN_XOR"] = test_NN_XOR_OR_AND
1406test_funcs["NN_OR"]  = test_NN_XOR_OR_AND
1407test_funcs["NN_AND"]  = test_NN_XOR_OR_AND
1408
1409
1410def test_NN_NOT(op):
1411    """ Generate tests for NN_NOT """
1412    nn_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1413
1414    res = []
1415
1416    # python sucks at computing logical not. It generates a two's complement
1417    # representation, which mays result in a negative value i.e. not what we
1418    # are looking for.
1419    nn_exp_res = ((2 ** getwlenbitlen(nn_val, wlen)) - 1) & (~nn_val)
1420
1421    fmt = "%s nn %s %s\n"
1422    res.append(fmt % (op, format_int_string(nn_val, wlen), format_int_string(nn_exp_res, wlen)))
1423
1424    return res
1425
1426test_funcs["NN_NOT"] = test_NN_NOT
1427
1428
1429def test_NN_ADD_SUB(op):
1430    """ Generate tests for NN_ADD and NN_SUB """
1431    # Get two random big num
1432    nn_val1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1433    nn_val2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1434
1435    # Compute the result depending on the operation
1436    if (op == "NN_ADD"):
1437        res = nn_val1 + nn_val2
1438    else:
1439        if (nn_val1 < nn_val2):
1440            tmp = nn_val1
1441            nn_val1 = nn_val2
1442            nn_val2 = tmp
1443        res = nn_val1 - nn_val2
1444    nn_exp_res = res
1445
1446    fmt = "%s nnn %s %s %s\n"
1447    s = fmt % (op, format_int_string(nn_val1, wlen), format_int_string(nn_val2, wlen), format_int_string(nn_exp_res, wlen))
1448
1449    return [ s ]
1450
1451test_funcs["NN_ADD"] = test_NN_ADD_SUB
1452test_funcs["NN_SUB"] = test_NN_ADD_SUB
1453
1454
1455def test_NN_INC_DEC(op):
1456    """ Generate tests for NN_INC and NN_DEC """
1457    nn_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1458
1459    # Compute the result depending on the operation
1460    if (op == "NN_INC"):
1461        res = nn_val + 1
1462    else:
1463        res = nn_val - 1
1464    nn_exp_res = res
1465
1466    fmt = "%s nn %s %s\n"
1467    s = fmt % (op, format_int_string(nn_val, wlen), format_int_string(nn_exp_res, wlen))
1468
1469    return [ s ]
1470
1471test_funcs["NN_INC"] = test_NN_INC_DEC
1472test_funcs["NN_DEC"] = test_NN_INC_DEC
1473
1474def test_NN_MOD_ADD_SUB(op):
1475    """ Generate tests for modular NN_ADD and NN_SUB """
1476    # Get three random big num
1477    nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1478    nn_val1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1479    nn_val2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1480
1481    # Compute the result depending on the operation
1482    if (op == "NN_MOD_ADD"):
1483        res = (nn_val1 + nn_val2) % nn_mod
1484    else:
1485        if (nn_val1 < nn_val2):
1486            tmp = nn_val1
1487            nn_val1 = nn_val2
1488            nn_val2 = tmp
1489        res = (nn_val1 - nn_val2) % nn_mod
1490    nn_exp_res = res
1491
1492    fmt = "%s nnnn %s %s %s %s\n"
1493    s = fmt % (op, format_int_string(nn_val1, wlen), format_int_string(nn_val2, wlen), format_int_string(nn_mod, wlen), format_int_string(nn_exp_res, wlen))
1494
1495    return [ s ]
1496
1497test_funcs["NN_MOD_ADD"] = test_NN_MOD_ADD_SUB
1498test_funcs["NN_MOD_SUB"] = test_NN_MOD_ADD_SUB
1499
1500def test_NN_MOD_INC_DEC(op):
1501    """ Generate tests for NN_MOD_INC and NN_MOD_DEC """
1502    nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1503    nn_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1504
1505    # Compute the result depending on the operation
1506    if (op == "NN_MOD_INC"):
1507        res = (nn_val + 1) % nn_mod
1508    else:
1509        if nn_val == 0:
1510            nn_val = nn_val + 1
1511        res = (nn_val - 1) % nn_mod
1512    nn_exp_res = res
1513
1514    fmt = "%s nnn %s %s %s\n"
1515    s = fmt % (op, format_int_string(nn_val, wlen), format_int_string(nn_mod, wlen), format_int_string(nn_exp_res, wlen))
1516
1517    return [ s ]
1518
1519test_funcs["NN_MOD_INC"] = test_NN_MOD_INC_DEC
1520test_funcs["NN_MOD_DEC"] = test_NN_MOD_INC_DEC
1521
1522
1523def test_NN_MUL_SQR(op):
1524    """ Generate tests for NN_MUL and NN_SQR """
1525    # random value for input numbers
1526    nn_in1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1527    nn_in2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1528
1529    if (op == "NN_MUL"):
1530        out = nn_in1 * nn_in2
1531
1532        fmt = "%s nnnu %s %s %s\n"
1533        s = fmt % (op, format_int_string(out, wlen), format_int_string(nn_in1, wlen), format_int_string(nn_in2, wlen))
1534    else:
1535        out = nn_in1 * nn_in1
1536
1537        fmt = "%s nnu %s %s\n"
1538        s = fmt % (op, format_int_string(out, wlen), format_int_string(nn_in1, wlen))
1539
1540    return [ s ]
1541
1542test_funcs["NN_MUL"] = test_NN_MUL_SQR
1543test_funcs["NN_SQR"] = test_NN_MUL_SQR
1544
1545def test_NN_MOD_MUL(op):
1546    """ Generate tests for modular NN_MOD_MUL """
1547    # Get three random big num
1548    nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1549    nn_val1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1550    nn_val2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1551
1552    # Compute the result depending on the operation
1553    res = (nn_val1 * nn_val2) % nn_mod
1554    nn_exp_res = res
1555
1556    fmt = "%s nnnn %s %s %s %s\n"
1557    s = fmt % (op, format_int_string(nn_val1, wlen), format_int_string(nn_val2, wlen), format_int_string(nn_mod, wlen), format_int_string(nn_exp_res, wlen))
1558
1559    return [ s ]
1560
1561test_funcs["NN_MOD_MUL"] = test_NN_MOD_MUL
1562
1563def test_NN_MOD_POW(op):
1564    """ Generate tests for modular NN_MOD_POW """
1565    # Get three random big num
1566    nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1567    nn_base = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1568    nn_exp = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1569
1570    # Compute the result depending on the operation
1571    res = pow(nn_base, nn_exp, nn_mod)
1572    nn_exp_res = res
1573
1574    fmt = "%s nnnn %s %s %s %s\n"
1575    s = fmt % (op, format_int_string(nn_base, wlen), format_int_string(nn_exp, wlen), format_int_string(nn_mod, wlen), format_int_string(nn_exp_res, wlen))
1576
1577    return [ s ]
1578
1579test_funcs["NN_MOD_POW"] = test_NN_MOD_POW
1580
1581
1582def test_NN_MOD(op):
1583    """ Generate tests for NN_MOD """
1584    # random value for input numbers
1585    nn_c = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1586    nn_d = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1587
1588    nn_exp_r = nn_c % nn_d
1589
1590    fmt = "%s nnn %s %s %s\n"
1591    s = fmt % (op, format_int_string(nn_exp_r, wlen), format_int_string(nn_c, wlen), format_int_string(nn_d, wlen))
1592
1593    return [ s ]
1594
1595test_funcs["NN_MOD"] = test_NN_MOD
1596
1597def test_NN_DIVREM(op):
1598    """ Generate tests for NN_DIVREM """
1599    # random value for input numbers with second one non zero
1600    nn_c = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1601    nn_d = 0
1602    while nn_d == 0:
1603        nn_d = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1604
1605    nn_exp_q = (nn_c // nn_d)
1606    nn_exp_r = nn_c % nn_d
1607
1608    fmt = "%s nnnn %s %s %s %s\n"
1609    s = fmt % (op, format_int_string(nn_exp_q, wlen), format_int_string(nn_exp_r, wlen), format_int_string(nn_c, wlen), format_int_string(nn_d, wlen))
1610
1611    return [ s ]
1612
1613test_funcs["NN_DIVREM"] = test_NN_DIVREM
1614
1615def test_NN_XGCD(op):
1616    """ Generate tests for NN_XGCD """
1617    # random value for input numbers
1618    nn_a = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1619    nn_b = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1620
1621    (nn_exp_g, nn_exp_u, nn_exp_v) = egcd(nn_a, nn_b)
1622    # Check sign of u and v and adapt output
1623    if nn_exp_u < 0:
1624        sign = -1
1625        nn_exp_u = (((2 ** getbitlen(nn_exp_u)) - 1) & (~nn_exp_u)) + 1
1626    else:
1627        sign = 1
1628        nn_exp_v = (((2 ** getbitlen(nn_exp_v)) - 1) & (~nn_exp_v)) + 1
1629    fmt = "%s nnnnns %s %s %s %s %s %d\n"
1630    s = fmt % (op, format_int_string(nn_exp_g, wlen), format_int_string(nn_exp_u, wlen), format_int_string(nn_exp_v, wlen), format_int_string(nn_a, wlen), format_int_string(nn_b, wlen), sign)
1631
1632    return [ s ]
1633
1634test_funcs["NN_XGCD"] = test_NN_XGCD
1635
1636def test_NN_GCD(op):
1637    """ Generate tests for NN_GCD """
1638    # random value for input numbers
1639    nn_a = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1640    nn_b = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1641
1642    (nn_exp_g, nn_exp_u, nn_exp_v) = egcd(nn_a, nn_b)
1643
1644    (nn_exp_g, nn_exp_u, nn_exp_v) = egcd(nn_a, nn_b)
1645    # Check sign of u and v and adapt output
1646    if nn_exp_u < 0:
1647        sign = -1
1648    else:
1649        sign = 1
1650
1651    fmt = "%s nnns %s %s %s %d\n"
1652    s = fmt % (op, format_int_string(nn_exp_g, wlen), format_int_string(nn_a, wlen), format_int_string(nn_b, wlen), sign)
1653
1654    return [ s ]
1655
1656test_funcs["NN_GCD"] = test_NN_GCD
1657
1658def test_NN_MODINV(op):
1659    """ Generate tests for NN_MODINV """
1660    # random value for input numbers, first one non zero
1661    nn_x = 0
1662    while nn_x == 0:
1663        nn_x = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1664    nn_m = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN)
1665
1666    try:
1667        nn_exp_v = modinv(nn_x, nn_m)
1668        exp_r = 0
1669    except Exception:
1670        nn_exp_v = 0
1671        exp_r = -1
1672
1673    fmt = "%s nnns %s %s %s %d\n"
1674    s = fmt % (op, format_int_string(nn_exp_v, wlen), format_int_string(nn_x, wlen), format_int_string(nn_m, wlen), exp_r)
1675
1676    return [ s ]
1677
1678test_funcs["NN_MODINV"] = test_NN_MODINV
1679
1680def test_NN_MODINV_2EXP(op):
1681    """ Generate tests for NN_MODINV_2EXP """
1682    # random value for input number, must be odd
1683    nn_x = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1684    exp = random.randint(1, MAX_INPUT_PARAM_WLEN * wlen)
1685
1686    nn_exp_v = modinv(nn_x, 2**exp)
1687    isodd = 1
1688    if (nn_x % 2) == 0:
1689        isodd = 0
1690
1691    fmt = "%s nnus %s %s %d %d\n"
1692    s = fmt % (op, format_int_string(nn_exp_v, wlen), format_int_string(nn_x, wlen), exp, isodd)
1693
1694    return [ s ]
1695
1696test_funcs["NN_MODINV_2EXP"] = test_NN_MODINV_2EXP
1697
1698def test_NN_MUL_REDC1(op):
1699    """ Generate tests for NN_MUL_REDC1 """
1700    # Odd modulus
1701    nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1702    nn_r, nn_r_square, mpinv = compute_monty_coef(nn_mod, getwlenbitlen(nn_mod, wlen))
1703
1704    # random value for input numbers modulo our random mod
1705    nn_in1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1706    nn_in2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_mod
1707
1708    # Montgomery multiplication computes in1 * in2 * r^-1 (mod)
1709    out = (nn_in1 * nn_in2 * modinv(nn_r, nn_mod)) % nn_mod
1710
1711    fmt = "%s nnnnu %s %s %s %s %d\n"
1712    s = fmt % (op, format_int_string(out, wlen), format_int_string(nn_in1, wlen), format_int_string(nn_in2, wlen), format_int_string(nn_mod, wlen), mpinv)
1713
1714    return [ s ]
1715
1716test_funcs["NN_MUL_REDC1"] = test_NN_MUL_REDC1
1717
1718def test_NN_COEF_REDC1(op):
1719    """ Generate tests for NN_COEF_REDC1 """
1720    # Odd modulus
1721    nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1722    # Get the results
1723    # Expand the modulus size if necessary
1724    if getwlenbitlen(nn_mod, wlen) == wlen:
1725        nn_r, nn_r_square, mpinv = compute_monty_coef(nn_mod, 2*getwlenbitlen(nn_mod, wlen))
1726    else:
1727        nn_r, nn_r_square, mpinv = compute_monty_coef(nn_mod, getwlenbitlen(nn_mod, wlen))
1728
1729    fmt = "%s nnnu %s %s %s %d\n"
1730    s = fmt % (op, format_int_string(nn_r, wlen), format_int_string(nn_r_square, wlen), format_int_string(nn_mod, wlen), mpinv)
1731
1732    return [ s ]
1733
1734test_funcs["NN_COEF_REDC1"] = test_NN_COEF_REDC1
1735
1736def test_NN_COEF_DIV(op):
1737    """ Generate tests for NN_COEF_DIV """
1738    # Odd modulus
1739    nn_mod = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1740    # Get the results
1741    # Expand the modulus size if necessary
1742    if getwlenbitlen(nn_mod, wlen) == wlen:
1743        pshift, nn_pnorm, prec = compute_div_coef(nn_mod, 2*getwlenbitlen(nn_mod, wlen))
1744    else:
1745        pshift, nn_pnorm, prec = compute_div_coef(nn_mod, getwlenbitlen(nn_mod, wlen))
1746
1747    fmt = "%s nuun %s %d %d %s\n"
1748    s = fmt % (op, format_int_string(nn_pnorm, wlen), pshift, prec, format_int_string(nn_mod, wlen))
1749
1750    return [ s ]
1751
1752test_funcs["NN_COEF_DIV"] = test_NN_COEF_DIV
1753
1754
1755# Helper to compute and export an Fp context
1756def format_fp_context(nn_p, wlen):
1757    nn_nbits = getwlenbitlen(nn_p, wlen)
1758    if nn_nbits == wlen:
1759        nn_nbits = 2 * wlen
1760    nn_r, nn_r_square, mpinv = compute_monty_coef(nn_p, nn_nbits)
1761    pshift, nn_pnorm, prec = compute_div_coef(nn_p, nn_nbits)
1762    f = "%%0%dx" % ((nn_nbits // 8) * 2)
1763    fmpinv = "%%0%dx" % (((wlen // 8)) * 2)
1764    return ("%s%s%s%s%s%s%s" % (f % nn_p, f % nn_r, f % nn_r_square, fmpinv % mpinv,
1765               fmpinv % pshift, f % nn_pnorm, fmpinv % prec))
1766
1767def test_FP_ADD_SUB(op):
1768    """ Generate tests for FP_ADD_SUB """
1769    # Use random odd number for faster generation
1770    nn_p = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1771
1772    # Get two random big num
1773    fp_val1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1774    fp_val2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1775
1776    # Compute the result depending on the operation
1777    if (op == "FP_ADD"):
1778        fp_exp_res = (fp_val1 + fp_val2) % nn_p
1779    else:
1780        fp_exp_res = (fp_val1 - fp_val2) % nn_p
1781
1782    fmt = "%s cfff %s %s %s %s\n"
1783    s = fmt % (op, format_fp_context(nn_p, wlen), format_int_string(fp_exp_res, wlen), format_int_string(fp_val1, wlen), format_int_string(fp_val2, wlen))
1784
1785    return [ s ]
1786
1787test_funcs["FP_ADD"] = test_FP_ADD_SUB
1788test_funcs["FP_SUB"] = test_FP_ADD_SUB
1789
1790def test_FP_DIV(op):
1791    """ Generate tests for FP_DIV """
1792    # Get random prime
1793    # NOTE: since we use Fermat's little theorem for inversion, p
1794    # MUST be prime for DIV (while p is relaxed only to be odd for most
1795    # of the other operations).
1796    # Generate a random prime
1797    nn_p = get_random_prime(wlen, MAX_INPUT_PARAM_WLEN)
1798
1799    # Get two random big num
1800    fp_val1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1801    fp_val2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1802
1803    fp_exp_res = (fp_val1 * modinv(fp_val2, nn_p)) % nn_p
1804
1805    fmt = "%s cfff %s %s %s %s\n"
1806    s = fmt % (op,format_fp_context(nn_p, wlen), format_int_string(fp_exp_res, wlen), format_int_string(fp_val1, wlen), format_int_string(fp_val2, wlen))
1807
1808    return [ s ]
1809
1810test_funcs["FP_DIV"] = test_FP_DIV
1811
1812def test_FP_MUL_SQR(op):
1813    """ Generate tests for FP_MUL_SQR """
1814    # Use random odd number for faster generation
1815    nn_p = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1816
1817    # Get two random big num
1818    fp_val1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1819    fp_val2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1820
1821    # Compute the result depending on the operation
1822    if (op == "FP_MUL") or (op == "FP_SQR"):
1823        if (op == "FP_MUL"):
1824            fp_exp_res = (fp_val1 * fp_val2) % nn_p
1825        else:
1826            fp_exp_res = (fp_val1 * fp_val1) % nn_p
1827
1828    if (op == "FP_SQR"):
1829        fmt = "%s cff %s %s %s\n"
1830        s = fmt % (op,format_fp_context(nn_p, wlen), format_int_string(fp_exp_res, wlen), format_int_string(fp_val1, wlen))
1831    else:
1832        fmt = "%s cfff %s %s %s %s\n"
1833        s = fmt % (op,format_fp_context(nn_p, wlen), format_int_string(fp_exp_res, wlen), format_int_string(fp_val1, wlen), format_int_string(fp_val2, wlen))
1834
1835    return [ s ]
1836
1837test_funcs["FP_MUL"] = test_FP_MUL_SQR
1838test_funcs["FP_SQR"] = test_FP_MUL_SQR
1839
1840
1841def test_FP_MUL_SQR_MONTY(op):
1842    """ Generate tests for FP_MUL_SQR_MONTY """
1843    # Use random odd number for faster generation
1844    nn_p = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1845    if getwlenbitlen(nn_p, wlen) == wlen:
1846        nn_r, nn_r_square, mpinv = compute_monty_coef(nn_p, 2*getwlenbitlen(nn_p, wlen))
1847    else:
1848        nn_r, nn_r_square, mpinv = compute_monty_coef(nn_p, getwlenbitlen(nn_p, wlen))
1849
1850    # Get two random big num
1851    fp_val1 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1852    fp_val2 = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1853    # representations of fp_val1 and fp_val2 in Montgomery's world
1854    fp_val1_mont = (fp_val1 * nn_r ) % nn_p
1855    fp_val2_mont = (fp_val2 * nn_r ) % nn_p
1856
1857
1858    if (op == "FP_MUL_MONTY") or (op == "FP_SQR_MONTY"):
1859        if (op == "FP_MUL_MONTY"):
1860            fp_exp_res = (fp_val1_mont * fp_val2_mont * modinv(nn_r%nn_p, nn_p)) % nn_p
1861        else:
1862            fp_exp_res = (fp_val1_mont * fp_val1_mont * modinv(nn_r%nn_p, nn_p)) % nn_p
1863
1864    if (op == "FP_SQR"):
1865        fmt = "%s cff %s %s %s\n"
1866        s = fmt % (op, format_fp_context(nn_p, wlen), format_int_string(fp_exp_res, wlen), format_int_string(fp_val1_mont, wlen))
1867    else:
1868        fmt = "%s cfff %s %s %s %s\n"
1869        s = fmt % (op, format_fp_context(nn_p, wlen), format_int_string(fp_exp_res, wlen), format_int_string(fp_val1_mont, wlen), format_int_string(fp_val2_mont, wlen))
1870
1871    return [ s ]
1872
1873test_funcs["FP_MUL_MONTY"] = test_FP_MUL_SQR_MONTY
1874test_funcs["FP_SQR_MONTY"] = test_FP_MUL_SQR_MONTY
1875
1876
1877def test_FP_POW(op):
1878    """ Generate tests for FP_POW """
1879    # Instead of random prime, use random odd number for faster generation
1880    nn_p = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) | 1
1881
1882    # Get two random big num
1883    fp_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1884    nn_exp = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1885
1886    fp_exp_res = pow(fp_val, nn_exp, nn_p)
1887
1888    fmt = "%s cffn %s %s %s %s\n"
1889    s = fmt % (op, format_fp_context(nn_p, wlen), format_int_string(fp_exp_res, wlen), format_int_string(fp_val, wlen), format_int_string(nn_exp, wlen))
1890
1891    return [ s ]
1892
1893test_funcs["FP_POW"] = test_FP_POW
1894
1895
1896def test_FP_SQRT(op):
1897    """ Generate tests for FP_SQRT """
1898    # Generate a random prime
1899    nn_p = get_random_prime(wlen, MAX_INPUT_PARAM_WLEN)
1900
1901    # Get a random big num in Fp
1902    fp_val = get_random_bigint(wlen, MAX_INPUT_PARAM_WLEN) % nn_p
1903
1904    # Compute the first square root
1905    fp_sqrt1 = mod_sqrt(fp_val, nn_p)
1906    # Compute the other square root
1907    if fp_sqrt1 != None:
1908        fp_sqrt2 = (-fp_sqrt1) % nn_p
1909
1910    fmt = "%s cfffs %s %s %s %s %s\n"
1911    if fp_sqrt1 != None:
1912        s = fmt % (op, format_fp_context(nn_p, wlen), format_int_string(fp_sqrt1, wlen), format_int_string(fp_sqrt2, wlen), format_int_string(fp_val, wlen), 0)
1913    else:
1914        s = fmt % (op, format_fp_context(nn_p, wlen), format_int_string(0, wlen), format_int_string(0, wlen), format_int_string(fp_val, wlen), -1)
1915
1916    return [ s ]
1917
1918test_funcs["FP_SQRT"] = test_FP_SQRT
1919
1920
1921
1922def do_test(sockfd, op, n):
1923    """
1924    Do given test and send back result on given socket
1925    before leaving.
1926    """
1927    res = []
1928    for k in range(n):
1929        res += test_funcs[op](op)
1930    remain = "".join(res)
1931    while (remain):
1932        cur = remain[:DEFBUFSIZE]
1933        sockfd.send(cur)
1934        remain = remain[DEFBUFSIZE:]
1935    sockfd.close()
1936
1937
1938# The way we make generation parallel is by splitting ntests equally
1939# on the number of proc we have.
1940signal.signal(signal.SIGINT, handler)
1941
1942# ATM, we spawn as many processes as the number of tests we have.
1943# We adapt the output on stdout or regular file.
1944if testfile == "stdout":
1945    fd = sys.stdout
1946else:
1947    fd = open(testfile, "w")
1948numproc = get_cpu_count()
1949line = 0
1950
1951sys.stderr.write("[+] Dispatching our %d tests on %d proc\n" % (ntests, numproc))
1952
1953for test in asked_tests:
1954    socks = []
1955
1956    # Before forking, we need to be sure there is no
1957    # remaining data in file fd buffers, otherwise
1958    # those will end up being flushed by out childs
1959    # and create duplicates in the file.
1960    fd.flush()
1961
1962    n = max((ntests // numproc), 1)
1963    for k in range(0, ntests, n):
1964        # Create a pair of sockets for us and the child we'll spawn
1965        a, b = socket.socketpair()
1966        a.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, DEFBUFSIZE)
1967        b.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, DEFBUFSIZE)
1968        a.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, DEFBUFSIZE)
1969        b.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, DEFBUFSIZE)
1970
1971        # keep track of our socket
1972        socks.append(a)
1973
1974        # Double fork a helper to create the campaign for this specific
1975        # test.
1976        pid = os.fork()
1977        if pid != 0:
1978            os.waitpid(pid, 0)
1979        else:
1980            pid = os.fork()
1981            if pid != 0:
1982                sys.exit()
1983            else:
1984                a.close()
1985                # Properly seeding to avoid duplicate random generation
1986                random.seed(datetime.now())
1987                do_test(b, test, n)
1988                sys.exit()
1989
1990        b.close()
1991
1992    # Now that we have fork all helpers, let's just wait until they are
1993    # done and read back the results to write them to file.
1994    while socks:
1995        tmp = select.select(socks, [], [])
1996        for s in tmp[0]:
1997            socks.remove(s)
1998            tmp = s.recv(DEFBUFSIZE)
1999            res = ""
2000            while tmp:
2001                res += tmp
2002                tmp = s.recv(DEFBUFSIZE)
2003            res = res.split('\n')[:-1]
2004            reslen = len(res)
2005            res = zip(range(reslen), res)
2006            fd.write("".join(map(lambda (x,y): "%d %s\n" % (x + line, y), res)))
2007            line += reslen
2008
2009fd.close()
2010