xref: /freebsd/contrib/xz/src/liblzma/rangecoder/range_encoder.h (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       range_encoder.h
4 /// \brief      Range Encoder
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #ifndef LZMA_RANGE_ENCODER_H
15 #define LZMA_RANGE_ENCODER_H
16 
17 #include "range_common.h"
18 #include "price.h"
19 
20 
21 /// Maximum number of symbols that can be put pending into lzma_range_encoder
22 /// structure between calls to lzma_rc_encode(). For LZMA, 52+5 is enough
23 /// (match with big distance and length followed by range encoder flush).
24 #define RC_SYMBOLS_MAX 58
25 
26 
27 typedef struct {
28 	uint64_t low;
29 	uint64_t cache_size;
30 	uint32_t range;
31 	uint8_t cache;
32 
33 	/// Number of symbols in the tables
34 	size_t count;
35 
36 	/// rc_encode()'s position in the tables
37 	size_t pos;
38 
39 	/// Symbols to encode
40 	enum {
41 		RC_BIT_0,
42 		RC_BIT_1,
43 		RC_DIRECT_0,
44 		RC_DIRECT_1,
45 		RC_FLUSH,
46 	} symbols[RC_SYMBOLS_MAX];
47 
48 	/// Probabilities associated with RC_BIT_0 or RC_BIT_1
49 	probability *probs[RC_SYMBOLS_MAX];
50 
51 } lzma_range_encoder;
52 
53 
54 static inline void
55 rc_reset(lzma_range_encoder *rc)
56 {
57 	rc->low = 0;
58 	rc->cache_size = 1;
59 	rc->range = UINT32_MAX;
60 	rc->cache = 0;
61 	rc->count = 0;
62 	rc->pos = 0;
63 }
64 
65 
66 static inline void
67 rc_bit(lzma_range_encoder *rc, probability *prob, uint32_t bit)
68 {
69 	rc->symbols[rc->count] = bit;
70 	rc->probs[rc->count] = prob;
71 	++rc->count;
72 }
73 
74 
75 static inline void
76 rc_bittree(lzma_range_encoder *rc, probability *probs,
77 		uint32_t bit_count, uint32_t symbol)
78 {
79 	uint32_t model_index = 1;
80 
81 	do {
82 		const uint32_t bit = (symbol >> --bit_count) & 1;
83 		rc_bit(rc, &probs[model_index], bit);
84 		model_index = (model_index << 1) + bit;
85 	} while (bit_count != 0);
86 }
87 
88 
89 static inline void
90 rc_bittree_reverse(lzma_range_encoder *rc, probability *probs,
91 		uint32_t bit_count, uint32_t symbol)
92 {
93 	uint32_t model_index = 1;
94 
95 	do {
96 		const uint32_t bit = symbol & 1;
97 		symbol >>= 1;
98 		rc_bit(rc, &probs[model_index], bit);
99 		model_index = (model_index << 1) + bit;
100 	} while (--bit_count != 0);
101 }
102 
103 
104 static inline void
105 rc_direct(lzma_range_encoder *rc,
106 		uint32_t value, uint32_t bit_count)
107 {
108 	do {
109 		rc->symbols[rc->count++]
110 				= RC_DIRECT_0 + ((value >> --bit_count) & 1);
111 	} while (bit_count != 0);
112 }
113 
114 
115 static inline void
116 rc_flush(lzma_range_encoder *rc)
117 {
118 	for (size_t i = 0; i < 5; ++i)
119 		rc->symbols[rc->count++] = RC_FLUSH;
120 }
121 
122 
123 static inline bool
124 rc_shift_low(lzma_range_encoder *rc,
125 		uint8_t *out, size_t *out_pos, size_t out_size)
126 {
127 	if ((uint32_t)(rc->low) < (uint32_t)(0xFF000000)
128 			|| (uint32_t)(rc->low >> 32) != 0) {
129 		do {
130 			if (*out_pos == out_size)
131 				return true;
132 
133 			out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
134 			++*out_pos;
135 			rc->cache = 0xFF;
136 
137 		} while (--rc->cache_size != 0);
138 
139 		rc->cache = (rc->low >> 24) & 0xFF;
140 	}
141 
142 	++rc->cache_size;
143 	rc->low = (rc->low & 0x00FFFFFF) << RC_SHIFT_BITS;
144 
145 	return false;
146 }
147 
148 
149 static inline bool
150 rc_encode(lzma_range_encoder *rc,
151 		uint8_t *out, size_t *out_pos, size_t out_size)
152 {
153 	assert(rc->count <= RC_SYMBOLS_MAX);
154 
155 	while (rc->pos < rc->count) {
156 		// Normalize
157 		if (rc->range < RC_TOP_VALUE) {
158 			if (rc_shift_low(rc, out, out_pos, out_size))
159 				return true;
160 
161 			rc->range <<= RC_SHIFT_BITS;
162 		}
163 
164 		// Encode a bit
165 		switch (rc->symbols[rc->pos]) {
166 		case RC_BIT_0: {
167 			probability prob = *rc->probs[rc->pos];
168 			rc->range = (rc->range >> RC_BIT_MODEL_TOTAL_BITS)
169 					* prob;
170 			prob += (RC_BIT_MODEL_TOTAL - prob) >> RC_MOVE_BITS;
171 			*rc->probs[rc->pos] = prob;
172 			break;
173 		}
174 
175 		case RC_BIT_1: {
176 			probability prob = *rc->probs[rc->pos];
177 			const uint32_t bound = prob * (rc->range
178 					>> RC_BIT_MODEL_TOTAL_BITS);
179 			rc->low += bound;
180 			rc->range -= bound;
181 			prob -= prob >> RC_MOVE_BITS;
182 			*rc->probs[rc->pos] = prob;
183 			break;
184 		}
185 
186 		case RC_DIRECT_0:
187 			rc->range >>= 1;
188 			break;
189 
190 		case RC_DIRECT_1:
191 			rc->range >>= 1;
192 			rc->low += rc->range;
193 			break;
194 
195 		case RC_FLUSH:
196 			// Prevent further normalizations.
197 			rc->range = UINT32_MAX;
198 
199 			// Flush the last five bytes (see rc_flush()).
200 			do {
201 				if (rc_shift_low(rc, out, out_pos, out_size))
202 					return true;
203 			} while (++rc->pos < rc->count);
204 
205 			// Reset the range encoder so we are ready to continue
206 			// encoding if we weren't finishing the stream.
207 			rc_reset(rc);
208 			return false;
209 
210 		default:
211 			assert(0);
212 			break;
213 		}
214 
215 		++rc->pos;
216 	}
217 
218 	rc->count = 0;
219 	rc->pos = 0;
220 
221 	return false;
222 }
223 
224 
225 static inline uint64_t
226 rc_pending(const lzma_range_encoder *rc)
227 {
228 	return rc->cache_size + 5 - 1;
229 }
230 
231 #endif
232