1 // SPDX-License-Identifier: 0BSD 2 3 /////////////////////////////////////////////////////////////////////////////// 4 // 5 /// \file simple_coder.c 6 /// \brief Wrapper for simple filters 7 /// 8 /// Simple filters don't change the size of the data i.e. number of bytes 9 /// in equals the number of bytes out. 10 // 11 // Author: Lasse Collin 12 // 13 /////////////////////////////////////////////////////////////////////////////// 14 15 #include "simple_private.h" 16 17 18 /// Copied or encodes/decodes more data to out[]. 19 static lzma_ret 20 copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator, 21 const uint8_t *restrict in, size_t *restrict in_pos, 22 size_t in_size, uint8_t *restrict out, 23 size_t *restrict out_pos, size_t out_size, lzma_action action) 24 { 25 assert(!coder->end_was_reached); 26 27 if (coder->next.code == NULL) { 28 lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size); 29 30 // Check if end of stream was reached. 31 if (coder->is_encoder && action == LZMA_FINISH 32 && *in_pos == in_size) 33 coder->end_was_reached = true; 34 35 } else { 36 // Call the next coder in the chain to provide us some data. 37 const lzma_ret ret = coder->next.code( 38 coder->next.coder, allocator, 39 in, in_pos, in_size, 40 out, out_pos, out_size, action); 41 42 if (ret == LZMA_STREAM_END) { 43 assert(!coder->is_encoder 44 || action == LZMA_FINISH); 45 coder->end_was_reached = true; 46 47 } else if (ret != LZMA_OK) { 48 return ret; 49 } 50 } 51 52 return LZMA_OK; 53 } 54 55 56 static size_t 57 call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size) 58 { 59 const size_t filtered = coder->filter(coder->simple, 60 coder->now_pos, coder->is_encoder, 61 buffer, size); 62 coder->now_pos += filtered; 63 return filtered; 64 } 65 66 67 static lzma_ret 68 simple_code(void *coder_ptr, const lzma_allocator *allocator, 69 const uint8_t *restrict in, size_t *restrict in_pos, 70 size_t in_size, uint8_t *restrict out, 71 size_t *restrict out_pos, size_t out_size, lzma_action action) 72 { 73 lzma_simple_coder *coder = coder_ptr; 74 75 // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it 76 // in cases when the filter is able to filter everything. With most 77 // simple filters it can be done at offset that is a multiple of 2, 78 // 4, or 16. With x86 filter, it needs good luck, and thus cannot 79 // be made to work predictably. 80 if (action == LZMA_SYNC_FLUSH) 81 return LZMA_OPTIONS_ERROR; 82 83 // Flush already filtered data from coder->buffer[] to out[]. 84 if (coder->pos < coder->filtered) { 85 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered, 86 out, out_pos, out_size); 87 88 // If we couldn't flush all the filtered data, return to 89 // application immediately. 90 if (coder->pos < coder->filtered) 91 return LZMA_OK; 92 93 if (coder->end_was_reached) { 94 assert(coder->filtered == coder->size); 95 return LZMA_STREAM_END; 96 } 97 } 98 99 // If we get here, there is no filtered data left in the buffer. 100 coder->filtered = 0; 101 102 assert(!coder->end_was_reached); 103 104 // If there is more output space left than there is unfiltered data 105 // in coder->buffer[], flush coder->buffer[] to out[], and copy/code 106 // more data to out[] hopefully filling it completely. Then filter 107 // the data in out[]. This step is where most of the data gets 108 // filtered if the buffer sizes used by the application are reasonable. 109 const size_t out_avail = out_size - *out_pos; 110 const size_t buf_avail = coder->size - coder->pos; 111 if (out_avail > buf_avail || buf_avail == 0) { 112 // Store the old position so that we know from which byte 113 // to start filtering. 114 const size_t out_start = *out_pos; 115 116 // Flush data from coder->buffer[] to out[], but don't reset 117 // coder->pos and coder->size yet. This way the coder can be 118 // restarted if the next filter in the chain returns e.g. 119 // LZMA_MEM_ERROR. 120 // 121 // Do the memcpy() conditionally because out can be NULL 122 // (in which case buf_avail is always 0). Calling memcpy() 123 // with a null-pointer is undefined even if the third 124 // argument is 0. 125 if (buf_avail > 0) 126 memcpy(out + *out_pos, coder->buffer + coder->pos, 127 buf_avail); 128 129 *out_pos += buf_avail; 130 131 // Copy/Encode/Decode more data to out[]. 132 { 133 const lzma_ret ret = copy_or_code(coder, allocator, 134 in, in_pos, in_size, 135 out, out_pos, out_size, action); 136 assert(ret != LZMA_STREAM_END); 137 if (ret != LZMA_OK) 138 return ret; 139 } 140 141 // Filter out[] unless there is nothing to filter. 142 // This way we avoid null pointer + 0 (undefined behavior) 143 // when out == NULL. 144 const size_t size = *out_pos - out_start; 145 const size_t filtered = size == 0 ? 0 : call_filter( 146 coder, out + out_start, size); 147 148 const size_t unfiltered = size - filtered; 149 assert(unfiltered <= coder->allocated / 2); 150 151 // Now we can update coder->pos and coder->size, because 152 // the next coder in the chain (if any) was successful. 153 coder->pos = 0; 154 coder->size = unfiltered; 155 156 if (coder->end_was_reached) { 157 // The last byte has been copied to out[] already. 158 // They are left as is. 159 coder->size = 0; 160 161 } else if (unfiltered > 0) { 162 // There is unfiltered data left in out[]. Copy it to 163 // coder->buffer[] and rewind *out_pos appropriately. 164 *out_pos -= unfiltered; 165 memcpy(coder->buffer, out + *out_pos, unfiltered); 166 } 167 } else if (coder->pos > 0) { 168 memmove(coder->buffer, coder->buffer + coder->pos, buf_avail); 169 coder->size -= coder->pos; 170 coder->pos = 0; 171 } 172 173 assert(coder->pos == 0); 174 175 // If coder->buffer[] isn't empty, try to fill it by copying/decoding 176 // more data. Then filter coder->buffer[] and copy the successfully 177 // filtered data to out[]. It is probable, that some filtered and 178 // unfiltered data will be left to coder->buffer[]. 179 if (coder->size > 0) { 180 { 181 const lzma_ret ret = copy_or_code(coder, allocator, 182 in, in_pos, in_size, 183 coder->buffer, &coder->size, 184 coder->allocated, action); 185 assert(ret != LZMA_STREAM_END); 186 if (ret != LZMA_OK) 187 return ret; 188 } 189 190 coder->filtered = call_filter( 191 coder, coder->buffer, coder->size); 192 193 // Everything is considered to be filtered if coder->buffer[] 194 // contains the last bytes of the data. 195 if (coder->end_was_reached) 196 coder->filtered = coder->size; 197 198 // Flush as much as possible. 199 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered, 200 out, out_pos, out_size); 201 } 202 203 // Check if we got everything done. 204 if (coder->end_was_reached && coder->pos == coder->size) 205 return LZMA_STREAM_END; 206 207 return LZMA_OK; 208 } 209 210 211 static void 212 simple_coder_end(void *coder_ptr, const lzma_allocator *allocator) 213 { 214 lzma_simple_coder *coder = coder_ptr; 215 lzma_next_end(&coder->next, allocator); 216 lzma_free(coder->simple, allocator); 217 lzma_free(coder, allocator); 218 return; 219 } 220 221 222 static lzma_ret 223 simple_coder_update(void *coder_ptr, const lzma_allocator *allocator, 224 const lzma_filter *filters_null lzma_attribute((__unused__)), 225 const lzma_filter *reversed_filters) 226 { 227 lzma_simple_coder *coder = coder_ptr; 228 229 // No update support, just call the next filter in the chain. 230 return lzma_next_filter_update( 231 &coder->next, allocator, reversed_filters + 1); 232 } 233 234 235 extern lzma_ret 236 lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator, 237 const lzma_filter_info *filters, 238 size_t (*filter)(void *simple, uint32_t now_pos, 239 bool is_encoder, uint8_t *buffer, size_t size), 240 size_t simple_size, size_t unfiltered_max, 241 uint32_t alignment, bool is_encoder) 242 { 243 // Allocate memory for the lzma_simple_coder structure if needed. 244 lzma_simple_coder *coder = next->coder; 245 if (coder == NULL) { 246 // Here we allocate space also for the temporary buffer. We 247 // need twice the size of unfiltered_max, because then it 248 // is always possible to filter at least unfiltered_max bytes 249 // more data in coder->buffer[] if it can be filled completely. 250 coder = lzma_alloc(sizeof(lzma_simple_coder) 251 + 2 * unfiltered_max, allocator); 252 if (coder == NULL) 253 return LZMA_MEM_ERROR; 254 255 next->coder = coder; 256 next->code = &simple_code; 257 next->end = &simple_coder_end; 258 next->update = &simple_coder_update; 259 260 coder->next = LZMA_NEXT_CODER_INIT; 261 coder->filter = filter; 262 coder->allocated = 2 * unfiltered_max; 263 264 // Allocate memory for filter-specific data structure. 265 if (simple_size > 0) { 266 coder->simple = lzma_alloc(simple_size, allocator); 267 if (coder->simple == NULL) 268 return LZMA_MEM_ERROR; 269 } else { 270 coder->simple = NULL; 271 } 272 } 273 274 if (filters[0].options != NULL) { 275 const lzma_options_bcj *simple = filters[0].options; 276 coder->now_pos = simple->start_offset; 277 if (coder->now_pos & (alignment - 1)) 278 return LZMA_OPTIONS_ERROR; 279 } else { 280 coder->now_pos = 0; 281 } 282 283 // Reset variables. 284 coder->is_encoder = is_encoder; 285 coder->end_was_reached = false; 286 coder->pos = 0; 287 coder->filtered = 0; 288 coder->size = 0; 289 290 return lzma_next_filter_init(&coder->next, allocator, filters + 1); 291 } 292