1 /* 2 * libev event processing core, watcher management 3 * 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without modifica- 8 * tion, are permitted provided that the following conditions are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright notice, 11 * this list of conditions and the following disclaimer. 12 * 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 26 * OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Alternatively, the contents of this file may be used under the terms of 29 * the GNU General Public License ("GPL") version 2 or any later version, 30 * in which case the provisions of the GPL are applicable instead of 31 * the above. If you wish to allow the use of your version of this file 32 * only under the terms of the GPL and not to allow others to use your 33 * version of this file under the BSD license, indicate your decision 34 * by deleting the provisions above and replace them with the notice 35 * and other provisions required by the GPL. If you do not delete the 36 * provisions above, a recipient may use your version of this file under 37 * either the BSD or the GPL. 38 */ 39 40 /* this big block deduces configuration from config.h */ 41 #ifndef EV_STANDALONE 42 # ifdef EV_CONFIG_H 43 # include EV_CONFIG_H 44 # else 45 # include "config.h" 46 # endif 47 48 # if HAVE_FLOOR 49 # ifndef EV_USE_FLOOR 50 # define EV_USE_FLOOR 1 51 # endif 52 # endif 53 54 # if HAVE_CLOCK_SYSCALL 55 # ifndef EV_USE_CLOCK_SYSCALL 56 # define EV_USE_CLOCK_SYSCALL 1 57 # ifndef EV_USE_REALTIME 58 # define EV_USE_REALTIME 0 59 # endif 60 # ifndef EV_USE_MONOTONIC 61 # define EV_USE_MONOTONIC 1 62 # endif 63 # endif 64 # elif !defined EV_USE_CLOCK_SYSCALL 65 # define EV_USE_CLOCK_SYSCALL 0 66 # endif 67 68 # if HAVE_CLOCK_GETTIME 69 # ifndef EV_USE_MONOTONIC 70 # define EV_USE_MONOTONIC 1 71 # endif 72 # ifndef EV_USE_REALTIME 73 # define EV_USE_REALTIME 0 74 # endif 75 # else 76 # ifndef EV_USE_MONOTONIC 77 # define EV_USE_MONOTONIC 0 78 # endif 79 # ifndef EV_USE_REALTIME 80 # define EV_USE_REALTIME 0 81 # endif 82 # endif 83 84 # if HAVE_NANOSLEEP 85 # ifndef EV_USE_NANOSLEEP 86 # define EV_USE_NANOSLEEP EV_FEATURE_OS 87 # endif 88 # else 89 # undef EV_USE_NANOSLEEP 90 # define EV_USE_NANOSLEEP 0 91 # endif 92 93 # if HAVE_SELECT && HAVE_SYS_SELECT_H 94 # ifndef EV_USE_SELECT 95 # define EV_USE_SELECT EV_FEATURE_BACKENDS 96 # endif 97 # else 98 # undef EV_USE_SELECT 99 # define EV_USE_SELECT 0 100 # endif 101 102 # if HAVE_POLL && HAVE_POLL_H 103 # ifndef EV_USE_POLL 104 # define EV_USE_POLL EV_FEATURE_BACKENDS 105 # endif 106 # else 107 # undef EV_USE_POLL 108 # define EV_USE_POLL 0 109 # endif 110 111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 112 # ifndef EV_USE_EPOLL 113 # define EV_USE_EPOLL EV_FEATURE_BACKENDS 114 # endif 115 # else 116 # undef EV_USE_EPOLL 117 # define EV_USE_EPOLL 0 118 # endif 119 120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H 121 # ifndef EV_USE_KQUEUE 122 # define EV_USE_KQUEUE EV_FEATURE_BACKENDS 123 # endif 124 # else 125 # undef EV_USE_KQUEUE 126 # define EV_USE_KQUEUE 0 127 # endif 128 129 # if HAVE_PORT_H && HAVE_PORT_CREATE 130 # ifndef EV_USE_PORT 131 # define EV_USE_PORT EV_FEATURE_BACKENDS 132 # endif 133 # else 134 # undef EV_USE_PORT 135 # define EV_USE_PORT 0 136 # endif 137 138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 139 # ifndef EV_USE_INOTIFY 140 # define EV_USE_INOTIFY EV_FEATURE_OS 141 # endif 142 # else 143 # undef EV_USE_INOTIFY 144 # define EV_USE_INOTIFY 0 145 # endif 146 147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H 148 # ifndef EV_USE_SIGNALFD 149 # define EV_USE_SIGNALFD EV_FEATURE_OS 150 # endif 151 # else 152 # undef EV_USE_SIGNALFD 153 # define EV_USE_SIGNALFD 0 154 # endif 155 156 # if HAVE_EVENTFD 157 # ifndef EV_USE_EVENTFD 158 # define EV_USE_EVENTFD EV_FEATURE_OS 159 # endif 160 # else 161 # undef EV_USE_EVENTFD 162 # define EV_USE_EVENTFD 0 163 # endif 164 165 #endif 166 167 #include <stdlib.h> 168 #include <string.h> 169 #include <fcntl.h> 170 #include <stddef.h> 171 172 #include <stdio.h> 173 174 #include <assert.h> 175 #include <errno.h> 176 #include <sys/types.h> 177 #include <time.h> 178 #include <limits.h> 179 180 #include <signal.h> 181 182 #ifdef EV_H 183 # include EV_H 184 #else 185 # include "ev.h" 186 #endif 187 188 #if EV_NO_THREADS 189 # undef EV_NO_SMP 190 # define EV_NO_SMP 1 191 # undef ECB_NO_THREADS 192 # define ECB_NO_THREADS 1 193 #endif 194 #if EV_NO_SMP 195 # undef EV_NO_SMP 196 # define ECB_NO_SMP 1 197 #endif 198 199 #ifndef _WIN32 200 # include <sys/time.h> 201 # include <sys/wait.h> 202 # include <unistd.h> 203 #else 204 # include <io.h> 205 # define WIN32_LEAN_AND_MEAN 206 # include <winsock2.h> 207 # include <windows.h> 208 # ifndef EV_SELECT_IS_WINSOCKET 209 # define EV_SELECT_IS_WINSOCKET 1 210 # endif 211 # undef EV_AVOID_STDIO 212 #endif 213 214 /* OS X, in its infinite idiocy, actually HARDCODES 215 * a limit of 1024 into their select. Where people have brains, 216 * OS X engineers apparently have a vacuum. Or maybe they were 217 * ordered to have a vacuum, or they do anything for money. 218 * This might help. Or not. 219 */ 220 #define _DARWIN_UNLIMITED_SELECT 1 221 222 /* this block tries to deduce configuration from header-defined symbols and defaults */ 223 224 /* try to deduce the maximum number of signals on this platform */ 225 #if defined EV_NSIG 226 /* use what's provided */ 227 #elif defined NSIG 228 # define EV_NSIG (NSIG) 229 #elif defined _NSIG 230 # define EV_NSIG (_NSIG) 231 #elif defined SIGMAX 232 # define EV_NSIG (SIGMAX+1) 233 #elif defined SIG_MAX 234 # define EV_NSIG (SIG_MAX+1) 235 #elif defined _SIG_MAX 236 # define EV_NSIG (_SIG_MAX+1) 237 #elif defined MAXSIG 238 # define EV_NSIG (MAXSIG+1) 239 #elif defined MAX_SIG 240 # define EV_NSIG (MAX_SIG+1) 241 #elif defined SIGARRAYSIZE 242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */ 243 #elif defined _sys_nsig 244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */ 245 #else 246 # define EV_NSIG (8 * sizeof (sigset_t) + 1) 247 #endif 248 249 #ifndef EV_USE_FLOOR 250 # define EV_USE_FLOOR 0 251 #endif 252 253 #ifndef EV_USE_CLOCK_SYSCALL 254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17 255 # define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS 256 # else 257 # define EV_USE_CLOCK_SYSCALL 0 258 # endif 259 #endif 260 261 #if !(_POSIX_TIMERS > 0) 262 # ifndef EV_USE_MONOTONIC 263 # define EV_USE_MONOTONIC 0 264 # endif 265 # ifndef EV_USE_REALTIME 266 # define EV_USE_REALTIME 0 267 # endif 268 #endif 269 270 #ifndef EV_USE_MONOTONIC 271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0 272 # define EV_USE_MONOTONIC EV_FEATURE_OS 273 # else 274 # define EV_USE_MONOTONIC 0 275 # endif 276 #endif 277 278 #ifndef EV_USE_REALTIME 279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 280 #endif 281 282 #ifndef EV_USE_NANOSLEEP 283 # if _POSIX_C_SOURCE >= 199309L 284 # define EV_USE_NANOSLEEP EV_FEATURE_OS 285 # else 286 # define EV_USE_NANOSLEEP 0 287 # endif 288 #endif 289 290 #ifndef EV_USE_SELECT 291 # define EV_USE_SELECT EV_FEATURE_BACKENDS 292 #endif 293 294 #ifndef EV_USE_POLL 295 # ifdef _WIN32 296 # define EV_USE_POLL 0 297 # else 298 # define EV_USE_POLL EV_FEATURE_BACKENDS 299 # endif 300 #endif 301 302 #ifndef EV_USE_EPOLL 303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 304 # define EV_USE_EPOLL EV_FEATURE_BACKENDS 305 # else 306 # define EV_USE_EPOLL 0 307 # endif 308 #endif 309 310 #ifndef EV_USE_KQUEUE 311 # define EV_USE_KQUEUE 0 312 #endif 313 314 #ifndef EV_USE_PORT 315 # define EV_USE_PORT 0 316 #endif 317 318 #ifndef EV_USE_INOTIFY 319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 320 # define EV_USE_INOTIFY EV_FEATURE_OS 321 # else 322 # define EV_USE_INOTIFY 0 323 # endif 324 #endif 325 326 #ifndef EV_PID_HASHSIZE 327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1 328 #endif 329 330 #ifndef EV_INOTIFY_HASHSIZE 331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1 332 #endif 333 334 #ifndef EV_USE_EVENTFD 335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 336 # define EV_USE_EVENTFD EV_FEATURE_OS 337 # else 338 # define EV_USE_EVENTFD 0 339 # endif 340 #endif 341 342 #ifndef EV_USE_SIGNALFD 343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 344 # define EV_USE_SIGNALFD EV_FEATURE_OS 345 # else 346 # define EV_USE_SIGNALFD 0 347 # endif 348 #endif 349 350 #if 0 /* debugging */ 351 # define EV_VERIFY 3 352 # define EV_USE_4HEAP 1 353 # define EV_HEAP_CACHE_AT 1 354 #endif 355 356 #ifndef EV_VERIFY 357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0) 358 #endif 359 360 #ifndef EV_USE_4HEAP 361 # define EV_USE_4HEAP EV_FEATURE_DATA 362 #endif 363 364 #ifndef EV_HEAP_CACHE_AT 365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA 366 #endif 367 368 #ifdef ANDROID 369 /* supposedly, android doesn't typedef fd_mask */ 370 # undef EV_USE_SELECT 371 # define EV_USE_SELECT 0 372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */ 373 # undef EV_USE_CLOCK_SYSCALL 374 # define EV_USE_CLOCK_SYSCALL 0 375 #endif 376 377 /* aix's poll.h seems to cause lots of trouble */ 378 #ifdef _AIX 379 /* AIX has a completely broken poll.h header */ 380 # undef EV_USE_POLL 381 # define EV_USE_POLL 0 382 #endif 383 384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ 385 /* which makes programs even slower. might work on other unices, too. */ 386 #if EV_USE_CLOCK_SYSCALL 387 # include <sys/syscall.h> 388 # ifdef SYS_clock_gettime 389 # define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) 390 # undef EV_USE_MONOTONIC 391 # define EV_USE_MONOTONIC 1 392 # else 393 # undef EV_USE_CLOCK_SYSCALL 394 # define EV_USE_CLOCK_SYSCALL 0 395 # endif 396 #endif 397 398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */ 399 400 #ifndef CLOCK_MONOTONIC 401 # undef EV_USE_MONOTONIC 402 # define EV_USE_MONOTONIC 0 403 #endif 404 405 #ifndef CLOCK_REALTIME 406 # undef EV_USE_REALTIME 407 # define EV_USE_REALTIME 0 408 #endif 409 410 #if !EV_STAT_ENABLE 411 # undef EV_USE_INOTIFY 412 # define EV_USE_INOTIFY 0 413 #endif 414 415 #if !EV_USE_NANOSLEEP 416 /* hp-ux has it in sys/time.h, which we unconditionally include above */ 417 # if !defined _WIN32 && !defined __hpux 418 # include <sys/select.h> 419 # endif 420 #endif 421 422 #if EV_USE_INOTIFY 423 # include <sys/statfs.h> 424 # include <sys/inotify.h> 425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 426 # ifndef IN_DONT_FOLLOW 427 # undef EV_USE_INOTIFY 428 # define EV_USE_INOTIFY 0 429 # endif 430 #endif 431 432 #if EV_USE_EVENTFD 433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 434 # include <stdint.h> 435 # ifndef EFD_NONBLOCK 436 # define EFD_NONBLOCK O_NONBLOCK 437 # endif 438 # ifndef EFD_CLOEXEC 439 # ifdef O_CLOEXEC 440 # define EFD_CLOEXEC O_CLOEXEC 441 # else 442 # define EFD_CLOEXEC 02000000 443 # endif 444 # endif 445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags); 446 #endif 447 448 #if EV_USE_SIGNALFD 449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 450 # include <stdint.h> 451 # ifndef SFD_NONBLOCK 452 # define SFD_NONBLOCK O_NONBLOCK 453 # endif 454 # ifndef SFD_CLOEXEC 455 # ifdef O_CLOEXEC 456 # define SFD_CLOEXEC O_CLOEXEC 457 # else 458 # define SFD_CLOEXEC 02000000 459 # endif 460 # endif 461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags); 462 463 struct signalfd_siginfo 464 { 465 uint32_t ssi_signo; 466 char pad[128 - sizeof (uint32_t)]; 467 }; 468 #endif 469 470 /**/ 471 472 #if EV_VERIFY >= 3 473 # define EV_FREQUENT_CHECK ev_verify (EV_A) 474 #else 475 # define EV_FREQUENT_CHECK do { } while (0) 476 #endif 477 478 /* 479 * This is used to work around floating point rounding problems. 480 * This value is good at least till the year 4000. 481 */ 482 #define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */ 483 /*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */ 484 485 #define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 487 488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0) 489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0) 490 491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */ 492 /* ECB.H BEGIN */ 493 /* 494 * libecb - http://software.schmorp.de/pkg/libecb 495 * 496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de> 497 * Copyright (©) 2011 Emanuele Giaquinta 498 * All rights reserved. 499 * 500 * Redistribution and use in source and binary forms, with or without modifica- 501 * tion, are permitted provided that the following conditions are met: 502 * 503 * 1. Redistributions of source code must retain the above copyright notice, 504 * this list of conditions and the following disclaimer. 505 * 506 * 2. Redistributions in binary form must reproduce the above copyright 507 * notice, this list of conditions and the following disclaimer in the 508 * documentation and/or other materials provided with the distribution. 509 * 510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- 518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 519 * OF THE POSSIBILITY OF SUCH DAMAGE. 520 * 521 * Alternatively, the contents of this file may be used under the terms of 522 * the GNU General Public License ("GPL") version 2 or any later version, 523 * in which case the provisions of the GPL are applicable instead of 524 * the above. If you wish to allow the use of your version of this file 525 * only under the terms of the GPL and not to allow others to use your 526 * version of this file under the BSD license, indicate your decision 527 * by deleting the provisions above and replace them with the notice 528 * and other provisions required by the GPL. If you do not delete the 529 * provisions above, a recipient may use your version of this file under 530 * either the BSD or the GPL. 531 */ 532 533 #ifndef ECB_H 534 #define ECB_H 535 536 /* 16 bits major, 16 bits minor */ 537 #define ECB_VERSION 0x00010005 538 539 #ifdef _WIN32 540 typedef signed char int8_t; 541 typedef unsigned char uint8_t; 542 typedef signed short int16_t; 543 typedef unsigned short uint16_t; 544 typedef signed int int32_t; 545 typedef unsigned int uint32_t; 546 #if __GNUC__ 547 typedef signed long long int64_t; 548 typedef unsigned long long uint64_t; 549 #else /* _MSC_VER || __BORLANDC__ */ 550 typedef signed __int64 int64_t; 551 typedef unsigned __int64 uint64_t; 552 #endif 553 #ifdef _WIN64 554 #define ECB_PTRSIZE 8 555 typedef uint64_t uintptr_t; 556 typedef int64_t intptr_t; 557 #else 558 #define ECB_PTRSIZE 4 559 typedef uint32_t uintptr_t; 560 typedef int32_t intptr_t; 561 #endif 562 #else 563 #include <inttypes.h> 564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU 565 #define ECB_PTRSIZE 8 566 #else 567 #define ECB_PTRSIZE 4 568 #endif 569 #endif 570 571 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) 572 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) 573 574 /* work around x32 idiocy by defining proper macros */ 575 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 576 #if _ILP32 577 #define ECB_AMD64_X32 1 578 #else 579 #define ECB_AMD64 1 580 #endif 581 #endif 582 583 /* many compilers define _GNUC_ to some versions but then only implement 584 * what their idiot authors think are the "more important" extensions, 585 * causing enormous grief in return for some better fake benchmark numbers. 586 * or so. 587 * we try to detect these and simply assume they are not gcc - if they have 588 * an issue with that they should have done it right in the first place. 589 */ 590 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ 591 #define ECB_GCC_VERSION(major,minor) 0 592 #else 593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) 594 #endif 595 596 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) 597 598 #if __clang__ && defined __has_builtin 599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x) 600 #else 601 #define ECB_CLANG_BUILTIN(x) 0 602 #endif 603 604 #if __clang__ && defined __has_extension 605 #define ECB_CLANG_EXTENSION(x) __has_extension (x) 606 #else 607 #define ECB_CLANG_EXTENSION(x) 0 608 #endif 609 610 #define ECB_CPP (__cplusplus+0) 611 #define ECB_CPP11 (__cplusplus >= 201103L) 612 613 #if ECB_CPP 614 #define ECB_C 0 615 #define ECB_STDC_VERSION 0 616 #else 617 #define ECB_C 1 618 #define ECB_STDC_VERSION __STDC_VERSION__ 619 #endif 620 621 #define ECB_C99 (ECB_STDC_VERSION >= 199901L) 622 #define ECB_C11 (ECB_STDC_VERSION >= 201112L) 623 624 #if ECB_CPP 625 #define ECB_EXTERN_C extern "C" 626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C { 627 #define ECB_EXTERN_C_END } 628 #else 629 #define ECB_EXTERN_C extern 630 #define ECB_EXTERN_C_BEG 631 #define ECB_EXTERN_C_END 632 #endif 633 634 /*****************************************************************************/ 635 636 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ 637 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ 638 639 #if ECB_NO_THREADS 640 #define ECB_NO_SMP 1 641 #endif 642 643 #if ECB_NO_SMP 644 #define ECB_MEMORY_FENCE do { } while (0) 645 #endif 646 647 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ 648 #if __xlC__ && ECB_CPP 649 #include <builtins.h> 650 #endif 651 652 #if 1400 <= _MSC_VER 653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ 654 #endif 655 656 #ifndef ECB_MEMORY_FENCE 657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 658 #if __i386 || __i386__ 659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") 660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 662 #elif ECB_GCC_AMD64 663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") 664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") 668 #elif defined __ARM_ARCH_2__ \ 669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ 670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ 671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ 672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ 673 || defined __ARM_ARCH_5TEJ__ 674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */ 675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ 676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ 677 || defined __ARM_ARCH_6T2__ 678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") 679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ 680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ 681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") 682 #elif __aarch64__ 683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") 684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) 685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") 686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") 687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") 688 #elif defined __s390__ || defined __s390x__ 689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") 690 #elif defined __mips__ 691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */ 692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ 693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory") 694 #elif defined __alpha__ 695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") 696 #elif defined __hppa__ 697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") 698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 699 #elif defined __ia64__ 700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") 701 #elif defined __m68k__ 702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") 703 #elif defined __m88k__ 704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory") 705 #elif defined __sh__ 706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") 707 #endif 708 #endif 709 #endif 710 711 #ifndef ECB_MEMORY_FENCE 712 #if ECB_GCC_VERSION(4,7) 713 /* see comment below (stdatomic.h) about the C11 memory model. */ 714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 717 718 #elif ECB_CLANG_EXTENSION(c_atomic) 719 /* see comment below (stdatomic.h) about the C11 memory model. */ 720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 723 724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 725 #define ECB_MEMORY_FENCE __sync_synchronize () 726 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ 728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) 729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier() 730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */ 731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier() 732 #elif _MSC_VER >= 1400 /* VC++ 2005 */ 733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) 734 #define ECB_MEMORY_FENCE _ReadWriteBarrier () 735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ 736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () 737 #elif defined _WIN32 738 #include <WinNT.h> 739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ 740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 741 #include <mbarrier.h> 742 #define ECB_MEMORY_FENCE __machine_rw_barrier () 743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () 744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () 745 #elif __xlC__ 746 #define ECB_MEMORY_FENCE __sync () 747 #endif 748 #endif 749 750 #ifndef ECB_MEMORY_FENCE 751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__ 752 /* we assume that these memory fences work on all variables/all memory accesses, */ 753 /* not just C11 atomics and atomic accesses */ 754 #include <stdatomic.h> 755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ 756 /* any fence other than seq_cst, which isn't very efficient for us. */ 757 /* Why that is, we don't know - either the C11 memory model is quite useless */ 758 /* for most usages, or gcc and clang have a bug */ 759 /* I *currently* lean towards the latter, and inefficiently implement */ 760 /* all three of ecb's fences as a seq_cst fence */ 761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */ 762 /* for all __atomic_thread_fence's except seq_cst */ 763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) 764 #endif 765 #endif 766 767 #ifndef ECB_MEMORY_FENCE 768 #if !ECB_AVOID_PTHREADS 769 /* 770 * if you get undefined symbol references to pthread_mutex_lock, 771 * or failure to find pthread.h, then you should implement 772 * the ECB_MEMORY_FENCE operations for your cpu/compiler 773 * OR provide pthread.h and link against the posix thread library 774 * of your system. 775 */ 776 #include <pthread.h> 777 #define ECB_NEEDS_PTHREADS 1 778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 779 780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; 781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) 782 #endif 783 #endif 784 785 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE 786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE 787 #endif 788 789 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE 790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 791 #endif 792 793 /*****************************************************************************/ 794 795 #if ECB_CPP 796 #define ecb_inline static inline 797 #elif ECB_GCC_VERSION(2,5) 798 #define ecb_inline static __inline__ 799 #elif ECB_C99 800 #define ecb_inline static inline 801 #else 802 #define ecb_inline static 803 #endif 804 805 #if ECB_GCC_VERSION(3,3) 806 #define ecb_restrict __restrict__ 807 #elif ECB_C99 808 #define ecb_restrict restrict 809 #else 810 #define ecb_restrict 811 #endif 812 813 typedef int ecb_bool; 814 815 #define ECB_CONCAT_(a, b) a ## b 816 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) 817 #define ECB_STRINGIFY_(a) # a 818 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) 819 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr)) 820 821 #define ecb_function_ ecb_inline 822 823 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) 824 #define ecb_attribute(attrlist) __attribute__ (attrlist) 825 #else 826 #define ecb_attribute(attrlist) 827 #endif 828 829 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p) 830 #define ecb_is_constant(expr) __builtin_constant_p (expr) 831 #else 832 /* possible C11 impl for integral types 833 typedef struct ecb_is_constant_struct ecb_is_constant_struct; 834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */ 835 836 #define ecb_is_constant(expr) 0 837 #endif 838 839 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) 841 #else 842 #define ecb_expect(expr,value) (expr) 843 #endif 844 845 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch) 846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 847 #else 848 #define ecb_prefetch(addr,rw,locality) 849 #endif 850 851 /* no emulation for ecb_decltype */ 852 #if ECB_CPP11 853 // older implementations might have problems with decltype(x)::type, work around it 854 template<class T> struct ecb_decltype_t { typedef T type; }; 855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type 856 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) 857 #define ecb_decltype(x) __typeof__ (x) 858 #endif 859 860 #if _MSC_VER >= 1300 861 #define ecb_deprecated __declspec (deprecated) 862 #else 863 #define ecb_deprecated ecb_attribute ((__deprecated__)) 864 #endif 865 866 #if _MSC_VER >= 1500 867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg)) 868 #elif ECB_GCC_VERSION(4,5) 869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg)) 870 #else 871 #define ecb_deprecated_message(msg) ecb_deprecated 872 #endif 873 874 #if _MSC_VER >= 1400 875 #define ecb_noinline __declspec (noinline) 876 #else 877 #define ecb_noinline ecb_attribute ((__noinline__)) 878 #endif 879 880 #define ecb_unused ecb_attribute ((__unused__)) 881 #define ecb_const ecb_attribute ((__const__)) 882 #define ecb_pure ecb_attribute ((__pure__)) 883 884 #if ECB_C11 || __IBMC_NORETURN 885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */ 886 #define ecb_noreturn _Noreturn 887 #elif ECB_CPP11 888 #define ecb_noreturn [[noreturn]] 889 #elif _MSC_VER >= 1200 890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */ 891 #define ecb_noreturn __declspec (noreturn) 892 #else 893 #define ecb_noreturn ecb_attribute ((__noreturn__)) 894 #endif 895 896 #if ECB_GCC_VERSION(4,3) 897 #define ecb_artificial ecb_attribute ((__artificial__)) 898 #define ecb_hot ecb_attribute ((__hot__)) 899 #define ecb_cold ecb_attribute ((__cold__)) 900 #else 901 #define ecb_artificial 902 #define ecb_hot 903 #define ecb_cold 904 #endif 905 906 /* put around conditional expressions if you are very sure that the */ 907 /* expression is mostly true or mostly false. note that these return */ 908 /* booleans, not the expression. */ 909 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0) 910 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1) 911 /* for compatibility to the rest of the world */ 912 #define ecb_likely(expr) ecb_expect_true (expr) 913 #define ecb_unlikely(expr) ecb_expect_false (expr) 914 915 /* count trailing zero bits and count # of one bits */ 916 #if ECB_GCC_VERSION(3,4) \ 917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ 918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ 919 && ECB_CLANG_BUILTIN(__builtin_popcount)) 920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ 921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31) 922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63) 923 #define ecb_ctz32(x) __builtin_ctz (x) 924 #define ecb_ctz64(x) __builtin_ctzll (x) 925 #define ecb_popcount32(x) __builtin_popcount (x) 926 /* no popcountll */ 927 #else 928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); 929 ecb_function_ ecb_const int 930 ecb_ctz32 (uint32_t x) 931 { 932 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) 933 unsigned long r; 934 _BitScanForward (&r, x); 935 return (int)r; 936 #else 937 int r = 0; 938 939 x &= ~x + 1; /* this isolates the lowest bit */ 940 941 #if ECB_branchless_on_i386 942 r += !!(x & 0xaaaaaaaa) << 0; 943 r += !!(x & 0xcccccccc) << 1; 944 r += !!(x & 0xf0f0f0f0) << 2; 945 r += !!(x & 0xff00ff00) << 3; 946 r += !!(x & 0xffff0000) << 4; 947 #else 948 if (x & 0xaaaaaaaa) r += 1; 949 if (x & 0xcccccccc) r += 2; 950 if (x & 0xf0f0f0f0) r += 4; 951 if (x & 0xff00ff00) r += 8; 952 if (x & 0xffff0000) r += 16; 953 #endif 954 955 return r; 956 #endif 957 } 958 959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); 960 ecb_function_ ecb_const int 961 ecb_ctz64 (uint64_t x) 962 { 963 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) 964 unsigned long r; 965 _BitScanForward64 (&r, x); 966 return (int)r; 967 #else 968 int shift = x & 0xffffffff ? 0 : 32; 969 return ecb_ctz32 (x >> shift) + shift; 970 #endif 971 } 972 973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); 974 ecb_function_ ecb_const int 975 ecb_popcount32 (uint32_t x) 976 { 977 x -= (x >> 1) & 0x55555555; 978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333); 979 x = ((x >> 4) + x) & 0x0f0f0f0f; 980 x *= 0x01010101; 981 982 return x >> 24; 983 } 984 985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x); 986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x) 987 { 988 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) 989 unsigned long r; 990 _BitScanReverse (&r, x); 991 return (int)r; 992 #else 993 int r = 0; 994 995 if (x >> 16) { x >>= 16; r += 16; } 996 if (x >> 8) { x >>= 8; r += 8; } 997 if (x >> 4) { x >>= 4; r += 4; } 998 if (x >> 2) { x >>= 2; r += 2; } 999 if (x >> 1) { r += 1; } 1000 1001 return r; 1002 #endif 1003 } 1004 1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x); 1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x) 1007 { 1008 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) 1009 unsigned long r; 1010 _BitScanReverse64 (&r, x); 1011 return (int)r; 1012 #else 1013 int r = 0; 1014 1015 if (x >> 32) { x >>= 32; r += 32; } 1016 1017 return r + ecb_ld32 (x); 1018 #endif 1019 } 1020 #endif 1021 1022 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); 1023 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } 1024 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x); 1025 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } 1026 1027 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x); 1028 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x) 1029 { 1030 return ( (x * 0x0802U & 0x22110U) 1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 1032 } 1033 1034 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x); 1035 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x) 1036 { 1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); 1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); 1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); 1040 x = ( x >> 8 ) | ( x << 8); 1041 1042 return x; 1043 } 1044 1045 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x); 1046 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x) 1047 { 1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); 1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); 1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); 1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); 1052 x = ( x >> 16 ) | ( x << 16); 1053 1054 return x; 1055 } 1056 1057 /* popcount64 is only available on 64 bit cpus as gcc builtin */ 1058 /* so for this version we are lazy */ 1059 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); 1060 ecb_function_ ecb_const int 1061 ecb_popcount64 (uint64_t x) 1062 { 1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 1064 } 1065 1066 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); 1067 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); 1068 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); 1069 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count); 1070 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); 1071 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); 1072 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); 1073 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); 1074 1075 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 1076 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 1077 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 1078 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 1079 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 1080 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 1081 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 1082 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 1083 1084 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) 1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) 1086 #define ecb_bswap16(x) __builtin_bswap16 (x) 1087 #else 1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) 1089 #endif 1090 #define ecb_bswap32(x) __builtin_bswap32 (x) 1091 #define ecb_bswap64(x) __builtin_bswap64 (x) 1092 #elif _MSC_VER 1093 #include <stdlib.h> 1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x))) 1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x))) 1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x))) 1097 #else 1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); 1099 ecb_function_ ecb_const uint16_t 1100 ecb_bswap16 (uint16_t x) 1101 { 1102 return ecb_rotl16 (x, 8); 1103 } 1104 1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); 1106 ecb_function_ ecb_const uint32_t 1107 ecb_bswap32 (uint32_t x) 1108 { 1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); 1110 } 1111 1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); 1113 ecb_function_ ecb_const uint64_t 1114 ecb_bswap64 (uint64_t x) 1115 { 1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); 1117 } 1118 #endif 1119 1120 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) 1121 #define ecb_unreachable() __builtin_unreachable () 1122 #else 1123 /* this seems to work fine, but gcc always emits a warning for it :/ */ 1124 ecb_inline ecb_noreturn void ecb_unreachable (void); 1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { } 1126 #endif 1127 1128 /* try to tell the compiler that some condition is definitely true */ 1129 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 1130 1131 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); 1132 ecb_inline ecb_const uint32_t 1133 ecb_byteorder_helper (void) 1134 { 1135 /* the union code still generates code under pressure in gcc, */ 1136 /* but less than using pointers, and always seems to */ 1137 /* successfully return a constant. */ 1138 /* the reason why we have this horrible preprocessor mess */ 1139 /* is to avoid it in all cases, at least on common architectures */ 1140 /* or when using a recent enough gcc version (>= 4.6) */ 1141 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ 1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) 1143 #define ECB_LITTLE_ENDIAN 1 1144 return 0x44332211; 1145 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ 1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) 1147 #define ECB_BIG_ENDIAN 1 1148 return 0x11223344; 1149 #else 1150 union 1151 { 1152 uint8_t c[4]; 1153 uint32_t u; 1154 } u = { 0x11, 0x22, 0x33, 0x44 }; 1155 return u.u; 1156 #endif 1157 } 1158 1159 ecb_inline ecb_const ecb_bool ecb_big_endian (void); 1160 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } 1161 ecb_inline ecb_const ecb_bool ecb_little_endian (void); 1162 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } 1163 1164 #if ECB_GCC_VERSION(3,0) || ECB_C99 1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1166 #else 1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 1168 #endif 1169 1170 #if ECB_CPP 1171 template<typename T> 1172 static inline T ecb_div_rd (T val, T div) 1173 { 1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; 1175 } 1176 template<typename T> 1177 static inline T ecb_div_ru (T val, T div) 1178 { 1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; 1180 } 1181 #else 1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 1184 #endif 1185 1186 #if ecb_cplusplus_does_not_suck 1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 1188 template<typename T, int N> 1189 static inline int ecb_array_length (const T (&arr)[N]) 1190 { 1191 return N; 1192 } 1193 #else 1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 1195 #endif 1196 1197 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); 1198 ecb_function_ ecb_const uint32_t 1199 ecb_binary16_to_binary32 (uint32_t x) 1200 { 1201 unsigned int s = (x & 0x8000) << (31 - 15); 1202 int e = (x >> 10) & 0x001f; 1203 unsigned int m = x & 0x03ff; 1204 1205 if (ecb_expect_false (e == 31)) 1206 /* infinity or NaN */ 1207 e = 255 - (127 - 15); 1208 else if (ecb_expect_false (!e)) 1209 { 1210 if (ecb_expect_true (!m)) 1211 /* zero, handled by code below by forcing e to 0 */ 1212 e = 0 - (127 - 15); 1213 else 1214 { 1215 /* subnormal, renormalise */ 1216 unsigned int s = 10 - ecb_ld32 (m); 1217 1218 m = (m << s) & 0x3ff; /* mask implicit bit */ 1219 e -= s - 1; 1220 } 1221 } 1222 1223 /* e and m now are normalised, or zero, (or inf or nan) */ 1224 e += 127 - 15; 1225 1226 return s | (e << 23) | (m << (23 - 10)); 1227 } 1228 1229 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); 1230 ecb_function_ ecb_const uint16_t 1231 ecb_binary32_to_binary16 (uint32_t x) 1232 { 1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ 1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ 1235 unsigned int m = x & 0x007fffff; 1236 1237 x &= 0x7fffffff; 1238 1239 /* if it's within range of binary16 normals, use fast path */ 1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff)) 1241 { 1242 /* mantissa round-to-even */ 1243 m += 0x00000fff + ((m >> (23 - 10)) & 1); 1244 1245 /* handle overflow */ 1246 if (ecb_expect_false (m >= 0x00800000)) 1247 { 1248 m >>= 1; 1249 e += 1; 1250 } 1251 1252 return s | (e << 10) | (m >> (23 - 10)); 1253 } 1254 1255 /* handle large numbers and infinity */ 1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) 1257 return s | 0x7c00; 1258 1259 /* handle zero, subnormals and small numbers */ 1260 if (ecb_expect_true (x < 0x38800000)) 1261 { 1262 /* zero */ 1263 if (ecb_expect_true (!x)) 1264 return s; 1265 1266 /* handle subnormals */ 1267 1268 /* too small, will be zero */ 1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */ 1270 return s; 1271 1272 m |= 0x00800000; /* make implicit bit explicit */ 1273 1274 /* very tricky - we need to round to the nearest e (+10) bit value */ 1275 { 1276 unsigned int bits = 14 - e; 1277 unsigned int half = (1 << (bits - 1)) - 1; 1278 unsigned int even = (m >> bits) & 1; 1279 1280 /* if this overflows, we will end up with a normalised number */ 1281 m = (m + half + even) >> bits; 1282 } 1283 1284 return s | m; 1285 } 1286 1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ 1288 m >>= 13; 1289 1290 return s | 0x7c00 | m | !m; 1291 } 1292 1293 /*******************************************************************************/ 1294 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1295 1296 /* basically, everything uses "ieee pure-endian" floating point numbers */ 1297 /* the only noteworthy exception is ancient armle, which uses order 43218765 */ 1298 #if 0 \ 1299 || __i386 || __i386__ \ 1300 || ECB_GCC_AMD64 \ 1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ 1302 || defined __s390__ || defined __s390x__ \ 1303 || defined __mips__ \ 1304 || defined __alpha__ \ 1305 || defined __hppa__ \ 1306 || defined __ia64__ \ 1307 || defined __m68k__ \ 1308 || defined __m88k__ \ 1309 || defined __sh__ \ 1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ 1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ 1312 || defined __aarch64__ 1313 #define ECB_STDFP 1 1314 #include <string.h> /* for memcpy */ 1315 #else 1316 #define ECB_STDFP 0 1317 #endif 1318 1319 #ifndef ECB_NO_LIBM 1320 1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */ 1322 1323 /* only the oldest of old doesn't have this one. solaris. */ 1324 #ifdef INFINITY 1325 #define ECB_INFINITY INFINITY 1326 #else 1327 #define ECB_INFINITY HUGE_VAL 1328 #endif 1329 1330 #ifdef NAN 1331 #define ECB_NAN NAN 1332 #else 1333 #define ECB_NAN ECB_INFINITY 1334 #endif 1335 1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L 1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e)) 1338 #define ecb_frexpf(x,e) frexpf ((x), (e)) 1339 #else 1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e)) 1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) 1342 #endif 1343 1344 /* convert a float to ieee single/binary32 */ 1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); 1346 ecb_function_ ecb_const uint32_t 1347 ecb_float_to_binary32 (float x) 1348 { 1349 uint32_t r; 1350 1351 #if ECB_STDFP 1352 memcpy (&r, &x, 4); 1353 #else 1354 /* slow emulation, works for anything but -0 */ 1355 uint32_t m; 1356 int e; 1357 1358 if (x == 0e0f ) return 0x00000000U; 1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U; 1360 if (x < -3.40282346638528860e+38f) return 0xff800000U; 1361 if (x != x ) return 0x7fbfffffU; 1362 1363 m = ecb_frexpf (x, &e) * 0x1000000U; 1364 1365 r = m & 0x80000000U; 1366 1367 if (r) 1368 m = -m; 1369 1370 if (e <= -126) 1371 { 1372 m &= 0xffffffU; 1373 m >>= (-125 - e); 1374 e = -126; 1375 } 1376 1377 r |= (e + 126) << 23; 1378 r |= m & 0x7fffffU; 1379 #endif 1380 1381 return r; 1382 } 1383 1384 /* converts an ieee single/binary32 to a float */ 1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); 1386 ecb_function_ ecb_const float 1387 ecb_binary32_to_float (uint32_t x) 1388 { 1389 float r; 1390 1391 #if ECB_STDFP 1392 memcpy (&r, &x, 4); 1393 #else 1394 /* emulation, only works for normals and subnormals and +0 */ 1395 int neg = x >> 31; 1396 int e = (x >> 23) & 0xffU; 1397 1398 x &= 0x7fffffU; 1399 1400 if (e) 1401 x |= 0x800000U; 1402 else 1403 e = 1; 1404 1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ 1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126); 1407 1408 r = neg ? -r : r; 1409 #endif 1410 1411 return r; 1412 } 1413 1414 /* convert a double to ieee double/binary64 */ 1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); 1416 ecb_function_ ecb_const uint64_t 1417 ecb_double_to_binary64 (double x) 1418 { 1419 uint64_t r; 1420 1421 #if ECB_STDFP 1422 memcpy (&r, &x, 8); 1423 #else 1424 /* slow emulation, works for anything but -0 */ 1425 uint64_t m; 1426 int e; 1427 1428 if (x == 0e0 ) return 0x0000000000000000U; 1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; 1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; 1431 if (x != x ) return 0X7ff7ffffffffffffU; 1432 1433 m = frexp (x, &e) * 0x20000000000000U; 1434 1435 r = m & 0x8000000000000000;; 1436 1437 if (r) 1438 m = -m; 1439 1440 if (e <= -1022) 1441 { 1442 m &= 0x1fffffffffffffU; 1443 m >>= (-1021 - e); 1444 e = -1022; 1445 } 1446 1447 r |= ((uint64_t)(e + 1022)) << 52; 1448 r |= m & 0xfffffffffffffU; 1449 #endif 1450 1451 return r; 1452 } 1453 1454 /* converts an ieee double/binary64 to a double */ 1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); 1456 ecb_function_ ecb_const double 1457 ecb_binary64_to_double (uint64_t x) 1458 { 1459 double r; 1460 1461 #if ECB_STDFP 1462 memcpy (&r, &x, 8); 1463 #else 1464 /* emulation, only works for normals and subnormals and +0 */ 1465 int neg = x >> 63; 1466 int e = (x >> 52) & 0x7ffU; 1467 1468 x &= 0xfffffffffffffU; 1469 1470 if (e) 1471 x |= 0x10000000000000U; 1472 else 1473 e = 1; 1474 1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ 1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); 1477 1478 r = neg ? -r : r; 1479 #endif 1480 1481 return r; 1482 } 1483 1484 /* convert a float to ieee half/binary16 */ 1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x); 1486 ecb_function_ ecb_const uint16_t 1487 ecb_float_to_binary16 (float x) 1488 { 1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x)); 1490 } 1491 1492 /* convert an ieee half/binary16 to float */ 1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); 1494 ecb_function_ ecb_const float 1495 ecb_binary16_to_float (uint16_t x) 1496 { 1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x)); 1498 } 1499 1500 #endif 1501 1502 #endif 1503 1504 /* ECB.H END */ 1505 1506 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS 1507 /* if your architecture doesn't need memory fences, e.g. because it is 1508 * single-cpu/core, or if you use libev in a project that doesn't use libev 1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling 1510 * libev, in which cases the memory fences become nops. 1511 * alternatively, you can remove this #error and link against libpthread, 1512 * which will then provide the memory fences. 1513 */ 1514 /* 1515 * krb5 change: per the comment below, we are allowing pthreads on platforms 1516 * which are too old to have better memory thead support, as is the case on 1517 * older Solaris versions. 1518 */ 1519 #if 0 1520 # error "memory fences not defined for your architecture, please report" 1521 #endif 1522 #endif 1523 1524 #ifndef ECB_MEMORY_FENCE 1525 # define ECB_MEMORY_FENCE do { } while (0) 1526 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE 1527 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 1528 #endif 1529 1530 #define expect_false(cond) ecb_expect_false (cond) 1531 #define expect_true(cond) ecb_expect_true (cond) 1532 #define noinline ecb_noinline 1533 1534 #define inline_size ecb_inline 1535 1536 #if EV_FEATURE_CODE 1537 # define inline_speed ecb_inline 1538 #else 1539 # define inline_speed static noinline 1540 #endif 1541 1542 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1543 1544 #if EV_MINPRI == EV_MAXPRI 1545 # define ABSPRI(w) (((W)w), 0) 1546 #else 1547 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1548 #endif 1549 1550 #define EMPTY /* required for microsofts broken pseudo-c compiler */ 1551 #define EMPTY2(a,b) /* used to suppress some warnings */ 1552 1553 typedef ev_watcher *W; 1554 typedef ev_watcher_list *WL; 1555 typedef ev_watcher_time *WT; 1556 1557 #define ev_active(w) ((W)(w))->active 1558 #define ev_at(w) ((WT)(w))->at 1559 1560 #if EV_USE_REALTIME 1561 /* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1562 /* giving it a reasonably high chance of working on typical architectures */ 1563 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1564 #endif 1565 1566 #if EV_USE_MONOTONIC 1567 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1568 #endif 1569 1570 #ifndef EV_FD_TO_WIN32_HANDLE 1571 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd) 1572 #endif 1573 #ifndef EV_WIN32_HANDLE_TO_FD 1574 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0) 1575 #endif 1576 #ifndef EV_WIN32_CLOSE_FD 1577 # define EV_WIN32_CLOSE_FD(fd) close (fd) 1578 #endif 1579 1580 #ifdef _WIN32 1581 # include "ev_win32.c" 1582 #endif 1583 1584 /*****************************************************************************/ 1585 1586 /* define a suitable floor function (only used by periodics atm) */ 1587 1588 #if EV_USE_FLOOR 1589 # include <math.h> 1590 # define ev_floor(v) floor (v) 1591 #else 1592 1593 #include <float.h> 1594 1595 /* a floor() replacement function, should be independent of ev_tstamp type */ 1596 static ev_tstamp noinline 1597 ev_floor (ev_tstamp v) 1598 { 1599 /* the choice of shift factor is not terribly important */ 1600 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */ 1601 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.; 1602 #else 1603 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.; 1604 #endif 1605 1606 /* argument too large for an unsigned long? */ 1607 if (expect_false (v >= shift)) 1608 { 1609 ev_tstamp f; 1610 1611 if (v == v - 1.) 1612 return v; /* very large number */ 1613 1614 f = shift * ev_floor (v * (1. / shift)); 1615 return f + ev_floor (v - f); 1616 } 1617 1618 /* special treatment for negative args? */ 1619 if (expect_false (v < 0.)) 1620 { 1621 ev_tstamp f = -ev_floor (-v); 1622 1623 return f - (f == v ? 0 : 1); 1624 } 1625 1626 /* fits into an unsigned long */ 1627 return (unsigned long)v; 1628 } 1629 1630 #endif 1631 1632 /*****************************************************************************/ 1633 1634 #ifdef __linux 1635 # include <sys/utsname.h> 1636 #endif 1637 1638 static unsigned int noinline ecb_cold 1639 ev_linux_version (void) 1640 { 1641 #ifdef __linux 1642 unsigned int v = 0; 1643 struct utsname buf; 1644 int i; 1645 char *p = buf.release; 1646 1647 if (uname (&buf)) 1648 return 0; 1649 1650 for (i = 3+1; --i; ) 1651 { 1652 unsigned int c = 0; 1653 1654 for (;;) 1655 { 1656 if (*p >= '0' && *p <= '9') 1657 c = c * 10 + *p++ - '0'; 1658 else 1659 { 1660 p += *p == '.'; 1661 break; 1662 } 1663 } 1664 1665 v = (v << 8) | c; 1666 } 1667 1668 return v; 1669 #else 1670 return 0; 1671 #endif 1672 } 1673 1674 /*****************************************************************************/ 1675 1676 #if EV_AVOID_STDIO 1677 static void noinline ecb_cold 1678 ev_printerr (const char *msg) 1679 { 1680 write (STDERR_FILENO, msg, strlen (msg)); 1681 } 1682 #endif 1683 1684 static void (*syserr_cb)(const char *msg) EV_THROW; 1685 1686 void ecb_cold 1687 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW 1688 { 1689 syserr_cb = cb; 1690 } 1691 1692 static void noinline ecb_cold 1693 ev_syserr (const char *msg) 1694 { 1695 if (!msg) 1696 msg = "(libev) system error"; 1697 1698 if (syserr_cb) 1699 syserr_cb (msg); 1700 else 1701 { 1702 #if EV_AVOID_STDIO 1703 ev_printerr (msg); 1704 ev_printerr (": "); 1705 ev_printerr (strerror (errno)); 1706 ev_printerr ("\n"); 1707 #else 1708 perror (msg); 1709 #endif 1710 abort (); 1711 } 1712 } 1713 1714 static void * 1715 ev_realloc_emul (void *ptr, long size) EV_THROW 1716 { 1717 /* some systems, notably openbsd and darwin, fail to properly 1718 * implement realloc (x, 0) (as required by both ansi c-89 and 1719 * the single unix specification, so work around them here. 1720 * recently, also (at least) fedora and debian started breaking it, 1721 * despite documenting it otherwise. 1722 */ 1723 1724 if (size) 1725 return realloc (ptr, size); 1726 1727 free (ptr); 1728 return 0; 1729 } 1730 1731 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul; 1732 1733 void ecb_cold 1734 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW 1735 { 1736 alloc = cb; 1737 } 1738 1739 inline_speed void * 1740 ev_realloc (void *ptr, long size) 1741 { 1742 ptr = alloc (ptr, size); 1743 1744 if (!ptr && size) 1745 { 1746 #if EV_AVOID_STDIO 1747 ev_printerr ("(libev) memory allocation failed, aborting.\n"); 1748 #else 1749 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size); 1750 #endif 1751 abort (); 1752 } 1753 1754 return ptr; 1755 } 1756 1757 #define ev_malloc(size) ev_realloc (0, (size)) 1758 #define ev_free(ptr) ev_realloc ((ptr), 0) 1759 1760 /*****************************************************************************/ 1761 1762 /* set in reify when reification needed */ 1763 #define EV_ANFD_REIFY 1 1764 1765 /* file descriptor info structure */ 1766 typedef struct 1767 { 1768 WL head; 1769 unsigned char events; /* the events watched for */ 1770 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */ 1771 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1772 unsigned char unused; 1773 #if EV_USE_EPOLL 1774 unsigned int egen; /* generation counter to counter epoll bugs */ 1775 #endif 1776 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP 1777 SOCKET handle; 1778 #endif 1779 #if EV_USE_IOCP 1780 OVERLAPPED or, ow; 1781 #endif 1782 } ANFD; 1783 1784 /* stores the pending event set for a given watcher */ 1785 typedef struct 1786 { 1787 W w; 1788 int events; /* the pending event set for the given watcher */ 1789 } ANPENDING; 1790 1791 #if EV_USE_INOTIFY 1792 /* hash table entry per inotify-id */ 1793 typedef struct 1794 { 1795 WL head; 1796 } ANFS; 1797 #endif 1798 1799 /* Heap Entry */ 1800 #if EV_HEAP_CACHE_AT 1801 /* a heap element */ 1802 typedef struct { 1803 ev_tstamp at; 1804 WT w; 1805 } ANHE; 1806 1807 #define ANHE_w(he) (he).w /* access watcher, read-write */ 1808 #define ANHE_at(he) (he).at /* access cached at, read-only */ 1809 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 1810 #else 1811 /* a heap element */ 1812 typedef WT ANHE; 1813 1814 #define ANHE_w(he) (he) 1815 #define ANHE_at(he) (he)->at 1816 #define ANHE_at_cache(he) 1817 #endif 1818 1819 #if EV_MULTIPLICITY 1820 1821 struct ev_loop 1822 { 1823 ev_tstamp ev_rt_now; 1824 #define ev_rt_now ((loop)->ev_rt_now) 1825 #define VAR(name,decl) decl; 1826 #include "ev_vars.h" 1827 #undef VAR 1828 }; 1829 #include "ev_wrap.h" 1830 1831 static struct ev_loop default_loop_struct; 1832 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */ 1833 1834 #else 1835 1836 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */ 1837 #define VAR(name,decl) static decl; 1838 #include "ev_vars.h" 1839 #undef VAR 1840 1841 static int ev_default_loop_ptr; 1842 1843 #endif 1844 1845 #if EV_FEATURE_API 1846 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A) 1847 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A) 1848 # define EV_INVOKE_PENDING invoke_cb (EV_A) 1849 #else 1850 # define EV_RELEASE_CB (void)0 1851 # define EV_ACQUIRE_CB (void)0 1852 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A) 1853 #endif 1854 1855 #define EVBREAK_RECURSE 0x80 1856 1857 /*****************************************************************************/ 1858 1859 #ifndef EV_HAVE_EV_TIME 1860 ev_tstamp 1861 ev_time (void) EV_THROW 1862 { 1863 #if EV_USE_REALTIME 1864 if (expect_true (have_realtime)) 1865 { 1866 struct timespec ts; 1867 clock_gettime (CLOCK_REALTIME, &ts); 1868 return ts.tv_sec + ts.tv_nsec * 1e-9; 1869 } 1870 #endif 1871 1872 struct timeval tv; 1873 gettimeofday (&tv, 0); 1874 return tv.tv_sec + tv.tv_usec * 1e-6; 1875 } 1876 #endif 1877 1878 inline_size ev_tstamp 1879 get_clock (void) 1880 { 1881 #if EV_USE_MONOTONIC 1882 if (expect_true (have_monotonic)) 1883 { 1884 struct timespec ts; 1885 clock_gettime (CLOCK_MONOTONIC, &ts); 1886 return ts.tv_sec + ts.tv_nsec * 1e-9; 1887 } 1888 #endif 1889 1890 return ev_time (); 1891 } 1892 1893 #if EV_MULTIPLICITY 1894 ev_tstamp 1895 ev_now (EV_P) EV_THROW 1896 { 1897 return ev_rt_now; 1898 } 1899 #endif 1900 1901 void 1902 ev_sleep (ev_tstamp delay) EV_THROW 1903 { 1904 if (delay > 0.) 1905 { 1906 #if EV_USE_NANOSLEEP 1907 struct timespec ts; 1908 1909 EV_TS_SET (ts, delay); 1910 nanosleep (&ts, 0); 1911 #elif defined _WIN32 1912 Sleep ((unsigned long)(delay * 1e3)); 1913 #else 1914 struct timeval tv; 1915 1916 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1917 /* something not guaranteed by newer posix versions, but guaranteed */ 1918 /* by older ones */ 1919 EV_TV_SET (tv, delay); 1920 select (0, 0, 0, 0, &tv); 1921 #endif 1922 } 1923 } 1924 1925 /*****************************************************************************/ 1926 1927 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1928 1929 /* find a suitable new size for the given array, */ 1930 /* hopefully by rounding to a nice-to-malloc size */ 1931 inline_size int 1932 array_nextsize (int elem, int cur, int cnt) 1933 { 1934 int ncur = cur + 1; 1935 1936 do 1937 ncur <<= 1; 1938 while (cnt > ncur); 1939 1940 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */ 1941 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1942 { 1943 ncur *= elem; 1944 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1945 ncur = ncur - sizeof (void *) * 4; 1946 ncur /= elem; 1947 } 1948 1949 return ncur; 1950 } 1951 1952 static void * noinline ecb_cold 1953 array_realloc (int elem, void *base, int *cur, int cnt) 1954 { 1955 *cur = array_nextsize (elem, *cur, cnt); 1956 return ev_realloc (base, elem * *cur); 1957 } 1958 1959 #define array_init_zero(base,count) \ 1960 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1961 1962 #define array_needsize(type,base,cur,cnt,init) \ 1963 if (expect_false ((cnt) > (cur))) \ 1964 { \ 1965 int ecb_unused ocur_ = (cur); \ 1966 (base) = (type *)array_realloc \ 1967 (sizeof (type), (base), &(cur), (cnt)); \ 1968 init ((base) + (ocur_), (cur) - ocur_); \ 1969 } 1970 1971 #if 0 1972 #define array_slim(type,stem) \ 1973 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1974 { \ 1975 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1976 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1977 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1978 } 1979 #endif 1980 1981 #define array_free(stem, idx) \ 1982 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 1983 1984 /*****************************************************************************/ 1985 1986 /* dummy callback for pending events */ 1987 static void noinline 1988 pendingcb (EV_P_ ev_prepare *w, int revents) 1989 { 1990 } 1991 1992 void noinline 1993 ev_feed_event (EV_P_ void *w, int revents) EV_THROW 1994 { 1995 W w_ = (W)w; 1996 int pri = ABSPRI (w_); 1997 1998 if (expect_false (w_->pending)) 1999 pendings [pri][w_->pending - 1].events |= revents; 2000 else 2001 { 2002 w_->pending = ++pendingcnt [pri]; 2003 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2004 pendings [pri][w_->pending - 1].w = w_; 2005 pendings [pri][w_->pending - 1].events = revents; 2006 } 2007 2008 pendingpri = NUMPRI - 1; 2009 } 2010 2011 inline_speed void 2012 feed_reverse (EV_P_ W w) 2013 { 2014 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2); 2015 rfeeds [rfeedcnt++] = w; 2016 } 2017 2018 inline_size void 2019 feed_reverse_done (EV_P_ int revents) 2020 { 2021 do 2022 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents); 2023 while (rfeedcnt); 2024 } 2025 2026 inline_speed void 2027 queue_events (EV_P_ W *events, int eventcnt, int type) 2028 { 2029 int i; 2030 2031 for (i = 0; i < eventcnt; ++i) 2032 ev_feed_event (EV_A_ events [i], type); 2033 } 2034 2035 /*****************************************************************************/ 2036 2037 inline_speed void 2038 fd_event_nocheck (EV_P_ int fd, int revents) 2039 { 2040 ANFD *anfd = anfds + fd; 2041 ev_io *w; 2042 2043 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2044 { 2045 int ev = w->events & revents; 2046 2047 if (ev) 2048 ev_feed_event (EV_A_ (W)w, ev); 2049 } 2050 } 2051 2052 /* do not submit kernel events for fds that have reify set */ 2053 /* because that means they changed while we were polling for new events */ 2054 inline_speed void 2055 fd_event (EV_P_ int fd, int revents) 2056 { 2057 ANFD *anfd = anfds + fd; 2058 2059 if (expect_true (!anfd->reify)) 2060 fd_event_nocheck (EV_A_ fd, revents); 2061 } 2062 2063 void 2064 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW 2065 { 2066 if (fd >= 0 && fd < anfdmax) 2067 fd_event_nocheck (EV_A_ fd, revents); 2068 } 2069 2070 /* make sure the external fd watch events are in-sync */ 2071 /* with the kernel/libev internal state */ 2072 inline_size void 2073 fd_reify (EV_P) 2074 { 2075 int i; 2076 2077 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP 2078 for (i = 0; i < fdchangecnt; ++i) 2079 { 2080 int fd = fdchanges [i]; 2081 ANFD *anfd = anfds + fd; 2082 2083 if (anfd->reify & EV__IOFDSET && anfd->head) 2084 { 2085 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd); 2086 2087 if (handle != anfd->handle) 2088 { 2089 unsigned long arg; 2090 2091 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0)); 2092 2093 /* handle changed, but fd didn't - we need to do it in two steps */ 2094 backend_modify (EV_A_ fd, anfd->events, 0); 2095 anfd->events = 0; 2096 anfd->handle = handle; 2097 } 2098 } 2099 } 2100 #endif 2101 2102 for (i = 0; i < fdchangecnt; ++i) 2103 { 2104 int fd = fdchanges [i]; 2105 ANFD *anfd = anfds + fd; 2106 ev_io *w; 2107 2108 unsigned char o_events = anfd->events; 2109 unsigned char o_reify = anfd->reify; 2110 2111 anfd->reify = 0; 2112 2113 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */ 2114 { 2115 anfd->events = 0; 2116 2117 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2118 anfd->events |= (unsigned char)w->events; 2119 2120 if (o_events != anfd->events) 2121 o_reify = EV__IOFDSET; /* actually |= */ 2122 } 2123 2124 if (o_reify & EV__IOFDSET) 2125 backend_modify (EV_A_ fd, o_events, anfd->events); 2126 } 2127 2128 fdchangecnt = 0; 2129 } 2130 2131 /* something about the given fd changed */ 2132 inline_size void 2133 fd_change (EV_P_ int fd, int flags) 2134 { 2135 unsigned char reify = anfds [fd].reify; 2136 anfds [fd].reify |= flags; 2137 2138 if (expect_true (!reify)) 2139 { 2140 ++fdchangecnt; 2141 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2142 fdchanges [fdchangecnt - 1] = fd; 2143 } 2144 } 2145 2146 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ 2147 inline_speed void ecb_cold 2148 fd_kill (EV_P_ int fd) 2149 { 2150 ev_io *w; 2151 2152 while ((w = (ev_io *)anfds [fd].head)) 2153 { 2154 ev_io_stop (EV_A_ w); 2155 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2156 } 2157 } 2158 2159 /* check whether the given fd is actually valid, for error recovery */ 2160 inline_size int ecb_cold 2161 fd_valid (int fd) 2162 { 2163 #ifdef _WIN32 2164 return EV_FD_TO_WIN32_HANDLE (fd) != -1; 2165 #else 2166 return fcntl (fd, F_GETFD) != -1; 2167 #endif 2168 } 2169 2170 /* called on EBADF to verify fds */ 2171 static void noinline ecb_cold 2172 fd_ebadf (EV_P) 2173 { 2174 int fd; 2175 2176 for (fd = 0; fd < anfdmax; ++fd) 2177 if (anfds [fd].events) 2178 if (!fd_valid (fd) && errno == EBADF) 2179 fd_kill (EV_A_ fd); 2180 } 2181 2182 /* called on ENOMEM in select/poll to kill some fds and retry */ 2183 static void noinline ecb_cold 2184 fd_enomem (EV_P) 2185 { 2186 int fd; 2187 2188 for (fd = anfdmax; fd--; ) 2189 if (anfds [fd].events) 2190 { 2191 fd_kill (EV_A_ fd); 2192 break; 2193 } 2194 } 2195 2196 /* usually called after fork if backend needs to re-arm all fds from scratch */ 2197 static void noinline 2198 fd_rearm_all (EV_P) 2199 { 2200 int fd; 2201 2202 for (fd = 0; fd < anfdmax; ++fd) 2203 if (anfds [fd].events) 2204 { 2205 anfds [fd].events = 0; 2206 anfds [fd].emask = 0; 2207 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); 2208 } 2209 } 2210 2211 /* used to prepare libev internal fd's */ 2212 /* this is not fork-safe */ 2213 inline_speed void 2214 fd_intern (int fd) 2215 { 2216 #ifdef _WIN32 2217 unsigned long arg = 1; 2218 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg); 2219 #else 2220 fcntl (fd, F_SETFD, FD_CLOEXEC); 2221 fcntl (fd, F_SETFL, O_NONBLOCK); 2222 #endif 2223 } 2224 2225 /*****************************************************************************/ 2226 2227 /* 2228 * the heap functions want a real array index. array index 0 is guaranteed to not 2229 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2230 * the branching factor of the d-tree. 2231 */ 2232 2233 /* 2234 * at the moment we allow libev the luxury of two heaps, 2235 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 2236 * which is more cache-efficient. 2237 * the difference is about 5% with 50000+ watchers. 2238 */ 2239 #if EV_USE_4HEAP 2240 2241 #define DHEAP 4 2242 #define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2243 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2244 #define UPHEAP_DONE(p,k) ((p) == (k)) 2245 2246 /* away from the root */ 2247 inline_speed void 2248 downheap (ANHE *heap, int N, int k) 2249 { 2250 ANHE he = heap [k]; 2251 ANHE *E = heap + N + HEAP0; 2252 2253 for (;;) 2254 { 2255 ev_tstamp minat; 2256 ANHE *minpos; 2257 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2258 2259 /* find minimum child */ 2260 if (expect_true (pos + DHEAP - 1 < E)) 2261 { 2262 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2263 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2264 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2265 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2266 } 2267 else if (pos < E) 2268 { 2269 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2270 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2271 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2272 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2273 } 2274 else 2275 break; 2276 2277 if (ANHE_at (he) <= minat) 2278 break; 2279 2280 heap [k] = *minpos; 2281 ev_active (ANHE_w (*minpos)) = k; 2282 2283 k = minpos - heap; 2284 } 2285 2286 heap [k] = he; 2287 ev_active (ANHE_w (he)) = k; 2288 } 2289 2290 #else /* 4HEAP */ 2291 2292 #define HEAP0 1 2293 #define HPARENT(k) ((k) >> 1) 2294 #define UPHEAP_DONE(p,k) (!(p)) 2295 2296 /* away from the root */ 2297 inline_speed void 2298 downheap (ANHE *heap, int N, int k) 2299 { 2300 ANHE he = heap [k]; 2301 2302 for (;;) 2303 { 2304 int c = k << 1; 2305 2306 if (c >= N + HEAP0) 2307 break; 2308 2309 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2310 ? 1 : 0; 2311 2312 if (ANHE_at (he) <= ANHE_at (heap [c])) 2313 break; 2314 2315 heap [k] = heap [c]; 2316 ev_active (ANHE_w (heap [k])) = k; 2317 2318 k = c; 2319 } 2320 2321 heap [k] = he; 2322 ev_active (ANHE_w (he)) = k; 2323 } 2324 #endif 2325 2326 /* towards the root */ 2327 inline_speed void 2328 upheap (ANHE *heap, int k) 2329 { 2330 ANHE he = heap [k]; 2331 2332 for (;;) 2333 { 2334 int p = HPARENT (k); 2335 2336 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he)) 2337 break; 2338 2339 heap [k] = heap [p]; 2340 ev_active (ANHE_w (heap [k])) = k; 2341 k = p; 2342 } 2343 2344 heap [k] = he; 2345 ev_active (ANHE_w (he)) = k; 2346 } 2347 2348 /* move an element suitably so it is in a correct place */ 2349 inline_size void 2350 adjustheap (ANHE *heap, int N, int k) 2351 { 2352 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)])) 2353 upheap (heap, k); 2354 else 2355 downheap (heap, N, k); 2356 } 2357 2358 /* rebuild the heap: this function is used only once and executed rarely */ 2359 inline_size void 2360 reheap (ANHE *heap, int N) 2361 { 2362 int i; 2363 2364 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2365 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */ 2366 for (i = 0; i < N; ++i) 2367 upheap (heap, i + HEAP0); 2368 } 2369 2370 /*****************************************************************************/ 2371 2372 /* associate signal watchers to a signal signal */ 2373 typedef struct 2374 { 2375 EV_ATOMIC_T pending; 2376 #if EV_MULTIPLICITY 2377 EV_P; 2378 #endif 2379 WL head; 2380 } ANSIG; 2381 2382 static ANSIG signals [EV_NSIG - 1]; 2383 2384 /*****************************************************************************/ 2385 2386 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE 2387 2388 static void noinline ecb_cold 2389 evpipe_init (EV_P) 2390 { 2391 if (!ev_is_active (&pipe_w)) 2392 { 2393 int fds [2]; 2394 2395 # if EV_USE_EVENTFD 2396 fds [0] = -1; 2397 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); 2398 if (fds [1] < 0 && errno == EINVAL) 2399 fds [1] = eventfd (0, 0); 2400 2401 if (fds [1] < 0) 2402 # endif 2403 { 2404 while (pipe (fds)) 2405 ev_syserr ("(libev) error creating signal/async pipe"); 2406 2407 fd_intern (fds [0]); 2408 } 2409 2410 evpipe [0] = fds [0]; 2411 2412 if (evpipe [1] < 0) 2413 evpipe [1] = fds [1]; /* first call, set write fd */ 2414 else 2415 { 2416 /* on subsequent calls, do not change evpipe [1] */ 2417 /* so that evpipe_write can always rely on its value. */ 2418 /* this branch does not do anything sensible on windows, */ 2419 /* so must not be executed on windows */ 2420 2421 dup2 (fds [1], evpipe [1]); 2422 close (fds [1]); 2423 } 2424 2425 fd_intern (evpipe [1]); 2426 2427 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ); 2428 ev_io_start (EV_A_ &pipe_w); 2429 ev_unref (EV_A); /* watcher should not keep loop alive */ 2430 } 2431 } 2432 2433 inline_speed void 2434 evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2435 { 2436 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */ 2437 2438 if (expect_true (*flag)) 2439 return; 2440 2441 *flag = 1; 2442 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */ 2443 2444 pipe_write_skipped = 1; 2445 2446 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */ 2447 2448 if (pipe_write_wanted) 2449 { 2450 int old_errno; 2451 2452 pipe_write_skipped = 0; 2453 ECB_MEMORY_FENCE_RELEASE; 2454 2455 old_errno = errno; /* save errno because write will clobber it */ 2456 2457 #if EV_USE_EVENTFD 2458 if (evpipe [0] < 0) 2459 { 2460 uint64_t counter = 1; 2461 write (evpipe [1], &counter, sizeof (uint64_t)); 2462 } 2463 else 2464 #endif 2465 { 2466 #ifdef _WIN32 2467 WSABUF buf; 2468 DWORD sent; 2469 buf.buf = &buf; 2470 buf.len = 1; 2471 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0); 2472 #else 2473 write (evpipe [1], &(evpipe [1]), 1); 2474 #endif 2475 } 2476 2477 errno = old_errno; 2478 } 2479 } 2480 2481 /* called whenever the libev signal pipe */ 2482 /* got some events (signal, async) */ 2483 static void 2484 pipecb (EV_P_ ev_io *iow, int revents) 2485 { 2486 int i; 2487 2488 if (revents & EV_READ) 2489 { 2490 #if EV_USE_EVENTFD 2491 if (evpipe [0] < 0) 2492 { 2493 uint64_t counter; 2494 read (evpipe [1], &counter, sizeof (uint64_t)); 2495 } 2496 else 2497 #endif 2498 { 2499 char dummy[4]; 2500 #ifdef _WIN32 2501 WSABUF buf; 2502 DWORD recvd; 2503 DWORD flags = 0; 2504 buf.buf = dummy; 2505 buf.len = sizeof (dummy); 2506 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0); 2507 #else 2508 read (evpipe [0], &dummy, sizeof (dummy)); 2509 #endif 2510 } 2511 } 2512 2513 pipe_write_skipped = 0; 2514 2515 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */ 2516 2517 #if EV_SIGNAL_ENABLE 2518 if (sig_pending) 2519 { 2520 sig_pending = 0; 2521 2522 ECB_MEMORY_FENCE; 2523 2524 for (i = EV_NSIG - 1; i--; ) 2525 if (expect_false (signals [i].pending)) 2526 ev_feed_signal_event (EV_A_ i + 1); 2527 } 2528 #endif 2529 2530 #if EV_ASYNC_ENABLE 2531 if (async_pending) 2532 { 2533 async_pending = 0; 2534 2535 ECB_MEMORY_FENCE; 2536 2537 for (i = asynccnt; i--; ) 2538 if (asyncs [i]->sent) 2539 { 2540 asyncs [i]->sent = 0; 2541 ECB_MEMORY_FENCE_RELEASE; 2542 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2543 } 2544 } 2545 #endif 2546 } 2547 2548 /*****************************************************************************/ 2549 2550 void 2551 ev_feed_signal (int signum) EV_THROW 2552 { 2553 #if EV_MULTIPLICITY 2554 EV_P; 2555 ECB_MEMORY_FENCE_ACQUIRE; 2556 EV_A = signals [signum - 1].loop; 2557 2558 if (!EV_A) 2559 return; 2560 #endif 2561 2562 signals [signum - 1].pending = 1; 2563 evpipe_write (EV_A_ &sig_pending); 2564 } 2565 2566 static void 2567 ev_sighandler (int signum) 2568 { 2569 #ifdef _WIN32 2570 signal (signum, ev_sighandler); 2571 #endif 2572 2573 ev_feed_signal (signum); 2574 } 2575 2576 void noinline 2577 ev_feed_signal_event (EV_P_ int signum) EV_THROW 2578 { 2579 WL w; 2580 2581 if (expect_false (signum <= 0 || signum >= EV_NSIG)) 2582 return; 2583 2584 --signum; 2585 2586 #if EV_MULTIPLICITY 2587 /* it is permissible to try to feed a signal to the wrong loop */ 2588 /* or, likely more useful, feeding a signal nobody is waiting for */ 2589 2590 if (expect_false (signals [signum].loop != EV_A)) 2591 return; 2592 #endif 2593 2594 signals [signum].pending = 0; 2595 ECB_MEMORY_FENCE_RELEASE; 2596 2597 for (w = signals [signum].head; w; w = w->next) 2598 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2599 } 2600 2601 #if EV_USE_SIGNALFD 2602 static void 2603 sigfdcb (EV_P_ ev_io *iow, int revents) 2604 { 2605 struct signalfd_siginfo si[2], *sip; /* these structs are big */ 2606 2607 for (;;) 2608 { 2609 ssize_t res = read (sigfd, si, sizeof (si)); 2610 2611 /* not ISO-C, as res might be -1, but works with SuS */ 2612 for (sip = si; (char *)sip < (char *)si + res; ++sip) 2613 ev_feed_signal_event (EV_A_ sip->ssi_signo); 2614 2615 if (res < (ssize_t)sizeof (si)) 2616 break; 2617 } 2618 } 2619 #endif 2620 2621 #endif 2622 2623 /*****************************************************************************/ 2624 2625 #if EV_CHILD_ENABLE 2626 static WL childs [EV_PID_HASHSIZE]; 2627 2628 static ev_signal childev; 2629 2630 #ifndef WIFCONTINUED 2631 # define WIFCONTINUED(status) 0 2632 #endif 2633 2634 /* handle a single child status event */ 2635 inline_speed void 2636 child_reap (EV_P_ int chain, int pid, int status) 2637 { 2638 ev_child *w; 2639 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2640 2641 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) 2642 { 2643 if ((w->pid == pid || !w->pid) 2644 && (!traced || (w->flags & 1))) 2645 { 2646 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2647 w->rpid = pid; 2648 w->rstatus = status; 2649 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2650 } 2651 } 2652 } 2653 2654 #ifndef WCONTINUED 2655 # define WCONTINUED 0 2656 #endif 2657 2658 /* called on sigchld etc., calls waitpid */ 2659 static void 2660 childcb (EV_P_ ev_signal *sw, int revents) 2661 { 2662 int pid, status; 2663 2664 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */ 2665 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2666 if (!WCONTINUED 2667 || errno != EINVAL 2668 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2669 return; 2670 2671 /* make sure we are called again until all children have been reaped */ 2672 /* we need to do it this way so that the callback gets called before we continue */ 2673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2674 2675 child_reap (EV_A_ pid, pid, status); 2676 if ((EV_PID_HASHSIZE) > 1) 2677 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2678 } 2679 2680 #endif 2681 2682 /*****************************************************************************/ 2683 2684 #if EV_USE_IOCP 2685 # include "ev_iocp.c" 2686 #endif 2687 #if EV_USE_PORT 2688 # include "ev_port.c" 2689 #endif 2690 #if EV_USE_KQUEUE 2691 # include "ev_kqueue.c" 2692 #endif 2693 #if EV_USE_EPOLL 2694 # include "ev_epoll.c" 2695 #endif 2696 #if EV_USE_POLL 2697 # include "ev_poll.c" 2698 #endif 2699 #if EV_USE_SELECT 2700 # include "ev_select.c" 2701 #endif 2702 2703 int ecb_cold 2704 ev_version_major (void) EV_THROW 2705 { 2706 return EV_VERSION_MAJOR; 2707 } 2708 2709 int ecb_cold 2710 ev_version_minor (void) EV_THROW 2711 { 2712 return EV_VERSION_MINOR; 2713 } 2714 2715 /* return true if we are running with elevated privileges and should ignore env variables */ 2716 int inline_size ecb_cold 2717 enable_secure (void) 2718 { 2719 #ifdef _WIN32 2720 return 0; 2721 #else 2722 return getuid () != geteuid () 2723 || getgid () != getegid (); 2724 #endif 2725 } 2726 2727 unsigned int ecb_cold 2728 ev_supported_backends (void) EV_THROW 2729 { 2730 unsigned int flags = 0; 2731 2732 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2733 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2734 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 2735 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 2736 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2737 2738 return flags; 2739 } 2740 2741 unsigned int ecb_cold 2742 ev_recommended_backends (void) EV_THROW 2743 { 2744 unsigned int flags = ev_supported_backends (); 2745 2746 #ifndef __NetBSD__ 2747 /* kqueue is borked on everything but netbsd apparently */ 2748 /* it usually doesn't work correctly on anything but sockets and pipes */ 2749 flags &= ~EVBACKEND_KQUEUE; 2750 #endif 2751 #ifdef __APPLE__ 2752 /* only select works correctly on that "unix-certified" platform */ 2753 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2754 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2755 #endif 2756 #ifdef __FreeBSD__ 2757 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */ 2758 #endif 2759 2760 return flags; 2761 } 2762 2763 unsigned int ecb_cold 2764 ev_embeddable_backends (void) EV_THROW 2765 { 2766 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2767 2768 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2769 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */ 2770 flags &= ~EVBACKEND_EPOLL; 2771 2772 return flags; 2773 } 2774 2775 unsigned int 2776 ev_backend (EV_P) EV_THROW 2777 { 2778 return backend; 2779 } 2780 2781 #if EV_FEATURE_API 2782 unsigned int 2783 ev_iteration (EV_P) EV_THROW 2784 { 2785 return loop_count; 2786 } 2787 2788 unsigned int 2789 ev_depth (EV_P) EV_THROW 2790 { 2791 return loop_depth; 2792 } 2793 2794 void 2795 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW 2796 { 2797 io_blocktime = interval; 2798 } 2799 2800 void 2801 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW 2802 { 2803 timeout_blocktime = interval; 2804 } 2805 2806 void 2807 ev_set_userdata (EV_P_ void *data) EV_THROW 2808 { 2809 userdata = data; 2810 } 2811 2812 void * 2813 ev_userdata (EV_P) EV_THROW 2814 { 2815 return userdata; 2816 } 2817 2818 void 2819 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW 2820 { 2821 invoke_cb = invoke_pending_cb; 2822 } 2823 2824 void 2825 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW 2826 { 2827 release_cb = release; 2828 acquire_cb = acquire; 2829 } 2830 #endif 2831 2832 /* initialise a loop structure, must be zero-initialised */ 2833 static void noinline ecb_cold 2834 loop_init (EV_P_ unsigned int flags) EV_THROW 2835 { 2836 if (!backend) 2837 { 2838 origflags = flags; 2839 2840 #if EV_USE_REALTIME 2841 if (!have_realtime) 2842 { 2843 struct timespec ts; 2844 2845 if (!clock_gettime (CLOCK_REALTIME, &ts)) 2846 have_realtime = 1; 2847 } 2848 #endif 2849 2850 #if EV_USE_MONOTONIC 2851 if (!have_monotonic) 2852 { 2853 struct timespec ts; 2854 2855 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2856 have_monotonic = 1; 2857 } 2858 #endif 2859 2860 /* pid check not overridable via env */ 2861 #ifndef _WIN32 2862 if (flags & EVFLAG_FORKCHECK) 2863 curpid = getpid (); 2864 #endif 2865 2866 if (!(flags & EVFLAG_NOENV) 2867 && !enable_secure () 2868 && getenv ("LIBEV_FLAGS")) 2869 flags = atoi (getenv ("LIBEV_FLAGS")); 2870 2871 ev_rt_now = ev_time (); 2872 mn_now = get_clock (); 2873 now_floor = mn_now; 2874 rtmn_diff = ev_rt_now - mn_now; 2875 #if EV_FEATURE_API 2876 invoke_cb = ev_invoke_pending; 2877 #endif 2878 2879 io_blocktime = 0.; 2880 timeout_blocktime = 0.; 2881 backend = 0; 2882 backend_fd = -1; 2883 sig_pending = 0; 2884 #if EV_ASYNC_ENABLE 2885 async_pending = 0; 2886 #endif 2887 pipe_write_skipped = 0; 2888 pipe_write_wanted = 0; 2889 evpipe [0] = -1; 2890 evpipe [1] = -1; 2891 #if EV_USE_INOTIFY 2892 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; 2893 #endif 2894 #if EV_USE_SIGNALFD 2895 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1; 2896 #endif 2897 2898 if (!(flags & EVBACKEND_MASK)) 2899 flags |= ev_recommended_backends (); 2900 2901 #if EV_USE_IOCP 2902 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags); 2903 #endif 2904 #if EV_USE_PORT 2905 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2906 #endif 2907 #if EV_USE_KQUEUE 2908 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2909 #endif 2910 #if EV_USE_EPOLL 2911 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 2912 #endif 2913 #if EV_USE_POLL 2914 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 2915 #endif 2916 #if EV_USE_SELECT 2917 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2918 #endif 2919 2920 ev_prepare_init (&pending_w, pendingcb); 2921 2922 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE 2923 ev_init (&pipe_w, pipecb); 2924 ev_set_priority (&pipe_w, EV_MAXPRI); 2925 #endif 2926 } 2927 } 2928 2929 /* free up a loop structure */ 2930 void ecb_cold 2931 ev_loop_destroy (EV_P) 2932 { 2933 int i; 2934 2935 #if EV_MULTIPLICITY 2936 /* mimic free (0) */ 2937 if (!EV_A) 2938 return; 2939 #endif 2940 2941 #if EV_CLEANUP_ENABLE 2942 /* queue cleanup watchers (and execute them) */ 2943 if (expect_false (cleanupcnt)) 2944 { 2945 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP); 2946 EV_INVOKE_PENDING; 2947 } 2948 #endif 2949 2950 #if EV_CHILD_ENABLE 2951 if (ev_is_default_loop (EV_A) && ev_is_active (&childev)) 2952 { 2953 ev_ref (EV_A); /* child watcher */ 2954 ev_signal_stop (EV_A_ &childev); 2955 } 2956 #endif 2957 2958 if (ev_is_active (&pipe_w)) 2959 { 2960 /*ev_ref (EV_A);*/ 2961 /*ev_io_stop (EV_A_ &pipe_w);*/ 2962 2963 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]); 2964 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]); 2965 } 2966 2967 #if EV_USE_SIGNALFD 2968 if (ev_is_active (&sigfd_w)) 2969 close (sigfd); 2970 #endif 2971 2972 #if EV_USE_INOTIFY 2973 if (fs_fd >= 0) 2974 close (fs_fd); 2975 #endif 2976 2977 if (backend_fd >= 0) 2978 close (backend_fd); 2979 2980 #if EV_USE_IOCP 2981 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A); 2982 #endif 2983 #if EV_USE_PORT 2984 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2985 #endif 2986 #if EV_USE_KQUEUE 2987 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2988 #endif 2989 #if EV_USE_EPOLL 2990 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 2991 #endif 2992 #if EV_USE_POLL 2993 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 2994 #endif 2995 #if EV_USE_SELECT 2996 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 2997 #endif 2998 2999 for (i = NUMPRI; i--; ) 3000 { 3001 array_free (pending, [i]); 3002 #if EV_IDLE_ENABLE 3003 array_free (idle, [i]); 3004 #endif 3005 } 3006 3007 ev_free (anfds); anfds = 0; anfdmax = 0; 3008 3009 /* have to use the microsoft-never-gets-it-right macro */ 3010 array_free (rfeed, EMPTY); 3011 array_free (fdchange, EMPTY); 3012 array_free (timer, EMPTY); 3013 #if EV_PERIODIC_ENABLE 3014 array_free (periodic, EMPTY); 3015 #endif 3016 #if EV_FORK_ENABLE 3017 array_free (fork, EMPTY); 3018 #endif 3019 #if EV_CLEANUP_ENABLE 3020 array_free (cleanup, EMPTY); 3021 #endif 3022 array_free (prepare, EMPTY); 3023 array_free (check, EMPTY); 3024 #if EV_ASYNC_ENABLE 3025 array_free (async, EMPTY); 3026 #endif 3027 3028 backend = 0; 3029 3030 #if EV_MULTIPLICITY 3031 if (ev_is_default_loop (EV_A)) 3032 #endif 3033 ev_default_loop_ptr = 0; 3034 #if EV_MULTIPLICITY 3035 else 3036 ev_free (EV_A); 3037 #endif 3038 } 3039 3040 #if EV_USE_INOTIFY 3041 inline_size void infy_fork (EV_P); 3042 #endif 3043 3044 inline_size void 3045 loop_fork (EV_P) 3046 { 3047 #if EV_USE_PORT 3048 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3049 #endif 3050 #if EV_USE_KQUEUE 3051 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3052 #endif 3053 #if EV_USE_EPOLL 3054 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3055 #endif 3056 #if EV_USE_INOTIFY 3057 infy_fork (EV_A); 3058 #endif 3059 3060 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE 3061 if (ev_is_active (&pipe_w) && postfork != 2) 3062 { 3063 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */ 3064 3065 ev_ref (EV_A); 3066 ev_io_stop (EV_A_ &pipe_w); 3067 3068 if (evpipe [0] >= 0) 3069 EV_WIN32_CLOSE_FD (evpipe [0]); 3070 3071 evpipe_init (EV_A); 3072 /* iterate over everything, in case we missed something before */ 3073 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); 3074 } 3075 #endif 3076 3077 postfork = 0; 3078 } 3079 3080 #if EV_MULTIPLICITY 3081 3082 struct ev_loop * ecb_cold 3083 ev_loop_new (unsigned int flags) EV_THROW 3084 { 3085 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3086 3087 memset (EV_A, 0, sizeof (struct ev_loop)); 3088 loop_init (EV_A_ flags); 3089 3090 if (ev_backend (EV_A)) 3091 return EV_A; 3092 3093 ev_free (EV_A); 3094 return 0; 3095 } 3096 3097 #endif /* multiplicity */ 3098 3099 #if EV_VERIFY 3100 static void noinline ecb_cold 3101 verify_watcher (EV_P_ W w) 3102 { 3103 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3104 3105 if (w->pending) 3106 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3107 } 3108 3109 static void noinline ecb_cold 3110 verify_heap (EV_P_ ANHE *heap, int N) 3111 { 3112 int i; 3113 3114 for (i = HEAP0; i < N + HEAP0; ++i) 3115 { 3116 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i)); 3117 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i]))); 3118 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i])))); 3119 3120 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3121 } 3122 } 3123 3124 static void noinline ecb_cold 3125 array_verify (EV_P_ W *ws, int cnt) 3126 { 3127 while (cnt--) 3128 { 3129 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3130 verify_watcher (EV_A_ ws [cnt]); 3131 } 3132 } 3133 #endif 3134 3135 #if EV_FEATURE_API 3136 void ecb_cold 3137 ev_verify (EV_P) EV_THROW 3138 { 3139 #if EV_VERIFY 3140 int i; 3141 WL w, w2; 3142 3143 assert (activecnt >= -1); 3144 3145 assert (fdchangemax >= fdchangecnt); 3146 for (i = 0; i < fdchangecnt; ++i) 3147 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3148 3149 assert (anfdmax >= 0); 3150 for (i = 0; i < anfdmax; ++i) 3151 { 3152 int j = 0; 3153 3154 for (w = w2 = anfds [i].head; w; w = w->next) 3155 { 3156 verify_watcher (EV_A_ (W)w); 3157 3158 if (j++ & 1) 3159 { 3160 assert (("libev: io watcher list contains a loop", w != w2)); 3161 w2 = w2->next; 3162 } 3163 3164 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3165 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3166 } 3167 } 3168 3169 assert (timermax >= timercnt); 3170 verify_heap (EV_A_ timers, timercnt); 3171 3172 #if EV_PERIODIC_ENABLE 3173 assert (periodicmax >= periodiccnt); 3174 verify_heap (EV_A_ periodics, periodiccnt); 3175 #endif 3176 3177 for (i = NUMPRI; i--; ) 3178 { 3179 assert (pendingmax [i] >= pendingcnt [i]); 3180 #if EV_IDLE_ENABLE 3181 assert (idleall >= 0); 3182 assert (idlemax [i] >= idlecnt [i]); 3183 array_verify (EV_A_ (W *)idles [i], idlecnt [i]); 3184 #endif 3185 } 3186 3187 #if EV_FORK_ENABLE 3188 assert (forkmax >= forkcnt); 3189 array_verify (EV_A_ (W *)forks, forkcnt); 3190 #endif 3191 3192 #if EV_CLEANUP_ENABLE 3193 assert (cleanupmax >= cleanupcnt); 3194 array_verify (EV_A_ (W *)cleanups, cleanupcnt); 3195 #endif 3196 3197 #if EV_ASYNC_ENABLE 3198 assert (asyncmax >= asynccnt); 3199 array_verify (EV_A_ (W *)asyncs, asynccnt); 3200 #endif 3201 3202 #if EV_PREPARE_ENABLE 3203 assert (preparemax >= preparecnt); 3204 array_verify (EV_A_ (W *)prepares, preparecnt); 3205 #endif 3206 3207 #if EV_CHECK_ENABLE 3208 assert (checkmax >= checkcnt); 3209 array_verify (EV_A_ (W *)checks, checkcnt); 3210 #endif 3211 3212 # if 0 3213 #if EV_CHILD_ENABLE 3214 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next) 3215 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending) 3216 #endif 3217 # endif 3218 #endif 3219 } 3220 #endif 3221 3222 #if EV_MULTIPLICITY 3223 struct ev_loop * ecb_cold 3224 #else 3225 int 3226 #endif 3227 ev_default_loop (unsigned int flags) EV_THROW 3228 { 3229 if (!ev_default_loop_ptr) 3230 { 3231 #if EV_MULTIPLICITY 3232 EV_P = ev_default_loop_ptr = &default_loop_struct; 3233 #else 3234 ev_default_loop_ptr = 1; 3235 #endif 3236 3237 loop_init (EV_A_ flags); 3238 3239 if (ev_backend (EV_A)) 3240 { 3241 #if EV_CHILD_ENABLE 3242 ev_signal_init (&childev, childcb, SIGCHLD); 3243 ev_set_priority (&childev, EV_MAXPRI); 3244 ev_signal_start (EV_A_ &childev); 3245 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3246 #endif 3247 } 3248 else 3249 ev_default_loop_ptr = 0; 3250 } 3251 3252 return ev_default_loop_ptr; 3253 } 3254 3255 void 3256 ev_loop_fork (EV_P) EV_THROW 3257 { 3258 postfork = 1; 3259 } 3260 3261 /*****************************************************************************/ 3262 3263 void 3264 ev_invoke (EV_P_ void *w, int revents) 3265 { 3266 EV_CB_INVOKE ((W)w, revents); 3267 } 3268 3269 unsigned int 3270 ev_pending_count (EV_P) EV_THROW 3271 { 3272 int pri; 3273 unsigned int count = 0; 3274 3275 for (pri = NUMPRI; pri--; ) 3276 count += pendingcnt [pri]; 3277 3278 return count; 3279 } 3280 3281 void noinline 3282 ev_invoke_pending (EV_P) 3283 { 3284 pendingpri = NUMPRI; 3285 3286 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */ 3287 { 3288 --pendingpri; 3289 3290 while (pendingcnt [pendingpri]) 3291 { 3292 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri]; 3293 3294 p->w->pending = 0; 3295 EV_CB_INVOKE (p->w, p->events); 3296 EV_FREQUENT_CHECK; 3297 } 3298 } 3299 } 3300 3301 #if EV_IDLE_ENABLE 3302 /* make idle watchers pending. this handles the "call-idle */ 3303 /* only when higher priorities are idle" logic */ 3304 inline_size void 3305 idle_reify (EV_P) 3306 { 3307 if (expect_false (idleall)) 3308 { 3309 int pri; 3310 3311 for (pri = NUMPRI; pri--; ) 3312 { 3313 if (pendingcnt [pri]) 3314 break; 3315 3316 if (idlecnt [pri]) 3317 { 3318 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 3319 break; 3320 } 3321 } 3322 } 3323 } 3324 #endif 3325 3326 /* make timers pending */ 3327 inline_size void 3328 timers_reify (EV_P) 3329 { 3330 EV_FREQUENT_CHECK; 3331 3332 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3333 { 3334 do 3335 { 3336 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3337 3338 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/ 3339 3340 /* first reschedule or stop timer */ 3341 if (w->repeat) 3342 { 3343 ev_at (w) += w->repeat; 3344 if (ev_at (w) < mn_now) 3345 ev_at (w) = mn_now; 3346 3347 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3348 3349 ANHE_at_cache (timers [HEAP0]); 3350 downheap (timers, timercnt, HEAP0); 3351 } 3352 else 3353 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 3354 3355 EV_FREQUENT_CHECK; 3356 feed_reverse (EV_A_ (W)w); 3357 } 3358 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); 3359 3360 feed_reverse_done (EV_A_ EV_TIMER); 3361 } 3362 } 3363 3364 #if EV_PERIODIC_ENABLE 3365 3366 static void noinline 3367 periodic_recalc (EV_P_ ev_periodic *w) 3368 { 3369 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL; 3370 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval); 3371 3372 /* the above almost always errs on the low side */ 3373 while (at <= ev_rt_now) 3374 { 3375 ev_tstamp nat = at + w->interval; 3376 3377 /* when resolution fails us, we use ev_rt_now */ 3378 if (expect_false (nat == at)) 3379 { 3380 at = ev_rt_now; 3381 break; 3382 } 3383 3384 at = nat; 3385 } 3386 3387 ev_at (w) = at; 3388 } 3389 3390 /* make periodics pending */ 3391 inline_size void 3392 periodics_reify (EV_P) 3393 { 3394 EV_FREQUENT_CHECK; 3395 3396 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3397 { 3398 do 3399 { 3400 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3401 3402 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 3403 3404 /* first reschedule or stop timer */ 3405 if (w->reschedule_cb) 3406 { 3407 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3408 3409 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3410 3411 ANHE_at_cache (periodics [HEAP0]); 3412 downheap (periodics, periodiccnt, HEAP0); 3413 } 3414 else if (w->interval) 3415 { 3416 periodic_recalc (EV_A_ w); 3417 ANHE_at_cache (periodics [HEAP0]); 3418 downheap (periodics, periodiccnt, HEAP0); 3419 } 3420 else 3421 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 3422 3423 EV_FREQUENT_CHECK; 3424 feed_reverse (EV_A_ (W)w); 3425 } 3426 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now); 3427 3428 feed_reverse_done (EV_A_ EV_PERIODIC); 3429 } 3430 } 3431 3432 /* simply recalculate all periodics */ 3433 /* TODO: maybe ensure that at least one event happens when jumping forward? */ 3434 static void noinline ecb_cold 3435 periodics_reschedule (EV_P) 3436 { 3437 int i; 3438 3439 /* adjust periodics after time jump */ 3440 for (i = HEAP0; i < periodiccnt + HEAP0; ++i) 3441 { 3442 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3443 3444 if (w->reschedule_cb) 3445 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3446 else if (w->interval) 3447 periodic_recalc (EV_A_ w); 3448 3449 ANHE_at_cache (periodics [i]); 3450 } 3451 3452 reheap (periodics, periodiccnt); 3453 } 3454 #endif 3455 3456 /* adjust all timers by a given offset */ 3457 static void noinline ecb_cold 3458 timers_reschedule (EV_P_ ev_tstamp adjust) 3459 { 3460 int i; 3461 3462 for (i = 0; i < timercnt; ++i) 3463 { 3464 ANHE *he = timers + i + HEAP0; 3465 ANHE_w (*he)->at += adjust; 3466 ANHE_at_cache (*he); 3467 } 3468 } 3469 3470 /* fetch new monotonic and realtime times from the kernel */ 3471 /* also detect if there was a timejump, and act accordingly */ 3472 inline_speed void 3473 time_update (EV_P_ ev_tstamp max_block) 3474 { 3475 #if EV_USE_MONOTONIC 3476 if (expect_true (have_monotonic)) 3477 { 3478 int i; 3479 ev_tstamp odiff = rtmn_diff; 3480 3481 mn_now = get_clock (); 3482 3483 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3484 /* interpolate in the meantime */ 3485 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3486 { 3487 ev_rt_now = rtmn_diff + mn_now; 3488 return; 3489 } 3490 3491 now_floor = mn_now; 3492 ev_rt_now = ev_time (); 3493 3494 /* loop a few times, before making important decisions. 3495 * on the choice of "4": one iteration isn't enough, 3496 * in case we get preempted during the calls to 3497 * ev_time and get_clock. a second call is almost guaranteed 3498 * to succeed in that case, though. and looping a few more times 3499 * doesn't hurt either as we only do this on time-jumps or 3500 * in the unlikely event of having been preempted here. 3501 */ 3502 for (i = 4; --i; ) 3503 { 3504 ev_tstamp diff; 3505 rtmn_diff = ev_rt_now - mn_now; 3506 3507 diff = odiff - rtmn_diff; 3508 3509 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP)) 3510 return; /* all is well */ 3511 3512 ev_rt_now = ev_time (); 3513 mn_now = get_clock (); 3514 now_floor = mn_now; 3515 } 3516 3517 /* no timer adjustment, as the monotonic clock doesn't jump */ 3518 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 3519 # if EV_PERIODIC_ENABLE 3520 periodics_reschedule (EV_A); 3521 # endif 3522 } 3523 else 3524 #endif 3525 { 3526 ev_rt_now = ev_time (); 3527 3528 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3529 { 3530 /* adjust timers. this is easy, as the offset is the same for all of them */ 3531 timers_reschedule (EV_A_ ev_rt_now - mn_now); 3532 #if EV_PERIODIC_ENABLE 3533 periodics_reschedule (EV_A); 3534 #endif 3535 } 3536 3537 mn_now = ev_rt_now; 3538 } 3539 } 3540 3541 int 3542 ev_run (EV_P_ int flags) 3543 { 3544 #if EV_FEATURE_API 3545 ++loop_depth; 3546 #endif 3547 3548 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE)); 3549 3550 loop_done = EVBREAK_CANCEL; 3551 3552 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ 3553 3554 do 3555 { 3556 #if EV_VERIFY >= 2 3557 ev_verify (EV_A); 3558 #endif 3559 3560 #ifndef _WIN32 3561 if (expect_false (curpid)) /* penalise the forking check even more */ 3562 if (expect_false (getpid () != curpid)) 3563 { 3564 curpid = getpid (); 3565 postfork = 1; 3566 } 3567 #endif 3568 3569 #if EV_FORK_ENABLE 3570 /* we might have forked, so queue fork handlers */ 3571 if (expect_false (postfork)) 3572 if (forkcnt) 3573 { 3574 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3575 EV_INVOKE_PENDING; 3576 } 3577 #endif 3578 3579 #if EV_PREPARE_ENABLE 3580 /* queue prepare watchers (and execute them) */ 3581 if (expect_false (preparecnt)) 3582 { 3583 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3584 EV_INVOKE_PENDING; 3585 } 3586 #endif 3587 3588 if (expect_false (loop_done)) 3589 break; 3590 3591 /* we might have forked, so reify kernel state if necessary */ 3592 if (expect_false (postfork)) 3593 loop_fork (EV_A); 3594 3595 /* update fd-related kernel structures */ 3596 fd_reify (EV_A); 3597 3598 /* calculate blocking time */ 3599 { 3600 ev_tstamp waittime = 0.; 3601 ev_tstamp sleeptime = 0.; 3602 3603 /* remember old timestamp for io_blocktime calculation */ 3604 ev_tstamp prev_mn_now = mn_now; 3605 3606 /* update time to cancel out callback processing overhead */ 3607 time_update (EV_A_ 1e100); 3608 3609 /* from now on, we want a pipe-wake-up */ 3610 pipe_write_wanted = 1; 3611 3612 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */ 3613 3614 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped))) 3615 { 3616 waittime = MAX_BLOCKTIME; 3617 3618 if (timercnt) 3619 { 3620 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now; 3621 if (waittime > to) waittime = to; 3622 } 3623 3624 #if EV_PERIODIC_ENABLE 3625 if (periodiccnt) 3626 { 3627 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now; 3628 if (waittime > to) waittime = to; 3629 } 3630 #endif 3631 3632 /* don't let timeouts decrease the waittime below timeout_blocktime */ 3633 if (expect_false (waittime < timeout_blocktime)) 3634 waittime = timeout_blocktime; 3635 3636 /* at this point, we NEED to wait, so we have to ensure */ 3637 /* to pass a minimum nonzero value to the backend */ 3638 if (expect_false (waittime < backend_mintime)) 3639 waittime = backend_mintime; 3640 3641 /* extra check because io_blocktime is commonly 0 */ 3642 if (expect_false (io_blocktime)) 3643 { 3644 sleeptime = io_blocktime - (mn_now - prev_mn_now); 3645 3646 if (sleeptime > waittime - backend_mintime) 3647 sleeptime = waittime - backend_mintime; 3648 3649 if (expect_true (sleeptime > 0.)) 3650 { 3651 ev_sleep (sleeptime); 3652 waittime -= sleeptime; 3653 } 3654 } 3655 } 3656 3657 #if EV_FEATURE_API 3658 ++loop_count; 3659 #endif 3660 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */ 3661 backend_poll (EV_A_ waittime); 3662 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */ 3663 3664 pipe_write_wanted = 0; /* just an optimisation, no fence needed */ 3665 3666 ECB_MEMORY_FENCE_ACQUIRE; 3667 if (pipe_write_skipped) 3668 { 3669 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w))); 3670 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM); 3671 } 3672 3673 3674 /* update ev_rt_now, do magic */ 3675 time_update (EV_A_ waittime + sleeptime); 3676 } 3677 3678 /* queue pending timers and reschedule them */ 3679 timers_reify (EV_A); /* relative timers called last */ 3680 #if EV_PERIODIC_ENABLE 3681 periodics_reify (EV_A); /* absolute timers called first */ 3682 #endif 3683 3684 #if EV_IDLE_ENABLE 3685 /* queue idle watchers unless other events are pending */ 3686 idle_reify (EV_A); 3687 #endif 3688 3689 #if EV_CHECK_ENABLE 3690 /* queue check watchers, to be executed first */ 3691 if (expect_false (checkcnt)) 3692 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3693 #endif 3694 3695 EV_INVOKE_PENDING; 3696 } 3697 while (expect_true ( 3698 activecnt 3699 && !loop_done 3700 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT)) 3701 )); 3702 3703 if (loop_done == EVBREAK_ONE) 3704 loop_done = EVBREAK_CANCEL; 3705 3706 #if EV_FEATURE_API 3707 --loop_depth; 3708 #endif 3709 3710 return activecnt; 3711 } 3712 3713 void 3714 ev_break (EV_P_ int how) EV_THROW 3715 { 3716 loop_done = how; 3717 } 3718 3719 void 3720 ev_ref (EV_P) EV_THROW 3721 { 3722 ++activecnt; 3723 } 3724 3725 void 3726 ev_unref (EV_P) EV_THROW 3727 { 3728 --activecnt; 3729 } 3730 3731 void 3732 ev_now_update (EV_P) EV_THROW 3733 { 3734 time_update (EV_A_ 1e100); 3735 } 3736 3737 void 3738 ev_suspend (EV_P) EV_THROW 3739 { 3740 ev_now_update (EV_A); 3741 } 3742 3743 void 3744 ev_resume (EV_P) EV_THROW 3745 { 3746 ev_tstamp mn_prev = mn_now; 3747 3748 ev_now_update (EV_A); 3749 timers_reschedule (EV_A_ mn_now - mn_prev); 3750 #if EV_PERIODIC_ENABLE 3751 /* TODO: really do this? */ 3752 periodics_reschedule (EV_A); 3753 #endif 3754 } 3755 3756 /*****************************************************************************/ 3757 /* singly-linked list management, used when the expected list length is short */ 3758 3759 inline_size void 3760 wlist_add (WL *head, WL elem) 3761 { 3762 elem->next = *head; 3763 *head = elem; 3764 } 3765 3766 inline_size void 3767 wlist_del (WL *head, WL elem) 3768 { 3769 while (*head) 3770 { 3771 if (expect_true (*head == elem)) 3772 { 3773 *head = elem->next; 3774 break; 3775 } 3776 3777 head = &(*head)->next; 3778 } 3779 } 3780 3781 /* internal, faster, version of ev_clear_pending */ 3782 inline_speed void 3783 clear_pending (EV_P_ W w) 3784 { 3785 if (w->pending) 3786 { 3787 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w; 3788 w->pending = 0; 3789 } 3790 } 3791 3792 int 3793 ev_clear_pending (EV_P_ void *w) EV_THROW 3794 { 3795 W w_ = (W)w; 3796 int pending = w_->pending; 3797 3798 if (expect_true (pending)) 3799 { 3800 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3801 p->w = (W)&pending_w; 3802 w_->pending = 0; 3803 return p->events; 3804 } 3805 else 3806 return 0; 3807 } 3808 3809 inline_size void 3810 pri_adjust (EV_P_ W w) 3811 { 3812 int pri = ev_priority (w); 3813 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3814 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3815 ev_set_priority (w, pri); 3816 } 3817 3818 inline_speed void 3819 ev_start (EV_P_ W w, int active) 3820 { 3821 pri_adjust (EV_A_ w); 3822 w->active = active; 3823 ev_ref (EV_A); 3824 } 3825 3826 inline_size void 3827 ev_stop (EV_P_ W w) 3828 { 3829 ev_unref (EV_A); 3830 w->active = 0; 3831 } 3832 3833 /*****************************************************************************/ 3834 3835 void noinline 3836 ev_io_start (EV_P_ ev_io *w) EV_THROW 3837 { 3838 int fd = w->fd; 3839 3840 if (expect_false (ev_is_active (w))) 3841 return; 3842 3843 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3844 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3845 3846 EV_FREQUENT_CHECK; 3847 3848 ev_start (EV_A_ (W)w, 1); 3849 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3850 wlist_add (&anfds[fd].head, (WL)w); 3851 3852 /* common bug, apparently */ 3853 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w)); 3854 3855 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); 3856 w->events &= ~EV__IOFDSET; 3857 3858 EV_FREQUENT_CHECK; 3859 } 3860 3861 void noinline 3862 ev_io_stop (EV_P_ ev_io *w) EV_THROW 3863 { 3864 clear_pending (EV_A_ (W)w); 3865 if (expect_false (!ev_is_active (w))) 3866 return; 3867 3868 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3869 3870 EV_FREQUENT_CHECK; 3871 3872 wlist_del (&anfds[w->fd].head, (WL)w); 3873 ev_stop (EV_A_ (W)w); 3874 3875 fd_change (EV_A_ w->fd, EV_ANFD_REIFY); 3876 3877 EV_FREQUENT_CHECK; 3878 } 3879 3880 void noinline 3881 ev_timer_start (EV_P_ ev_timer *w) EV_THROW 3882 { 3883 if (expect_false (ev_is_active (w))) 3884 return; 3885 3886 ev_at (w) += mn_now; 3887 3888 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3889 3890 EV_FREQUENT_CHECK; 3891 3892 ++timercnt; 3893 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 3894 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 3895 ANHE_w (timers [ev_active (w)]) = (WT)w; 3896 ANHE_at_cache (timers [ev_active (w)]); 3897 upheap (timers, ev_active (w)); 3898 3899 EV_FREQUENT_CHECK; 3900 3901 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3902 } 3903 3904 void noinline 3905 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW 3906 { 3907 clear_pending (EV_A_ (W)w); 3908 if (expect_false (!ev_is_active (w))) 3909 return; 3910 3911 EV_FREQUENT_CHECK; 3912 3913 { 3914 int active = ev_active (w); 3915 3916 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 3917 3918 --timercnt; 3919 3920 if (expect_true (active < timercnt + HEAP0)) 3921 { 3922 timers [active] = timers [timercnt + HEAP0]; 3923 adjustheap (timers, timercnt, active); 3924 } 3925 } 3926 3927 ev_at (w) -= mn_now; 3928 3929 ev_stop (EV_A_ (W)w); 3930 3931 EV_FREQUENT_CHECK; 3932 } 3933 3934 void noinline 3935 ev_timer_again (EV_P_ ev_timer *w) EV_THROW 3936 { 3937 EV_FREQUENT_CHECK; 3938 3939 clear_pending (EV_A_ (W)w); 3940 3941 if (ev_is_active (w)) 3942 { 3943 if (w->repeat) 3944 { 3945 ev_at (w) = mn_now + w->repeat; 3946 ANHE_at_cache (timers [ev_active (w)]); 3947 adjustheap (timers, timercnt, ev_active (w)); 3948 } 3949 else 3950 ev_timer_stop (EV_A_ w); 3951 } 3952 else if (w->repeat) 3953 { 3954 ev_at (w) = w->repeat; 3955 ev_timer_start (EV_A_ w); 3956 } 3957 3958 EV_FREQUENT_CHECK; 3959 } 3960 3961 ev_tstamp 3962 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW 3963 { 3964 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); 3965 } 3966 3967 #if EV_PERIODIC_ENABLE 3968 void noinline 3969 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW 3970 { 3971 if (expect_false (ev_is_active (w))) 3972 return; 3973 3974 if (w->reschedule_cb) 3975 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3976 else if (w->interval) 3977 { 3978 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3979 periodic_recalc (EV_A_ w); 3980 } 3981 else 3982 ev_at (w) = w->offset; 3983 3984 EV_FREQUENT_CHECK; 3985 3986 ++periodiccnt; 3987 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 3988 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 3989 ANHE_w (periodics [ev_active (w)]) = (WT)w; 3990 ANHE_at_cache (periodics [ev_active (w)]); 3991 upheap (periodics, ev_active (w)); 3992 3993 EV_FREQUENT_CHECK; 3994 3995 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3996 } 3997 3998 void noinline 3999 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW 4000 { 4001 clear_pending (EV_A_ (W)w); 4002 if (expect_false (!ev_is_active (w))) 4003 return; 4004 4005 EV_FREQUENT_CHECK; 4006 4007 { 4008 int active = ev_active (w); 4009 4010 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4011 4012 --periodiccnt; 4013 4014 if (expect_true (active < periodiccnt + HEAP0)) 4015 { 4016 periodics [active] = periodics [periodiccnt + HEAP0]; 4017 adjustheap (periodics, periodiccnt, active); 4018 } 4019 } 4020 4021 ev_stop (EV_A_ (W)w); 4022 4023 EV_FREQUENT_CHECK; 4024 } 4025 4026 void noinline 4027 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW 4028 { 4029 /* TODO: use adjustheap and recalculation */ 4030 ev_periodic_stop (EV_A_ w); 4031 ev_periodic_start (EV_A_ w); 4032 } 4033 #endif 4034 4035 #ifndef SA_RESTART 4036 # define SA_RESTART 0 4037 #endif 4038 4039 #if EV_SIGNAL_ENABLE 4040 4041 void noinline 4042 ev_signal_start (EV_P_ ev_signal *w) EV_THROW 4043 { 4044 if (expect_false (ev_is_active (w))) 4045 return; 4046 4047 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); 4048 4049 #if EV_MULTIPLICITY 4050 assert (("libev: a signal must not be attached to two different loops", 4051 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); 4052 4053 signals [w->signum - 1].loop = EV_A; 4054 ECB_MEMORY_FENCE_RELEASE; 4055 #endif 4056 4057 EV_FREQUENT_CHECK; 4058 4059 #if EV_USE_SIGNALFD 4060 if (sigfd == -2) 4061 { 4062 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC); 4063 if (sigfd < 0 && errno == EINVAL) 4064 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */ 4065 4066 if (sigfd >= 0) 4067 { 4068 fd_intern (sigfd); /* doing it twice will not hurt */ 4069 4070 sigemptyset (&sigfd_set); 4071 4072 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ); 4073 ev_set_priority (&sigfd_w, EV_MAXPRI); 4074 ev_io_start (EV_A_ &sigfd_w); 4075 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */ 4076 } 4077 } 4078 4079 if (sigfd >= 0) 4080 { 4081 /* TODO: check .head */ 4082 sigaddset (&sigfd_set, w->signum); 4083 sigprocmask (SIG_BLOCK, &sigfd_set, 0); 4084 4085 signalfd (sigfd, &sigfd_set, 0); 4086 } 4087 #endif 4088 4089 ev_start (EV_A_ (W)w, 1); 4090 wlist_add (&signals [w->signum - 1].head, (WL)w); 4091 4092 if (!((WL)w)->next) 4093 # if EV_USE_SIGNALFD 4094 if (sigfd < 0) /*TODO*/ 4095 # endif 4096 { 4097 # ifdef _WIN32 4098 evpipe_init (EV_A); 4099 4100 signal (w->signum, ev_sighandler); 4101 # else 4102 struct sigaction sa; 4103 4104 evpipe_init (EV_A); 4105 4106 sa.sa_handler = ev_sighandler; 4107 sigfillset (&sa.sa_mask); 4108 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4109 sigaction (w->signum, &sa, 0); 4110 4111 if (origflags & EVFLAG_NOSIGMASK) 4112 { 4113 sigemptyset (&sa.sa_mask); 4114 sigaddset (&sa.sa_mask, w->signum); 4115 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); 4116 } 4117 #endif 4118 } 4119 4120 EV_FREQUENT_CHECK; 4121 } 4122 4123 void noinline 4124 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW 4125 { 4126 clear_pending (EV_A_ (W)w); 4127 if (expect_false (!ev_is_active (w))) 4128 return; 4129 4130 EV_FREQUENT_CHECK; 4131 4132 wlist_del (&signals [w->signum - 1].head, (WL)w); 4133 ev_stop (EV_A_ (W)w); 4134 4135 if (!signals [w->signum - 1].head) 4136 { 4137 #if EV_MULTIPLICITY 4138 signals [w->signum - 1].loop = 0; /* unattach from signal */ 4139 #endif 4140 #if EV_USE_SIGNALFD 4141 if (sigfd >= 0) 4142 { 4143 sigset_t ss; 4144 4145 sigemptyset (&ss); 4146 sigaddset (&ss, w->signum); 4147 sigdelset (&sigfd_set, w->signum); 4148 4149 signalfd (sigfd, &sigfd_set, 0); 4150 sigprocmask (SIG_UNBLOCK, &ss, 0); 4151 } 4152 else 4153 #endif 4154 signal (w->signum, SIG_DFL); 4155 } 4156 4157 EV_FREQUENT_CHECK; 4158 } 4159 4160 #endif 4161 4162 #if EV_CHILD_ENABLE 4163 4164 void 4165 ev_child_start (EV_P_ ev_child *w) EV_THROW 4166 { 4167 #if EV_MULTIPLICITY 4168 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4169 #endif 4170 if (expect_false (ev_is_active (w))) 4171 return; 4172 4173 EV_FREQUENT_CHECK; 4174 4175 ev_start (EV_A_ (W)w, 1); 4176 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); 4177 4178 EV_FREQUENT_CHECK; 4179 } 4180 4181 void 4182 ev_child_stop (EV_P_ ev_child *w) EV_THROW 4183 { 4184 clear_pending (EV_A_ (W)w); 4185 if (expect_false (!ev_is_active (w))) 4186 return; 4187 4188 EV_FREQUENT_CHECK; 4189 4190 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w); 4191 ev_stop (EV_A_ (W)w); 4192 4193 EV_FREQUENT_CHECK; 4194 } 4195 4196 #endif 4197 4198 #if EV_STAT_ENABLE 4199 4200 # ifdef _WIN32 4201 # undef lstat 4202 # define lstat(a,b) _stati64 (a,b) 4203 # endif 4204 4205 #define DEF_STAT_INTERVAL 5.0074891 4206 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4207 #define MIN_STAT_INTERVAL 0.1074891 4208 4209 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4210 4211 #if EV_USE_INOTIFY 4212 4213 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */ 4214 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX) 4215 4216 static void noinline 4217 infy_add (EV_P_ ev_stat *w) 4218 { 4219 w->wd = inotify_add_watch (fs_fd, w->path, 4220 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY 4221 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO 4222 | IN_DONT_FOLLOW | IN_MASK_ADD); 4223 4224 if (w->wd >= 0) 4225 { 4226 struct statfs sfs; 4227 4228 /* now local changes will be tracked by inotify, but remote changes won't */ 4229 /* unless the filesystem is known to be local, we therefore still poll */ 4230 /* also do poll on <2.6.25, but with normal frequency */ 4231 4232 if (!fs_2625) 4233 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4234 else if (!statfs (w->path, &sfs) 4235 && (sfs.f_type == 0x1373 /* devfs */ 4236 || sfs.f_type == 0x4006 /* fat */ 4237 || sfs.f_type == 0x4d44 /* msdos */ 4238 || sfs.f_type == 0xEF53 /* ext2/3 */ 4239 || sfs.f_type == 0x72b6 /* jffs2 */ 4240 || sfs.f_type == 0x858458f6 /* ramfs */ 4241 || sfs.f_type == 0x5346544e /* ntfs */ 4242 || sfs.f_type == 0x3153464a /* jfs */ 4243 || sfs.f_type == 0x9123683e /* btrfs */ 4244 || sfs.f_type == 0x52654973 /* reiser3 */ 4245 || sfs.f_type == 0x01021994 /* tmpfs */ 4246 || sfs.f_type == 0x58465342 /* xfs */)) 4247 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */ 4248 else 4249 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */ 4250 } 4251 else 4252 { 4253 /* can't use inotify, continue to stat */ 4254 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4255 4256 /* if path is not there, monitor some parent directory for speedup hints */ 4257 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4258 /* but an efficiency issue only */ 4259 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4260 { 4261 char path [4096]; 4262 strcpy (path, w->path); 4263 4264 do 4265 { 4266 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4267 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4268 4269 char *pend = strrchr (path, '/'); 4270 4271 if (!pend || pend == path) 4272 break; 4273 4274 *pend = 0; 4275 w->wd = inotify_add_watch (fs_fd, path, mask); 4276 } 4277 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4278 } 4279 } 4280 4281 if (w->wd >= 0) 4282 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); 4283 4284 /* now re-arm timer, if required */ 4285 if (ev_is_active (&w->timer)) ev_ref (EV_A); 4286 ev_timer_again (EV_A_ &w->timer); 4287 if (ev_is_active (&w->timer)) ev_unref (EV_A); 4288 } 4289 4290 static void noinline 4291 infy_del (EV_P_ ev_stat *w) 4292 { 4293 int slot; 4294 int wd = w->wd; 4295 4296 if (wd < 0) 4297 return; 4298 4299 w->wd = -2; 4300 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1); 4301 wlist_del (&fs_hash [slot].head, (WL)w); 4302 4303 /* remove this watcher, if others are watching it, they will rearm */ 4304 inotify_rm_watch (fs_fd, wd); 4305 } 4306 4307 static void noinline 4308 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4309 { 4310 if (slot < 0) 4311 /* overflow, need to check for all hash slots */ 4312 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) 4313 infy_wd (EV_A_ slot, wd, ev); 4314 else 4315 { 4316 WL w_; 4317 4318 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; ) 4319 { 4320 ev_stat *w = (ev_stat *)w_; 4321 w_ = w_->next; /* lets us remove this watcher and all before it */ 4322 4323 if (w->wd == wd || wd == -1) 4324 { 4325 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4326 { 4327 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w); 4328 w->wd = -1; 4329 infy_add (EV_A_ w); /* re-add, no matter what */ 4330 } 4331 4332 stat_timer_cb (EV_A_ &w->timer, 0); 4333 } 4334 } 4335 } 4336 } 4337 4338 static void 4339 infy_cb (EV_P_ ev_io *w, int revents) 4340 { 4341 char buf [EV_INOTIFY_BUFSIZE]; 4342 int ofs; 4343 int len = read (fs_fd, buf, sizeof (buf)); 4344 4345 for (ofs = 0; ofs < len; ) 4346 { 4347 struct inotify_event *ev = (struct inotify_event *)(buf + ofs); 4348 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4349 ofs += sizeof (struct inotify_event) + ev->len; 4350 } 4351 } 4352 4353 inline_size void ecb_cold 4354 ev_check_2625 (EV_P) 4355 { 4356 /* kernels < 2.6.25 are borked 4357 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4358 */ 4359 if (ev_linux_version () < 0x020619) 4360 return; 4361 4362 fs_2625 = 1; 4363 } 4364 4365 inline_size int 4366 infy_newfd (void) 4367 { 4368 #if defined IN_CLOEXEC && defined IN_NONBLOCK 4369 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK); 4370 if (fd >= 0) 4371 return fd; 4372 #endif 4373 return inotify_init (); 4374 } 4375 4376 inline_size void 4377 infy_init (EV_P) 4378 { 4379 if (fs_fd != -2) 4380 return; 4381 4382 fs_fd = -1; 4383 4384 ev_check_2625 (EV_A); 4385 4386 fs_fd = infy_newfd (); 4387 4388 if (fs_fd >= 0) 4389 { 4390 fd_intern (fs_fd); 4391 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4392 ev_set_priority (&fs_w, EV_MAXPRI); 4393 ev_io_start (EV_A_ &fs_w); 4394 ev_unref (EV_A); 4395 } 4396 } 4397 4398 inline_size void 4399 infy_fork (EV_P) 4400 { 4401 int slot; 4402 4403 if (fs_fd < 0) 4404 return; 4405 4406 ev_ref (EV_A); 4407 ev_io_stop (EV_A_ &fs_w); 4408 close (fs_fd); 4409 fs_fd = infy_newfd (); 4410 4411 if (fs_fd >= 0) 4412 { 4413 fd_intern (fs_fd); 4414 ev_io_set (&fs_w, fs_fd, EV_READ); 4415 ev_io_start (EV_A_ &fs_w); 4416 ev_unref (EV_A); 4417 } 4418 4419 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot) 4420 { 4421 WL w_ = fs_hash [slot].head; 4422 fs_hash [slot].head = 0; 4423 4424 while (w_) 4425 { 4426 ev_stat *w = (ev_stat *)w_; 4427 w_ = w_->next; /* lets us add this watcher */ 4428 4429 w->wd = -1; 4430 4431 if (fs_fd >= 0) 4432 infy_add (EV_A_ w); /* re-add, no matter what */ 4433 else 4434 { 4435 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4436 if (ev_is_active (&w->timer)) ev_ref (EV_A); 4437 ev_timer_again (EV_A_ &w->timer); 4438 if (ev_is_active (&w->timer)) ev_unref (EV_A); 4439 } 4440 } 4441 } 4442 } 4443 4444 #endif 4445 4446 #ifdef _WIN32 4447 # define EV_LSTAT(p,b) _stati64 (p, b) 4448 #else 4449 # define EV_LSTAT(p,b) lstat (p, b) 4450 #endif 4451 4452 void 4453 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW 4454 { 4455 if (lstat (w->path, &w->attr) < 0) 4456 w->attr.st_nlink = 0; 4457 else if (!w->attr.st_nlink) 4458 w->attr.st_nlink = 1; 4459 } 4460 4461 static void noinline 4462 stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4463 { 4464 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4465 4466 ev_statdata prev = w->attr; 4467 ev_stat_stat (EV_A_ w); 4468 4469 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4470 if ( 4471 prev.st_dev != w->attr.st_dev 4472 || prev.st_ino != w->attr.st_ino 4473 || prev.st_mode != w->attr.st_mode 4474 || prev.st_nlink != w->attr.st_nlink 4475 || prev.st_uid != w->attr.st_uid 4476 || prev.st_gid != w->attr.st_gid 4477 || prev.st_rdev != w->attr.st_rdev 4478 || prev.st_size != w->attr.st_size 4479 || prev.st_atime != w->attr.st_atime 4480 || prev.st_mtime != w->attr.st_mtime 4481 || prev.st_ctime != w->attr.st_ctime 4482 ) { 4483 /* we only update w->prev on actual differences */ 4484 /* in case we test more often than invoke the callback, */ 4485 /* to ensure that prev is always different to attr */ 4486 w->prev = prev; 4487 4488 #if EV_USE_INOTIFY 4489 if (fs_fd >= 0) 4490 { 4491 infy_del (EV_A_ w); 4492 infy_add (EV_A_ w); 4493 ev_stat_stat (EV_A_ w); /* avoid race... */ 4494 } 4495 #endif 4496 4497 ev_feed_event (EV_A_ w, EV_STAT); 4498 } 4499 } 4500 4501 void 4502 ev_stat_start (EV_P_ ev_stat *w) EV_THROW 4503 { 4504 if (expect_false (ev_is_active (w))) 4505 return; 4506 4507 ev_stat_stat (EV_A_ w); 4508 4509 if (w->interval < MIN_STAT_INTERVAL && w->interval) 4510 w->interval = MIN_STAT_INTERVAL; 4511 4512 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL); 4513 ev_set_priority (&w->timer, ev_priority (w)); 4514 4515 #if EV_USE_INOTIFY 4516 infy_init (EV_A); 4517 4518 if (fs_fd >= 0) 4519 infy_add (EV_A_ w); 4520 else 4521 #endif 4522 { 4523 ev_timer_again (EV_A_ &w->timer); 4524 ev_unref (EV_A); 4525 } 4526 4527 ev_start (EV_A_ (W)w, 1); 4528 4529 EV_FREQUENT_CHECK; 4530 } 4531 4532 void 4533 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW 4534 { 4535 clear_pending (EV_A_ (W)w); 4536 if (expect_false (!ev_is_active (w))) 4537 return; 4538 4539 EV_FREQUENT_CHECK; 4540 4541 #if EV_USE_INOTIFY 4542 infy_del (EV_A_ w); 4543 #endif 4544 4545 if (ev_is_active (&w->timer)) 4546 { 4547 ev_ref (EV_A); 4548 ev_timer_stop (EV_A_ &w->timer); 4549 } 4550 4551 ev_stop (EV_A_ (W)w); 4552 4553 EV_FREQUENT_CHECK; 4554 } 4555 #endif 4556 4557 #if EV_IDLE_ENABLE 4558 void 4559 ev_idle_start (EV_P_ ev_idle *w) EV_THROW 4560 { 4561 if (expect_false (ev_is_active (w))) 4562 return; 4563 4564 pri_adjust (EV_A_ (W)w); 4565 4566 EV_FREQUENT_CHECK; 4567 4568 { 4569 int active = ++idlecnt [ABSPRI (w)]; 4570 4571 ++idleall; 4572 ev_start (EV_A_ (W)w, active); 4573 4574 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4575 idles [ABSPRI (w)][active - 1] = w; 4576 } 4577 4578 EV_FREQUENT_CHECK; 4579 } 4580 4581 void 4582 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW 4583 { 4584 clear_pending (EV_A_ (W)w); 4585 if (expect_false (!ev_is_active (w))) 4586 return; 4587 4588 EV_FREQUENT_CHECK; 4589 4590 { 4591 int active = ev_active (w); 4592 4593 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4594 ev_active (idles [ABSPRI (w)][active - 1]) = active; 4595 4596 ev_stop (EV_A_ (W)w); 4597 --idleall; 4598 } 4599 4600 EV_FREQUENT_CHECK; 4601 } 4602 #endif 4603 4604 #if EV_PREPARE_ENABLE 4605 void 4606 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW 4607 { 4608 if (expect_false (ev_is_active (w))) 4609 return; 4610 4611 EV_FREQUENT_CHECK; 4612 4613 ev_start (EV_A_ (W)w, ++preparecnt); 4614 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4615 prepares [preparecnt - 1] = w; 4616 4617 EV_FREQUENT_CHECK; 4618 } 4619 4620 void 4621 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW 4622 { 4623 clear_pending (EV_A_ (W)w); 4624 if (expect_false (!ev_is_active (w))) 4625 return; 4626 4627 EV_FREQUENT_CHECK; 4628 4629 { 4630 int active = ev_active (w); 4631 4632 prepares [active - 1] = prepares [--preparecnt]; 4633 ev_active (prepares [active - 1]) = active; 4634 } 4635 4636 ev_stop (EV_A_ (W)w); 4637 4638 EV_FREQUENT_CHECK; 4639 } 4640 #endif 4641 4642 #if EV_CHECK_ENABLE 4643 void 4644 ev_check_start (EV_P_ ev_check *w) EV_THROW 4645 { 4646 if (expect_false (ev_is_active (w))) 4647 return; 4648 4649 EV_FREQUENT_CHECK; 4650 4651 ev_start (EV_A_ (W)w, ++checkcnt); 4652 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4653 checks [checkcnt - 1] = w; 4654 4655 EV_FREQUENT_CHECK; 4656 } 4657 4658 void 4659 ev_check_stop (EV_P_ ev_check *w) EV_THROW 4660 { 4661 clear_pending (EV_A_ (W)w); 4662 if (expect_false (!ev_is_active (w))) 4663 return; 4664 4665 EV_FREQUENT_CHECK; 4666 4667 { 4668 int active = ev_active (w); 4669 4670 checks [active - 1] = checks [--checkcnt]; 4671 ev_active (checks [active - 1]) = active; 4672 } 4673 4674 ev_stop (EV_A_ (W)w); 4675 4676 EV_FREQUENT_CHECK; 4677 } 4678 #endif 4679 4680 #if EV_EMBED_ENABLE 4681 void noinline 4682 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW 4683 { 4684 ev_run (w->other, EVRUN_NOWAIT); 4685 } 4686 4687 static void 4688 embed_io_cb (EV_P_ ev_io *io, int revents) 4689 { 4690 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4691 4692 if (ev_cb (w)) 4693 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4694 else 4695 ev_run (w->other, EVRUN_NOWAIT); 4696 } 4697 4698 static void 4699 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4700 { 4701 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4702 4703 { 4704 EV_P = w->other; 4705 4706 while (fdchangecnt) 4707 { 4708 fd_reify (EV_A); 4709 ev_run (EV_A_ EVRUN_NOWAIT); 4710 } 4711 } 4712 } 4713 4714 static void 4715 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 4716 { 4717 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 4718 4719 ev_embed_stop (EV_A_ w); 4720 4721 { 4722 EV_P = w->other; 4723 4724 ev_loop_fork (EV_A); 4725 ev_run (EV_A_ EVRUN_NOWAIT); 4726 } 4727 4728 ev_embed_start (EV_A_ w); 4729 } 4730 4731 #if 0 4732 static void 4733 embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4734 { 4735 ev_idle_stop (EV_A_ idle); 4736 } 4737 #endif 4738 4739 void 4740 ev_embed_start (EV_P_ ev_embed *w) EV_THROW 4741 { 4742 if (expect_false (ev_is_active (w))) 4743 return; 4744 4745 { 4746 EV_P = w->other; 4747 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4748 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4749 } 4750 4751 EV_FREQUENT_CHECK; 4752 4753 ev_set_priority (&w->io, ev_priority (w)); 4754 ev_io_start (EV_A_ &w->io); 4755 4756 ev_prepare_init (&w->prepare, embed_prepare_cb); 4757 ev_set_priority (&w->prepare, EV_MINPRI); 4758 ev_prepare_start (EV_A_ &w->prepare); 4759 4760 ev_fork_init (&w->fork, embed_fork_cb); 4761 ev_fork_start (EV_A_ &w->fork); 4762 4763 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4764 4765 ev_start (EV_A_ (W)w, 1); 4766 4767 EV_FREQUENT_CHECK; 4768 } 4769 4770 void 4771 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW 4772 { 4773 clear_pending (EV_A_ (W)w); 4774 if (expect_false (!ev_is_active (w))) 4775 return; 4776 4777 EV_FREQUENT_CHECK; 4778 4779 ev_io_stop (EV_A_ &w->io); 4780 ev_prepare_stop (EV_A_ &w->prepare); 4781 ev_fork_stop (EV_A_ &w->fork); 4782 4783 ev_stop (EV_A_ (W)w); 4784 4785 EV_FREQUENT_CHECK; 4786 } 4787 #endif 4788 4789 #if EV_FORK_ENABLE 4790 void 4791 ev_fork_start (EV_P_ ev_fork *w) EV_THROW 4792 { 4793 if (expect_false (ev_is_active (w))) 4794 return; 4795 4796 EV_FREQUENT_CHECK; 4797 4798 ev_start (EV_A_ (W)w, ++forkcnt); 4799 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4800 forks [forkcnt - 1] = w; 4801 4802 EV_FREQUENT_CHECK; 4803 } 4804 4805 void 4806 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW 4807 { 4808 clear_pending (EV_A_ (W)w); 4809 if (expect_false (!ev_is_active (w))) 4810 return; 4811 4812 EV_FREQUENT_CHECK; 4813 4814 { 4815 int active = ev_active (w); 4816 4817 forks [active - 1] = forks [--forkcnt]; 4818 ev_active (forks [active - 1]) = active; 4819 } 4820 4821 ev_stop (EV_A_ (W)w); 4822 4823 EV_FREQUENT_CHECK; 4824 } 4825 #endif 4826 4827 #if EV_CLEANUP_ENABLE 4828 void 4829 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW 4830 { 4831 if (expect_false (ev_is_active (w))) 4832 return; 4833 4834 EV_FREQUENT_CHECK; 4835 4836 ev_start (EV_A_ (W)w, ++cleanupcnt); 4837 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2); 4838 cleanups [cleanupcnt - 1] = w; 4839 4840 /* cleanup watchers should never keep a refcount on the loop */ 4841 ev_unref (EV_A); 4842 EV_FREQUENT_CHECK; 4843 } 4844 4845 void 4846 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW 4847 { 4848 clear_pending (EV_A_ (W)w); 4849 if (expect_false (!ev_is_active (w))) 4850 return; 4851 4852 EV_FREQUENT_CHECK; 4853 ev_ref (EV_A); 4854 4855 { 4856 int active = ev_active (w); 4857 4858 cleanups [active - 1] = cleanups [--cleanupcnt]; 4859 ev_active (cleanups [active - 1]) = active; 4860 } 4861 4862 ev_stop (EV_A_ (W)w); 4863 4864 EV_FREQUENT_CHECK; 4865 } 4866 #endif 4867 4868 #if EV_ASYNC_ENABLE 4869 void 4870 ev_async_start (EV_P_ ev_async *w) EV_THROW 4871 { 4872 if (expect_false (ev_is_active (w))) 4873 return; 4874 4875 w->sent = 0; 4876 4877 evpipe_init (EV_A); 4878 4879 EV_FREQUENT_CHECK; 4880 4881 ev_start (EV_A_ (W)w, ++asynccnt); 4882 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4883 asyncs [asynccnt - 1] = w; 4884 4885 EV_FREQUENT_CHECK; 4886 } 4887 4888 void 4889 ev_async_stop (EV_P_ ev_async *w) EV_THROW 4890 { 4891 clear_pending (EV_A_ (W)w); 4892 if (expect_false (!ev_is_active (w))) 4893 return; 4894 4895 EV_FREQUENT_CHECK; 4896 4897 { 4898 int active = ev_active (w); 4899 4900 asyncs [active - 1] = asyncs [--asynccnt]; 4901 ev_active (asyncs [active - 1]) = active; 4902 } 4903 4904 ev_stop (EV_A_ (W)w); 4905 4906 EV_FREQUENT_CHECK; 4907 } 4908 4909 void 4910 ev_async_send (EV_P_ ev_async *w) EV_THROW 4911 { 4912 w->sent = 1; 4913 evpipe_write (EV_A_ &async_pending); 4914 } 4915 #endif 4916 4917 /*****************************************************************************/ 4918 4919 struct ev_once 4920 { 4921 ev_io io; 4922 ev_timer to; 4923 void (*cb)(int revents, void *arg); 4924 void *arg; 4925 }; 4926 4927 static void 4928 once_cb (EV_P_ struct ev_once *once, int revents) 4929 { 4930 void (*cb)(int revents, void *arg) = once->cb; 4931 void *arg = once->arg; 4932 4933 ev_io_stop (EV_A_ &once->io); 4934 ev_timer_stop (EV_A_ &once->to); 4935 ev_free (once); 4936 4937 cb (revents, arg); 4938 } 4939 4940 static void 4941 once_cb_io (EV_P_ ev_io *w, int revents) 4942 { 4943 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)); 4944 4945 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to)); 4946 } 4947 4948 static void 4949 once_cb_to (EV_P_ ev_timer *w, int revents) 4950 { 4951 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)); 4952 4953 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4954 } 4955 4956 void 4957 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW 4958 { 4959 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4960 4961 if (expect_false (!once)) 4962 { 4963 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg); 4964 return; 4965 } 4966 4967 once->cb = cb; 4968 once->arg = arg; 4969 4970 ev_init (&once->io, once_cb_io); 4971 if (fd >= 0) 4972 { 4973 ev_io_set (&once->io, fd, events); 4974 ev_io_start (EV_A_ &once->io); 4975 } 4976 4977 ev_init (&once->to, once_cb_to); 4978 if (timeout >= 0.) 4979 { 4980 ev_timer_set (&once->to, timeout, 0.); 4981 ev_timer_start (EV_A_ &once->to); 4982 } 4983 } 4984 4985 /*****************************************************************************/ 4986 4987 #if EV_WALK_ENABLE 4988 void ecb_cold 4989 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW 4990 { 4991 int i, j; 4992 ev_watcher_list *wl, *wn; 4993 4994 if (types & (EV_IO | EV_EMBED)) 4995 for (i = 0; i < anfdmax; ++i) 4996 for (wl = anfds [i].head; wl; ) 4997 { 4998 wn = wl->next; 4999 5000 #if EV_EMBED_ENABLE 5001 if (ev_cb ((ev_io *)wl) == embed_io_cb) 5002 { 5003 if (types & EV_EMBED) 5004 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io)); 5005 } 5006 else 5007 #endif 5008 #if EV_USE_INOTIFY 5009 if (ev_cb ((ev_io *)wl) == infy_cb) 5010 ; 5011 else 5012 #endif 5013 if ((ev_io *)wl != &pipe_w) 5014 if (types & EV_IO) 5015 cb (EV_A_ EV_IO, wl); 5016 5017 wl = wn; 5018 } 5019 5020 if (types & (EV_TIMER | EV_STAT)) 5021 for (i = timercnt + HEAP0; i-- > HEAP0; ) 5022 #if EV_STAT_ENABLE 5023 /*TODO: timer is not always active*/ 5024 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb) 5025 { 5026 if (types & EV_STAT) 5027 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer)); 5028 } 5029 else 5030 #endif 5031 if (types & EV_TIMER) 5032 cb (EV_A_ EV_TIMER, ANHE_w (timers [i])); 5033 5034 #if EV_PERIODIC_ENABLE 5035 if (types & EV_PERIODIC) 5036 for (i = periodiccnt + HEAP0; i-- > HEAP0; ) 5037 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5038 #endif 5039 5040 #if EV_IDLE_ENABLE 5041 if (types & EV_IDLE) 5042 for (j = NUMPRI; j--; ) 5043 for (i = idlecnt [j]; i--; ) 5044 cb (EV_A_ EV_IDLE, idles [j][i]); 5045 #endif 5046 5047 #if EV_FORK_ENABLE 5048 if (types & EV_FORK) 5049 for (i = forkcnt; i--; ) 5050 if (ev_cb (forks [i]) != embed_fork_cb) 5051 cb (EV_A_ EV_FORK, forks [i]); 5052 #endif 5053 5054 #if EV_ASYNC_ENABLE 5055 if (types & EV_ASYNC) 5056 for (i = asynccnt; i--; ) 5057 cb (EV_A_ EV_ASYNC, asyncs [i]); 5058 #endif 5059 5060 #if EV_PREPARE_ENABLE 5061 if (types & EV_PREPARE) 5062 for (i = preparecnt; i--; ) 5063 # if EV_EMBED_ENABLE 5064 if (ev_cb (prepares [i]) != embed_prepare_cb) 5065 # endif 5066 cb (EV_A_ EV_PREPARE, prepares [i]); 5067 #endif 5068 5069 #if EV_CHECK_ENABLE 5070 if (types & EV_CHECK) 5071 for (i = checkcnt; i--; ) 5072 cb (EV_A_ EV_CHECK, checks [i]); 5073 #endif 5074 5075 #if EV_SIGNAL_ENABLE 5076 if (types & EV_SIGNAL) 5077 for (i = 0; i < EV_NSIG - 1; ++i) 5078 for (wl = signals [i].head; wl; ) 5079 { 5080 wn = wl->next; 5081 cb (EV_A_ EV_SIGNAL, wl); 5082 wl = wn; 5083 } 5084 #endif 5085 5086 #if EV_CHILD_ENABLE 5087 if (types & EV_CHILD) 5088 for (i = (EV_PID_HASHSIZE); i--; ) 5089 for (wl = childs [i]; wl; ) 5090 { 5091 wn = wl->next; 5092 cb (EV_A_ EV_CHILD, wl); 5093 wl = wn; 5094 } 5095 #endif 5096 /* EV_STAT 0x00001000 /* stat data changed */ 5097 /* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5098 } 5099 #endif 5100 5101 #if EV_MULTIPLICITY 5102 #include "ev_wrap.h" 5103 #endif 5104 5105