xref: /freebsd/contrib/xz/src/liblzma/simple/simple_coder.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       simple_coder.c
4 /// \brief      Wrapper for simple filters
5 ///
6 /// Simple filters don't change the size of the data i.e. number of bytes
7 /// in equals the number of bytes out.
8 //
9 //  Author:     Lasse Collin
10 //
11 //  This file has been put into the public domain.
12 //  You can do whatever you want with this file.
13 //
14 ///////////////////////////////////////////////////////////////////////////////
15 
16 #include "simple_private.h"
17 
18 
19 /// Copied or encodes/decodes more data to out[].
20 static lzma_ret
21 copy_or_code(lzma_coder *coder, lzma_allocator *allocator,
22 		const uint8_t *restrict in, size_t *restrict in_pos,
23 		size_t in_size, uint8_t *restrict out,
24 		size_t *restrict out_pos, size_t out_size, lzma_action action)
25 {
26 	assert(!coder->end_was_reached);
27 
28 	if (coder->next.code == NULL) {
29 		lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
30 
31 		// Check if end of stream was reached.
32 		if (coder->is_encoder && action == LZMA_FINISH
33 				&& *in_pos == in_size)
34 			coder->end_was_reached = true;
35 
36 	} else {
37 		// Call the next coder in the chain to provide us some data.
38 		const lzma_ret ret = coder->next.code(
39 				coder->next.coder, allocator,
40 				in, in_pos, in_size,
41 				out, out_pos, out_size, action);
42 
43 		if (ret == LZMA_STREAM_END) {
44 			assert(!coder->is_encoder
45 					|| action == LZMA_FINISH);
46 			coder->end_was_reached = true;
47 
48 		} else if (ret != LZMA_OK) {
49 			return ret;
50 		}
51 	}
52 
53 	return LZMA_OK;
54 }
55 
56 
57 static size_t
58 call_filter(lzma_coder *coder, uint8_t *buffer, size_t size)
59 {
60 	const size_t filtered = coder->filter(coder->simple,
61 			coder->now_pos, coder->is_encoder,
62 			buffer, size);
63 	coder->now_pos += filtered;
64 	return filtered;
65 }
66 
67 
68 static lzma_ret
69 simple_code(lzma_coder *coder, lzma_allocator *allocator,
70 		const uint8_t *restrict in, size_t *restrict in_pos,
71 		size_t in_size, uint8_t *restrict out,
72 		size_t *restrict out_pos, size_t out_size, lzma_action action)
73 {
74 	// TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
75 	// in cases when the filter is able to filter everything. With most
76 	// simple filters it can be done at offset that is a multiple of 2,
77 	// 4, or 16. With x86 filter, it needs good luck, and thus cannot
78 	// be made to work predictably.
79 	if (action == LZMA_SYNC_FLUSH)
80 		return LZMA_OPTIONS_ERROR;
81 
82 	// Flush already filtered data from coder->buffer[] to out[].
83 	if (coder->pos < coder->filtered) {
84 		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
85 				out, out_pos, out_size);
86 
87 		// If we couldn't flush all the filtered data, return to
88 		// application immediately.
89 		if (coder->pos < coder->filtered)
90 			return LZMA_OK;
91 
92 		if (coder->end_was_reached) {
93 			assert(coder->filtered == coder->size);
94 			return LZMA_STREAM_END;
95 		}
96 	}
97 
98 	// If we get here, there is no filtered data left in the buffer.
99 	coder->filtered = 0;
100 
101 	assert(!coder->end_was_reached);
102 
103 	// If there is more output space left than there is unfiltered data
104 	// in coder->buffer[], flush coder->buffer[] to out[], and copy/code
105 	// more data to out[] hopefully filling it completely. Then filter
106 	// the data in out[]. This step is where most of the data gets
107 	// filtered if the buffer sizes used by the application are reasonable.
108 	const size_t out_avail = out_size - *out_pos;
109 	const size_t buf_avail = coder->size - coder->pos;
110 	if (out_avail > buf_avail || buf_avail == 0) {
111 		// Store the old position so that we know from which byte
112 		// to start filtering.
113 		const size_t out_start = *out_pos;
114 
115 		// Flush data from coder->buffer[] to out[], but don't reset
116 		// coder->pos and coder->size yet. This way the coder can be
117 		// restarted if the next filter in the chain returns e.g.
118 		// LZMA_MEM_ERROR.
119 		memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail);
120 		*out_pos += buf_avail;
121 
122 		// Copy/Encode/Decode more data to out[].
123 		{
124 			const lzma_ret ret = copy_or_code(coder, allocator,
125 					in, in_pos, in_size,
126 					out, out_pos, out_size, action);
127 			assert(ret != LZMA_STREAM_END);
128 			if (ret != LZMA_OK)
129 				return ret;
130 		}
131 
132 		// Filter out[].
133 		const size_t size = *out_pos - out_start;
134 		const size_t filtered = call_filter(
135 				coder, out + out_start, size);
136 
137 		const size_t unfiltered = size - filtered;
138 		assert(unfiltered <= coder->allocated / 2);
139 
140 		// Now we can update coder->pos and coder->size, because
141 		// the next coder in the chain (if any) was successful.
142 		coder->pos = 0;
143 		coder->size = unfiltered;
144 
145 		if (coder->end_was_reached) {
146 			// The last byte has been copied to out[] already.
147 			// They are left as is.
148 			coder->size = 0;
149 
150 		} else if (unfiltered > 0) {
151 			// There is unfiltered data left in out[]. Copy it to
152 			// coder->buffer[] and rewind *out_pos appropriately.
153 			*out_pos -= unfiltered;
154 			memcpy(coder->buffer, out + *out_pos, unfiltered);
155 		}
156 	} else if (coder->pos > 0) {
157 		memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
158 		coder->size -= coder->pos;
159 		coder->pos = 0;
160 	}
161 
162 	assert(coder->pos == 0);
163 
164 	// If coder->buffer[] isn't empty, try to fill it by copying/decoding
165 	// more data. Then filter coder->buffer[] and copy the successfully
166 	// filtered data to out[]. It is probable, that some filtered and
167 	// unfiltered data will be left to coder->buffer[].
168 	if (coder->size > 0) {
169 		{
170 			const lzma_ret ret = copy_or_code(coder, allocator,
171 					in, in_pos, in_size,
172 					coder->buffer, &coder->size,
173 					coder->allocated, action);
174 			assert(ret != LZMA_STREAM_END);
175 			if (ret != LZMA_OK)
176 				return ret;
177 		}
178 
179 		coder->filtered = call_filter(
180 				coder, coder->buffer, coder->size);
181 
182 		// Everything is considered to be filtered if coder->buffer[]
183 		// contains the last bytes of the data.
184 		if (coder->end_was_reached)
185 			coder->filtered = coder->size;
186 
187 		// Flush as much as possible.
188 		lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
189 				out, out_pos, out_size);
190 	}
191 
192 	// Check if we got everything done.
193 	if (coder->end_was_reached && coder->pos == coder->size)
194 		return LZMA_STREAM_END;
195 
196 	return LZMA_OK;
197 }
198 
199 
200 static void
201 simple_coder_end(lzma_coder *coder, lzma_allocator *allocator)
202 {
203 	lzma_next_end(&coder->next, allocator);
204 	lzma_free(coder->simple, allocator);
205 	lzma_free(coder, allocator);
206 	return;
207 }
208 
209 
210 static lzma_ret
211 simple_coder_update(lzma_coder *coder, lzma_allocator *allocator,
212 		const lzma_filter *filters_null lzma_attribute((__unused__)),
213 		const lzma_filter *reversed_filters)
214 {
215 	// No update support, just call the next filter in the chain.
216 	return lzma_next_filter_update(
217 			&coder->next, allocator, reversed_filters + 1);
218 }
219 
220 
221 extern lzma_ret
222 lzma_simple_coder_init(lzma_next_coder *next, lzma_allocator *allocator,
223 		const lzma_filter_info *filters,
224 		size_t (*filter)(lzma_simple *simple, uint32_t now_pos,
225 			bool is_encoder, uint8_t *buffer, size_t size),
226 		size_t simple_size, size_t unfiltered_max,
227 		uint32_t alignment, bool is_encoder)
228 {
229 	// Allocate memory for the lzma_coder structure if needed.
230 	if (next->coder == NULL) {
231 		// Here we allocate space also for the temporary buffer. We
232 		// need twice the size of unfiltered_max, because then it
233 		// is always possible to filter at least unfiltered_max bytes
234 		// more data in coder->buffer[] if it can be filled completely.
235 		next->coder = lzma_alloc(sizeof(lzma_coder)
236 				+ 2 * unfiltered_max, allocator);
237 		if (next->coder == NULL)
238 			return LZMA_MEM_ERROR;
239 
240 		next->code = &simple_code;
241 		next->end = &simple_coder_end;
242 		next->update = &simple_coder_update;
243 
244 		next->coder->next = LZMA_NEXT_CODER_INIT;
245 		next->coder->filter = filter;
246 		next->coder->allocated = 2 * unfiltered_max;
247 
248 		// Allocate memory for filter-specific data structure.
249 		if (simple_size > 0) {
250 			next->coder->simple = lzma_alloc(
251 					simple_size, allocator);
252 			if (next->coder->simple == NULL)
253 				return LZMA_MEM_ERROR;
254 		} else {
255 			next->coder->simple = NULL;
256 		}
257 	}
258 
259 	if (filters[0].options != NULL) {
260 		const lzma_options_bcj *simple = filters[0].options;
261 		next->coder->now_pos = simple->start_offset;
262 		if (next->coder->now_pos & (alignment - 1))
263 			return LZMA_OPTIONS_ERROR;
264 	} else {
265 		next->coder->now_pos = 0;
266 	}
267 
268 	// Reset variables.
269 	next->coder->is_encoder = is_encoder;
270 	next->coder->end_was_reached = false;
271 	next->coder->pos = 0;
272 	next->coder->filtered = 0;
273 	next->coder->size = 0;
274 
275 	return lzma_next_filter_init(
276 			&next->coder->next, allocator, filters + 1);
277 }
278