xref: /freebsd/crypto/heimdal/lib/krb5/doxygen.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*
2  * Copyright (c) 2007-2008 Kungliga Tekniska Högskolan
3  * (Royal Institute of Technology, Stockholm, Sweden).
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  *
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * 3. Neither the name of the Institute nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include "krb5_locl.h"
35 
36 /**
37  *
38  */
39 
40 /*! @mainpage Heimdal Kerberos 5 library
41  *
42  * @section intro Introduction
43  *
44  * Heimdal libkrb5 library is a implementation of the Kerberos
45  * protocol.
46  *
47  * Kerberos is a system for authenticating users and services on a
48  * network.  It is built upon the assumption that the network is
49  * ``unsafe''.  For example, data sent over the network can be
50  * eavesdropped and altered, and addresses can also be faked.
51  * Therefore they cannot be used for authentication purposes.
52  *
53  *
54  * - @ref krb5_introduction
55  * - @ref krb5_principal_intro
56  * - @ref krb5_ccache_intro
57  * - @ref krb5_keytab_intro
58  *
59  * If you want to know more about the file formats that is used by
60  * Heimdal, please see: @ref krb5_fileformats
61  *
62  * The project web page: http://www.h5l.org/
63  *
64  */
65 
66 /** @defgroup krb5 Heimdal Kerberos 5 library */
67 /** @defgroup krb5_address Heimdal Kerberos 5 address functions */
68 /** @defgroup krb5_principal Heimdal Kerberos 5 principal functions */
69 /** @defgroup krb5_ccache Heimdal Kerberos 5 credential cache functions */
70 /** @defgroup krb5_crypto Heimdal Kerberos 5 cryptography functions */
71 /** @defgroup krb5_credential Heimdal Kerberos 5 credential handing functions */
72 /** @defgroup krb5_deprecated Heimdal Kerberos 5 deprecated functions */
73 /** @defgroup krb5_digest Heimdal Kerberos 5 digest service */
74 /** @defgroup krb5_error Heimdal Kerberos 5 error reporting functions */
75 /** @defgroup krb5_keytab Heimdal Kerberos 5 keytab handling functions */
76 /** @defgroup krb5_ticket Heimdal Kerberos 5 ticket functions */
77 /** @defgroup krb5_pac Heimdal Kerberos 5 PAC handling functions */
78 /** @defgroup krb5_v4compat Heimdal Kerberos 4 compatiblity functions */
79 /** @defgroup krb5_storage Heimdal Kerberos 5 storage functions */
80 /** @defgroup krb5_support Heimdal Kerberos 5 support functions */
81 /** @defgroup krb5_auth Heimdal Kerberos 5 authentication functions */
82 
83 
84 /**
85  * @page krb5_introduction Introduction to the Kerberos 5 API
86  * @section api_overview Kerberos 5 API Overview
87  *
88  * All functions are documented in manual pages.  This section tries
89  * to give an overview of the major components used in Kerberos
90  * library, and point to where to look for a specific function.
91  *
92  * @subsection intro_krb5_context Kerberos context
93  *
94  * A kerberos context (krb5_context) holds all per thread state. All
95  * global variables that are context specific are stored in this
96  * structure, including default encryption types, credential cache
97  * (for example, a ticket file), and default realms.
98  *
99  * The internals of the structure should never be accessed directly,
100  * functions exist for extracting information.
101  *
102  * See the manual page for krb5_init_context() how to create a context
103  * and module @ref krb5 for more information about the functions.
104  *
105  * @subsection intro_krb5_auth_context Kerberos authentication context
106  *
107  * Kerberos authentication context (krb5_auth_context) holds all
108  * context related to an authenticated connection, in a similar way to
109  * the kerberos context that holds the context for the thread or
110  * process.
111  *
112  * The krb5_auth_context is used by various functions that are
113  * directly related to authentication between the
114  * server/client. Example of data that this structure contains are
115  * various flags, addresses of client and server, port numbers,
116  * keyblocks (and subkeys), sequence numbers, replay cache, and
117  * checksum types.
118  *
119  * @subsection intro_krb5_principal Kerberos principal
120  *
121  * The Kerberos principal is the structure that identifies a user or
122  * service in Kerberos. The structure that holds the principal is the
123  * krb5_principal. There are function to extract the realm and
124  * elements of the principal, but most applications have no reason to
125  * inspect the content of the structure.
126  *
127  * The are several ways to create a principal (with different degree of
128  * portability), and one way to free it.
129  *
130  * See also the page @ref krb5_principal_intro for more information and also
131  * module @ref krb5_principal.
132  *
133  * @subsection intro_krb5_ccache Credential cache
134  *
135  * A credential cache holds the tickets for a user. A given user can
136  * have several credential caches, one for each realm where the user
137  * have the initial tickets (the first krbtgt).
138  *
139  * The credential cache data can be stored internally in different
140  * way, each of them for different proposes.  File credential (FILE)
141  * caches and processes based (KCM) caches are for permanent
142  * storage. While memory caches (MEMORY) are local caches to the local
143  * process.
144  *
145  * Caches are opened with krb5_cc_resolve() or created with
146  * krb5_cc_new_unique().
147  *
148  * If the cache needs to be opened again (using krb5_cc_resolve())
149  * krb5_cc_close() will close the handle, but not the remove the
150  * cache. krb5_cc_destroy() will zero out the cache, remove the cache
151  * so it can no longer be referenced.
152  *
153  * See also @ref krb5_ccache_intro and @ref krb5_ccache .
154  *
155  * @subsection intro_krb5_error_code Kerberos errors
156  *
157  * Kerberos errors are based on the com_err library.  All error codes are
158  * 32-bit signed numbers, the first 24 bits define what subsystem the
159  * error originates from, and last 8 bits are 255 error codes within the
160  * library.  Each error code have fixed string associated with it.  For
161  * example, the error-code -1765328383 have the symbolic name
162  * KRB5KDC_ERR_NAME_EXP, and associated error string ``Client's entry in
163  * database has expired''.
164  *
165  * This is a great improvement compared to just getting one of the unix
166  * error-codes back.  However, Heimdal have an extention to pass back
167  * customised errors messages.  Instead of getting ``Key table entry not
168  * found'', the user might back ``failed to find
169  * host/host.example.com\@EXAMLE.COM(kvno 3) in keytab /etc/krb5.keytab
170  * (des-cbc-crc)''.  This improves the chance that the user find the
171  * cause of the error so you should use the customised error message
172  * whenever it's available.
173  *
174  * See also module @ref krb5_error .
175  *
176  *
177  * @subsection intro_krb5_keytab Keytab management
178  *
179  * A keytab is a storage for locally stored keys. Heimdal includes keytab
180  * support for Kerberos 5 keytabs, Kerberos 4 srvtab, AFS-KeyFile's,
181  * and for storing keys in memory.
182  *
183  * Keytabs are used for servers and long-running services.
184  *
185  * See also @ref krb5_keytab_intro and @ref krb5_keytab .
186  *
187  * @subsection intro_krb5_crypto Kerberos crypto
188  *
189  * Heimdal includes a implementation of the Kerberos crypto framework,
190  * all crypto operations. To create a crypto context call krb5_crypto_init().
191  *
192  * See also module @ref krb5_crypto .
193  *
194  * @section kerberos5_client Walkthrough of a sample Kerberos 5 client
195  *
196  * This example contains parts of a sample TCP Kerberos 5 clients, if you
197  * want a real working client, please look in appl/test directory in
198  * the Heimdal distribution.
199  *
200  * All Kerberos error-codes that are returned from kerberos functions in
201  * this program are passed to krb5_err, that will print a
202  * descriptive text of the error code and exit. Graphical programs can
203  * convert error-code to a human readable error-string with the
204  * krb5_get_error_message() function.
205  *
206  * Note that you should not use any Kerberos function before
207  * krb5_init_context() have completed successfully. That is the
208  * reason err() is used when krb5_init_context() fails.
209  *
210  * First the client needs to call krb5_init_context to initialise
211  * the Kerberos 5 library. This is only needed once per thread
212  * in the program. If the function returns a non-zero value it indicates
213  * that either the Kerberos implementation is failing or it's disabled on
214  * this host.
215  *
216  * @code
217  * #include <krb5.h>
218  *
219  * int
220  * main(int argc, char **argv)
221  * {
222  *         krb5_context context;
223  *
224  *         if (krb5_init_context(&context))
225  *                 errx (1, "krb5_context");
226  * @endcode
227  *
228  * Now the client wants to connect to the host at the other end. The
229  * preferred way of doing this is using getaddrinfo (for
230  * operating system that have this function implemented), since getaddrinfo
231  * is neutral to the address type and can use any protocol that is available.
232  *
233  * @code
234  *         struct addrinfo *ai, *a;
235  *         struct addrinfo hints;
236  *         int error;
237  *
238  *         memset (&hints, 0, sizeof(hints));
239  *         hints.ai_socktype = SOCK_STREAM;
240  *         hints.ai_protocol = IPPROTO_TCP;
241  *
242  *         error = getaddrinfo (hostname, "pop3", &hints, &ai);
243  *         if (error)
244  *                 errx (1, "%s: %s", hostname, gai_strerror(error));
245  *
246  *         for (a = ai; a != NULL; a = a->ai_next) {
247  *                 int s;
248  *
249  *                 s = socket (a->ai_family, a->ai_socktype, a->ai_protocol);
250  *                 if (s < 0)
251  *                         continue;
252  *                 if (connect (s, a->ai_addr, a->ai_addrlen) < 0) {
253  *                         warn ("connect(%s)", hostname);
254  *                             close (s);
255  *                             continue;
256  *                 }
257  *                 freeaddrinfo (ai);
258  *                 ai = NULL;
259  *         }
260  *         if (ai) {
261  *                     freeaddrinfo (ai);
262  *                     errx ("failed to contact %s", hostname);
263  *         }
264  * @endcode
265  *
266  * Before authenticating, an authentication context needs to be
267  * created. This context keeps all information for one (to be) authenticated
268  * connection (see krb5_auth_context).
269  *
270  * @code
271  *         status = krb5_auth_con_init (context, &auth_context);
272  *         if (status)
273  *                 krb5_err (context, 1, status, "krb5_auth_con_init");
274  * @endcode
275  *
276  * For setting the address in the authentication there is a help function
277  * krb5_auth_con_setaddrs_from_fd() that does everything that is needed
278  * when given a connected file descriptor to the socket.
279  *
280  * @code
281  *         status = krb5_auth_con_setaddrs_from_fd (context,
282  *                                                  auth_context,
283  *                                                  &sock);
284  *         if (status)
285  *                 krb5_err (context, 1, status,
286  *                           "krb5_auth_con_setaddrs_from_fd");
287  * @endcode
288  *
289  * The next step is to build a server principal for the service we want
290  * to connect to. (See also krb5_sname_to_principal().)
291  *
292  * @code
293  *         status = krb5_sname_to_principal (context,
294  *                                           hostname,
295  *                                           service,
296  *                                           KRB5_NT_SRV_HST,
297  *                                           &server);
298  *         if (status)
299  *                 krb5_err (context, 1, status, "krb5_sname_to_principal");
300  * @endcode
301  *
302  * The client principal is not passed to krb5_sendauth()
303  * function, this causes the krb5_sendauth() function to try to figure it
304  * out itself.
305  *
306  * The server program is using the function krb5_recvauth() to
307  * receive the Kerberos 5 authenticator.
308  *
309  * In this case, mutual authentication will be tried. That means that the server
310  * will authenticate to the client. Using mutual authentication
311  * is good since it enables the user to verify that they are talking to the
312  * right server (a server that knows the key).
313  *
314  * If you are using a non-blocking socket you will need to do all work of
315  * krb5_sendauth() yourself. Basically you need to send over the
316  * authenticator from krb5_mk_req() and, in case of mutual
317  * authentication, verifying the result from the server with
318  * krb5_rd_rep().
319  *
320  * @code
321  *         status = krb5_sendauth (context,
322  *                                 &auth_context,
323  *                                 &sock,
324  *                                 VERSION,
325  *                                 NULL,
326  *                                 server,
327  *                                 AP_OPTS_MUTUAL_REQUIRED,
328  *                                 NULL,
329  *                                 NULL,
330  *                                 NULL,
331  *                                 NULL,
332  *                                 NULL,
333  *                                 NULL);
334  *         if (status)
335  *                 krb5_err (context, 1, status, "krb5_sendauth");
336  * @endcode
337  *
338  * Once authentication has been performed, it is time to send some
339  * data. First we create a krb5_data structure, then we sign it with
340  * krb5_mk_safe() using the auth_context that contains the
341  * session-key that was exchanged in the
342  * krb5_sendauth()/krb5_recvauth() authentication
343  * sequence.
344  *
345  * @code
346  *         data.data   = "hej";
347  *         data.length = 3;
348  *
349  *         krb5_data_zero (&packet);
350  *
351  *         status = krb5_mk_safe (context,
352  *                                auth_context,
353  *                                &data,
354  *                                &packet,
355  *                                NULL);
356  *         if (status)
357  *                 krb5_err (context, 1, status, "krb5_mk_safe");
358  * @endcode
359  *
360  * And send it over the network.
361  *
362  * @code
363  *         len = packet.length;
364  *         net_len = htonl(len);
365  *
366  *         if (krb5_net_write (context, &sock, &net_len, 4) != 4)
367  *                 err (1, "krb5_net_write");
368  *         if (krb5_net_write (context, &sock, packet.data, len) != len)
369  *                 err (1, "krb5_net_write");
370  * @endcode
371  *
372  * To send encrypted (and signed) data krb5_mk_priv() should be
373  * used instead. krb5_mk_priv() works the same way as
374  * krb5_mk_safe(), with the exception that it encrypts the data
375  * in addition to signing it.
376  *
377  * @code
378  *         data.data   = "hemligt";
379  *         data.length = 7;
380  *
381  *         krb5_data_free (&packet);
382  *
383  *         status = krb5_mk_priv (context,
384  *                                auth_context,
385  *                                &data,
386  *                                &packet,
387  *                                NULL);
388  *         if (status)
389  *                 krb5_err (context, 1, status, "krb5_mk_priv");
390  * @endcode
391  *
392  * And send it over the network.
393  *
394  * @code
395  *         len = packet.length;
396  *         net_len = htonl(len);
397  *
398  *         if (krb5_net_write (context, &sock, &net_len, 4) != 4)
399  *                 err (1, "krb5_net_write");
400  *         if (krb5_net_write (context, &sock, packet.data, len) != len)
401  *                 err (1, "krb5_net_write");
402  *
403  * @endcode
404  *
405  * The server is using krb5_rd_safe() and
406  * krb5_rd_priv() to verify the signature and decrypt the packet.
407  *
408  * @section intro_krb5_verify_user Validating a password in an application
409  *
410  * See the manual page for krb5_verify_user().
411  *
412  * @section mit_differences API differences to MIT Kerberos
413  *
414  * This section is somewhat disorganised, but so far there is no overall
415  * structure to the differences, though some of the have their root in
416  * that Heimdal uses an ASN.1 compiler and MIT doesn't.
417  *
418  * @subsection mit_krb5_principal Principal and realms
419  *
420  * Heimdal stores the realm as a krb5_realm, that is a char *.
421  * MIT Kerberos uses a krb5_data to store a realm.
422  *
423  * In Heimdal krb5_principal doesn't contain the component
424  * name_type; it's instead stored in component
425  * name.name_type. To get and set the nametype in Heimdal, use
426  * krb5_principal_get_type() and
427  * krb5_principal_set_type().
428  *
429  * For more information about principal and realms, see
430  * krb5_principal.
431  *
432  * @subsection mit_krb5_error_code Error messages
433  *
434  * To get the error string, Heimdal uses
435  * krb5_get_error_message(). This is to return custom error messages
436  * (like ``Can't find host/datan.example.com\@CODE.COM in
437  * /etc/krb5.conf.'' instead of a ``Key table entry not found'' that
438  * error_message returns.
439  *
440  * Heimdal uses a threadsafe(r) version of the com_err interface; the
441  * global com_err table isn't initialised.  Then
442  * error_message returns quite a boring error string (just
443  * the error code itself).
444  *
445  *
446  */
447 
448 /**
449  *
450  *
451  * @page krb5_fileformats File formats
452  *
453  * @section fileformats File formats
454  *
455  * This section documents the diffrent file formats that are used in
456  * Heimdal and other Kerberos implementations.
457  *
458  * @subsection file_keytab keytab
459  *
460  * The keytab binary format is not a standard format. The format has
461  * evolved and may continue to. It is however understood by several
462  * Kerberos implementations including Heimdal, MIT, Sun's Java ktab and
463  * are created by the ktpass.exe utility from Windows. So it has
464  * established itself as the defacto format for storing Kerberos keys.
465  *
466  * The following C-like structure definitions illustrate the MIT keytab
467  * file format. All values are in network byte order. All text is ASCII.
468  *
469  * @code
470  *   keytab {
471  *       uint16_t file_format_version;                    # 0x502
472  *       keytab_entry entries[*];
473  *   };
474  *
475  *   keytab_entry {
476  *       int32_t size;
477  *       uint16_t num_components;   # subtract 1 if version 0x501
478  *       counted_octet_string realm;
479  *       counted_octet_string components[num_components];
480  *       uint32_t name_type;       # not present if version 0x501
481  *       uint32_t timestamp;
482  *       uint8_t vno8;
483  *       keyblock key;
484  *       uint32_t vno; #only present if >= 4 bytes left in entry
485  *       uint32_t flags; #only present if >= 4 bytes left in entry
486  *   };
487  *
488  *   counted_octet_string {
489  *       uint16_t length;
490  *       uint8_t data[length];
491  *   };
492  *
493  *   keyblock {
494  *       uint16_t type;
495  *       counted_octet_string;
496  *   };
497  * @endcode
498  *
499  * All numbers are stored in network byteorder (big endian) format.
500  *
501  * The keytab file format begins with the 16 bit file_format_version which
502  * at the time this document was authored is 0x502. The format of older
503  * keytabs is described at the end of this document.
504  *
505  * The file_format_version is immediately followed by an array of
506  * keytab_entry structures which are prefixed with a 32 bit size indicating
507  * the number of bytes that follow in the entry. Note that the size should be
508  * evaluated as signed. This is because a negative value indicates that the
509  * entry is in fact empty (e.g. it has been deleted) and that the negative
510  * value of that negative value (which is of course a positive value) is
511  * the offset to the next keytab_entry. Based on these size values alone
512  * the entire keytab file can be traversed.
513  *
514  * The size is followed by a 16 bit num_components field indicating the
515  * number of counted_octet_string components in the components array.
516  *
517  * The num_components field is followed by a counted_octet_string
518  * representing the realm of the principal.
519  *
520  * A counted_octet_string is simply an array of bytes prefixed with a 16
521  * bit length. For the realm and name components, the counted_octet_string
522  * bytes are ASCII encoded text with no zero terminator.
523  *
524  * Following the realm is the components array that represents the name of
525  * the principal. The text of these components may be joined with slashs
526  * to construct the typical SPN representation. For example, the service
527  * principal HTTP/www.foo.net\@FOO.NET would consist of name components
528  * "HTTP" followed by "www.foo.net".
529  *
530  * Following the components array is the 32 bit name_type (e.g. 1 is
531  * KRB5_NT_PRINCIPAL, 2 is KRB5_NT_SRV_INST, 5 is KRB5_NT_UID, etc). In
532  * practice the name_type is almost certainly 1 meaning KRB5_NT_PRINCIPAL.
533  *
534  * The 32 bit timestamp indicates the time the key was established for that
535  * principal. The value represents the number of seconds since Jan 1, 1970.
536  *
537  * The 8 bit vno8 field is the version number of the key. This value is
538  * overridden by the 32 bit vno field if it is present. The vno8 field is
539  * filled with the lower 8 bits of the 32 bit protocol kvno field.
540  *
541  * The keyblock structure consists of a 16 bit value indicating the
542  * encryption type and is a counted_octet_string containing the key.  The
543  * encryption type is the same as the Kerberos standard (e.g. 3 is
544  * des-cbc-md5, 23 is arcfour-hmac-md5, etc).
545  *
546  * The last field of the keytab_entry structure is optional. If the size of
547  * the keytab_entry indicates that there are at least 4 bytes remaining,
548  * a 32 bit value representing the key version number is present. This
549  * value supersedes the 8 bit vno8 value preceeding the keyblock.
550  *
551  * Older keytabs with a file_format_version of 0x501 are different in
552  * three ways:
553  *
554  * - All integers are in host byte order [1].
555  * - The num_components field is 1 too large (i.e. after decoding, decrement by 1).
556  * - The 32 bit name_type field is not present.
557  *
558  * [1] The file_format_version field should really be treated as two
559  * separate 8 bit quantities representing the major and minor version
560  * number respectively.
561  *
562  * @subsection file_hdb_dump Heimdal database dump file
563  *
564  * Format of the Heimdal text dump file as of Heimdal 0.6.3:
565  *
566  * Each line in the dump file is one entry in the database.
567  *
568  * Each field of a line is separated by one or more spaces, with the
569  * exception of fields consisting of principals containing spaces, where
570  * space can be quoted with \ and \ is quoted by \.
571  *
572  * Fields and their types are:
573  *
574  * @code
575  * 	Quoted princial (quote character is \) [string]
576  * 	Keys [keys]
577  * 	Created by [event]
578  * 	Modified by [event optional]
579  * 	Valid start time [time optional]
580  * 	Valid end time [time optional]
581  * 	Password end valid time [time optional]
582  * 	Max lifetime of ticket [time optional]
583  * 	Max renew time of ticket [integer optional]
584  * 	Flags [hdb flags]
585  * 	Generation number [generation optional]
586  * 	Extensions [extentions optional]
587  * @endcode
588  *
589  * Fields following these silently are ignored.
590  *
591  * All optional fields will be skipped if they fail to parse (or comprise
592  * the optional field marker of "-", w/o quotes).
593  *
594  * Example:
595  *
596  * @code
597  * fred\@CODE.COM 27:1:16:e8b4c8fc7e60b9e641dcf4cff3f08a701d982a2f89ba373733d26ca59ba6c789666f6b8bfcf169412bb1e5dceb9b33cda29f3412:-:1:3:4498a933881178c744f4232172dcd774c64e81fa6d05ecdf643a7e390624a0ebf3c7407a:-:1:2:b01934b13eb795d76f3a80717d469639b4da0cfb644161340ef44fdeb375e54d684dbb85:-:1:1:ea8e16d8078bf60c781da90f508d4deccba70595258b9d31888d33987cd31af0c9cced2e:- 20020415130120:admin\@CODE.COM 20041221112428:fred\@CODE.COM - - - 86400 604800 126 20020415130120:793707:28 -
598  * @endcode
599  *
600  * Encoding of types are as follows:
601  *
602  * - keys
603  *
604  * @code
605  * kvno:[masterkvno:keytype:keydata:salt]{zero or more separated by :}
606  * @endcode
607  *
608  * kvno is the key version number.
609  *
610  * keydata is hex-encoded
611  *
612  * masterkvno is the kvno of the database master key.  If this field is
613  * empty, the kadmin load and merge operations will encrypt the key data
614  * with the master key if there is one.  Otherwise the key data will be
615  * imported asis.
616  *
617  * salt is encoded as "-" (no/default salt) or
618  *
619  * @code
620  * salt-type /
621  * salt-type / "string"
622  * salt-type / hex-encoded-data
623  * @endcode
624  *
625  * keytype is the protocol enctype number; see enum ENCTYPE in
626  * include/krb5_asn1.h for values.
627  *
628  * Example:
629  * @code
630  * 27:1:16:e8b4c8fc7e60b9e641dcf4cff3f08a701d982a2f89ba373733d26ca59ba6c789666f6b8bfcf169412bb1e5dceb9b33cda29f3412:-:1:3:4498a933881178c744f4232172dcd774c64e81fa6d05ecdf643a7e390624a0ebf3c7407a:-:1:2:b01934b13eb795d76f3a80717d469639b4da0cfb644161340ef44fdeb375e54d684dbb85:-:1:1:ea8e16d8078bf60c781da90f508d4deccba70595258b9d31888d33987cd31af0c9cced2e:-
631  * @endcode
632  *
633  *
634  * @code
635  * kvno=27,{key: masterkvno=1,keytype=des3-cbc-sha1,keydata=..., default salt}...
636  * @endcode
637  *
638  * - time
639  *
640  * Format of the time is: YYYYmmddHHMMSS, corresponding to strftime
641  * format "%Y%m%d%k%M%S".
642  *
643  * Time is expressed in UTC.
644  *
645  * Time can be optional (using -), when the time 0 is used.
646  *
647  * Example:
648  *
649  * @code
650  * 20041221112428
651  * @endcode
652  *
653  * - event
654  *
655  * @code
656  * 	time:principal
657  * @endcode
658  *
659  * time is as given in format time
660  *
661  * principal is a string.  Not quoting it may not work in earlier
662  * versions of Heimdal.
663  *
664  * Example:
665  * @code
666  * 20041221112428:bloggs\@CODE.COM
667  * @endcode
668  *
669  * - hdb flags
670  *
671  * Integer encoding of HDB flags, see HDBFlags in lib/hdb/hdb.asn1. Each
672  * bit in the integer is the same as the bit in the specification.
673  *
674  * - generation:
675  *
676  * @code
677  * time:usec:gen
678  * @endcode
679  *
680  *
681  * usec is a the microsecond, integer.
682  * gen is generation number, integer.
683  *
684  * The generation can be defaulted (using '-') or the empty string
685  *
686  * - extensions:
687  *
688  * @code
689  * first-hex-encoded-HDB-Extension[:second-...]
690  * @endcode
691  *
692  * HDB-extension is encoded the DER encoded HDB-Extension from
693  * lib/hdb/hdb.asn1. Consumers HDB extensions should be aware that
694  * unknown entires needs to be preserved even thought the ASN.1 data
695  * content might be unknown. There is a critical flag in the data to show
696  * to the KDC that the entry MUST be understod if the entry is to be
697  * used.
698  *
699  *
700  */
701