xref: /freebsd/contrib/xz/src/liblzma/rangecoder/range_decoder.h (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 // SPDX-License-Identifier: 0BSD
2 
3 ///////////////////////////////////////////////////////////////////////////////
4 //
5 /// \file       range_decoder.h
6 /// \brief      Range Decoder
7 ///
8 //  Authors:    Igor Pavlov
9 //              Lasse Collin
10 //
11 ///////////////////////////////////////////////////////////////////////////////
12 
13 #ifndef LZMA_RANGE_DECODER_H
14 #define LZMA_RANGE_DECODER_H
15 
16 #include "range_common.h"
17 
18 
19 // Choose the range decoder variants to use using a bitmask.
20 // If no bits are set, only the basic version is used.
21 // If more than one version is selected for the same feature,
22 // the last one on the list below is used.
23 //
24 // Bitwise-or of the following enable branchless C versions:
25 //   0x01   normal bittrees
26 //   0x02   fixed-sized reverse bittrees
27 //   0x04   variable-sized reverse bittrees (not faster)
28 //   0x08   matched literal (not faster)
29 //
30 // GCC & Clang compatible x86-64 inline assembly:
31 //   0x010   normal bittrees
32 //   0x020   fixed-sized reverse bittrees
33 //   0x040   variable-sized reverse bittrees
34 //   0x080   matched literal
35 //   0x100   direct bits
36 //
37 // The default can be overridden at build time by defining
38 // LZMA_RANGE_DECODER_CONFIG to the desired mask.
39 //
40 // 2024-02-22: Feedback from benchmarks:
41 //   - Brancless C (0x003) can be better than basic on x86-64 but often it's
42 //     slightly worse on other archs. Since asm is much better on x86-64,
43 //     branchless C is not used at all.
44 //   - With x86-64 asm, there are slight differences between GCC and Clang
45 //     and different processors. Overall 0x1F0 seems to be the best choice.
46 #ifndef LZMA_RANGE_DECODER_CONFIG
47 #	if defined(__x86_64__) && !defined(__ILP32__) \
48 			&& !defined(__NVCOMPILER) \
49 			&& (defined(__GNUC__) || defined(__clang__))
50 #		define LZMA_RANGE_DECODER_CONFIG 0x1F0
51 #	else
52 #		define LZMA_RANGE_DECODER_CONFIG 0
53 #	endif
54 #endif
55 
56 
57 // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped.
58 // This is useful for updating probability variables in branchless decoding:
59 //
60 //     uint32_t decoded_bit = ...;
61 //     probability tmp = RC_BIT_MODEL_OFFSET;
62 //     tmp &= decoded_bit - 1;
63 //     prob -= (prob + tmp) >> RC_MOVE_BITS;
64 #define RC_BIT_MODEL_OFFSET \
65 	((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL)
66 
67 
68 typedef struct {
69 	uint32_t range;
70 	uint32_t code;
71 	uint32_t init_bytes_left;
72 } lzma_range_decoder;
73 
74 
75 /// Reads the first five bytes to initialize the range decoder.
76 static inline lzma_ret
77 rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
78 		size_t *restrict in_pos, size_t in_size)
79 {
80 	while (rc->init_bytes_left > 0) {
81 		if (*in_pos == in_size)
82 			return LZMA_OK;
83 
84 		// The first byte is always 0x00. It could have been omitted
85 		// in LZMA2 but it wasn't, so one byte is wasted in every
86 		// LZMA2 chunk.
87 		if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00)
88 			return LZMA_DATA_ERROR;
89 
90 		rc->code = (rc->code << 8) | in[*in_pos];
91 		++*in_pos;
92 		--rc->init_bytes_left;
93 	}
94 
95 	return LZMA_STREAM_END;
96 }
97 
98 
99 /// Makes local copies of range decoder and *in_pos variables. Doing this
100 /// improves speed significantly. The range decoder macros expect also
101 /// variables 'in' and 'in_size' to be defined.
102 #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \
103 	lzma_range_decoder rc = range_decoder; \
104 	const uint8_t *rc_in_ptr = in + (in_pos); \
105 	const uint8_t *rc_in_end = in + in_size; \
106 	const uint8_t *rc_in_fast_end \
107 			= (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \
108 			? rc_in_ptr \
109 			: rc_in_end - (fast_mode_in_required); \
110 	(void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \
111 	uint32_t rc_bound
112 
113 
114 /// Evaluates to true if there is enough input remaining to use fast mode.
115 #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end)
116 
117 
118 /// Stores the local copes back to the range decoder structure.
119 #define rc_from_local(range_decoder, in_pos) \
120 do { \
121 	range_decoder = rc; \
122 	in_pos = (size_t)(rc_in_ptr - in); \
123 } while (0)
124 
125 
126 /// Resets the range decoder structure.
127 #define rc_reset(range_decoder) \
128 do { \
129 	(range_decoder).range = UINT32_MAX; \
130 	(range_decoder).code = 0; \
131 	(range_decoder).init_bytes_left = 5; \
132 } while (0)
133 
134 
135 /// When decoding has been properly finished, rc.code is always zero unless
136 /// the input stream is corrupt. So checking this can catch some corrupt
137 /// files especially if they don't have any other integrity check.
138 #define rc_is_finished(range_decoder) \
139 	((range_decoder).code == 0)
140 
141 
142 // Read the next input byte if needed.
143 #define rc_normalize() \
144 do { \
145 	if (rc.range < RC_TOP_VALUE) { \
146 		rc.range <<= RC_SHIFT_BITS; \
147 		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
148 	} \
149 } while (0)
150 
151 
152 /// If more input is needed but there is
153 /// no more input available, "goto out" is used to jump out of the main
154 /// decoder loop. The "_safe" macros are used in the Resumable decoder
155 /// mode in order to save the sequence to continue decoding from that
156 /// point later.
157 #define rc_normalize_safe(seq) \
158 do { \
159 	if (rc.range < RC_TOP_VALUE) { \
160 		if (rc_in_ptr == rc_in_end) { \
161 			coder->sequence = seq; \
162 			goto out; \
163 		} \
164 		rc.range <<= RC_SHIFT_BITS; \
165 		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
166 	} \
167 } while (0)
168 
169 
170 /// Start decoding a bit. This must be used together with rc_update_0()
171 /// and rc_update_1():
172 ///
173 ///     rc_if_0(prob) {
174 ///         rc_update_0(prob);
175 ///         // Do something
176 ///     } else {
177 ///         rc_update_1(prob);
178 ///         // Do something else
179 ///     }
180 ///
181 #define rc_if_0(prob) \
182 	rc_normalize(); \
183 	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
184 	if (rc.code < rc_bound)
185 
186 
187 #define rc_if_0_safe(prob, seq) \
188 	rc_normalize_safe(seq); \
189 	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
190 	if (rc.code < rc_bound)
191 
192 
193 /// Update the range decoder state and the used probability variable to
194 /// match a decoded bit of 0.
195 ///
196 /// The x86-64 assembly uses the commented method but it seems that,
197 /// at least on x86-64, the first version is slightly faster as C code.
198 #define rc_update_0(prob) \
199 do { \
200 	rc.range = rc_bound; \
201 	prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
202 	/* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \
203 } while (0)
204 
205 
206 /// Update the range decoder state and the used probability variable to
207 /// match a decoded bit of 1.
208 #define rc_update_1(prob) \
209 do { \
210 	rc.range -= rc_bound; \
211 	rc.code -= rc_bound; \
212 	prob -= (prob) >> RC_MOVE_BITS; \
213 } while (0)
214 
215 
216 /// Decodes one bit and runs action0 or action1 depending on the decoded bit.
217 /// This macro is used as the last step in bittree reverse decoders since
218 /// those don't use "symbol" for anything else than indexing the probability
219 /// arrays.
220 #define rc_bit_last(prob, action0, action1) \
221 do { \
222 	rc_if_0(prob) { \
223 		rc_update_0(prob); \
224 		action0; \
225 	} else { \
226 		rc_update_1(prob); \
227 		action1; \
228 	} \
229 } while (0)
230 
231 
232 #define rc_bit_last_safe(prob, action0, action1, seq) \
233 do { \
234 	rc_if_0_safe(prob, seq) { \
235 		rc_update_0(prob); \
236 		action0; \
237 	} else { \
238 		rc_update_1(prob); \
239 		action1; \
240 	} \
241 } while (0)
242 
243 
244 /// Decodes one bit, updates "symbol", and runs action0 or action1 depending
245 /// on the decoded bit.
246 #define rc_bit(prob, action0, action1) \
247 	rc_bit_last(prob, \
248 		symbol <<= 1; action0, \
249 		symbol = (symbol << 1) + 1; action1);
250 
251 
252 #define rc_bit_safe(prob, action0, action1, seq) \
253 	rc_bit_last_safe(prob, \
254 		symbol <<= 1; action0, \
255 		symbol = (symbol << 1) + 1; action1, \
256 		seq);
257 
258 // Unroll fixed-sized bittree decoding.
259 //
260 // A compile-time constant in final_add can be used to get rid of the high bit
261 // from symbol that is used for the array indexing (1U << bittree_bits).
262 // final_add may also be used to add offset to the result (LZMA length
263 // decoder does that).
264 //
265 // The reason to have final_add here is that in the asm code the addition
266 // can be done for free: in x86-64 there is SBB instruction with -1 as
267 // the immediate value, and final_add is combined with that value.
268 #define rc_bittree_bit(prob) \
269 	rc_bit(prob, , )
270 
271 #define rc_bittree3(probs, final_add) \
272 do { \
273 	symbol = 1; \
274 	rc_bittree_bit(probs[symbol]); \
275 	rc_bittree_bit(probs[symbol]); \
276 	rc_bittree_bit(probs[symbol]); \
277 	symbol += (uint32_t)(final_add); \
278 } while (0)
279 
280 #define rc_bittree6(probs, final_add) \
281 do { \
282 	symbol = 1; \
283 	rc_bittree_bit(probs[symbol]); \
284 	rc_bittree_bit(probs[symbol]); \
285 	rc_bittree_bit(probs[symbol]); \
286 	rc_bittree_bit(probs[symbol]); \
287 	rc_bittree_bit(probs[symbol]); \
288 	rc_bittree_bit(probs[symbol]); \
289 	symbol += (uint32_t)(final_add); \
290 } while (0)
291 
292 #define rc_bittree8(probs, final_add) \
293 do { \
294 	symbol = 1; \
295 	rc_bittree_bit(probs[symbol]); \
296 	rc_bittree_bit(probs[symbol]); \
297 	rc_bittree_bit(probs[symbol]); \
298 	rc_bittree_bit(probs[symbol]); \
299 	rc_bittree_bit(probs[symbol]); \
300 	rc_bittree_bit(probs[symbol]); \
301 	rc_bittree_bit(probs[symbol]); \
302 	rc_bittree_bit(probs[symbol]); \
303 	symbol += (uint32_t)(final_add); \
304 } while (0)
305 
306 
307 // Fixed-sized reverse bittree
308 #define rc_bittree_rev4(probs) \
309 do { \
310 	symbol = 0; \
311 	rc_bit_last(probs[symbol + 1], , symbol += 1); \
312 	rc_bit_last(probs[symbol + 2], , symbol += 2); \
313 	rc_bit_last(probs[symbol + 4], , symbol += 4); \
314 	rc_bit_last(probs[symbol + 8], , symbol += 8); \
315 } while (0)
316 
317 
318 // Decode one bit from variable-sized reverse bittree. The loop is done
319 // in the code that uses this macro. This could be changed if the assembly
320 // version benefited from having the loop done in assembly but it didn't
321 // seem so in early 2024.
322 //
323 // Also, if the loop was done here, the loop counter would likely be local
324 // to the macro so that it wouldn't modify yet another input variable.
325 // If a _safe version of a macro with a loop was done then a modifiable
326 // input variable couldn't be avoided though.
327 #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
328 	rc_bit(probs[symbol], \
329 		, \
330 		dest += value_to_add_if_1);
331 
332 
333 // Matched literal
334 #define decode_with_match_bit \
335 		t_match_byte <<= 1; \
336 		t_match_bit = t_match_byte & t_offset; \
337 		t_subcoder_index = t_offset + t_match_bit + symbol; \
338 		rc_bit(probs[t_subcoder_index], \
339 				t_offset &= ~t_match_bit, \
340 				t_offset &= t_match_bit)
341 
342 #define rc_matched_literal(probs_base_var, match_byte) \
343 do { \
344 	uint32_t t_match_byte = (match_byte); \
345 	uint32_t t_match_bit; \
346 	uint32_t t_subcoder_index; \
347 	uint32_t t_offset = 0x100; \
348 	symbol = 1; \
349 	decode_with_match_bit; \
350 	decode_with_match_bit; \
351 	decode_with_match_bit; \
352 	decode_with_match_bit; \
353 	decode_with_match_bit; \
354 	decode_with_match_bit; \
355 	decode_with_match_bit; \
356 	decode_with_match_bit; \
357 } while (0)
358 
359 
360 /// Decode a bit without using a probability.
361 //
362 // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound
363 // calculation to use an arithmetic right shift so there's no need to provide
364 // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't
365 // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31);
366 #define rc_direct(dest, count_var) \
367 do { \
368 	dest = (dest << 1) + 1; \
369 	rc_normalize(); \
370 	rc.range >>= 1; \
371 	rc.code -= rc.range; \
372 	rc_bound = UINT32_C(0) - (rc.code >> 31); \
373 	dest += rc_bound; \
374 	rc.code += rc.range & rc_bound; \
375 } while (--count_var > 0)
376 
377 
378 
379 #define rc_direct_safe(dest, count_var, seq) \
380 do { \
381 	rc_normalize_safe(seq); \
382 	rc.range >>= 1; \
383 	rc.code -= rc.range; \
384 	rc_bound = UINT32_C(0) - (rc.code >> 31); \
385 	rc.code += rc.range & rc_bound; \
386 	dest = (dest << 1) + (rc_bound + 1); \
387 } while (--count_var > 0)
388 
389 
390 //////////////////
391 // Branchless C //
392 //////////////////
393 
394 /// Decode a bit using a branchless method. This reduces the number of
395 /// mispredicted branches and thus can improve speed.
396 #define rc_c_bit(prob, action_bit, action_neg) \
397 do { \
398 	probability *p = &(prob); \
399 	rc_normalize(); \
400 	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \
401 	uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \
402 	action_bit; /* action when rc_mask is 0 or 1 */ \
403 	/* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \
404 	rc_mask = 0U - rc_mask; \
405 	rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \
406 	rc_bound ^= rc_mask; \
407 	rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \
408 	rc.range += rc_bound; \
409 	rc_bound &= rc_mask; \
410 	rc.code += rc_bound; \
411 	action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \
412 	rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \
413 	rc_mask &= RC_BIT_MODEL_OFFSET; \
414 	*p -= (*p + rc_mask) >> RC_MOVE_BITS; \
415 } while (0)
416 
417 
418 // Testing on x86-64 give an impression that only the normal bittrees and
419 // the fixed-sized reverse bittrees are worth the branchless C code.
420 // It should be tested on other archs for which there isn't assembly code
421 // in this file.
422 
423 // Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA
424 // or RISC-V SH1ADD instructions. Compilers might infer it from
425 // "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but
426 // the use of addition doesn't require such analysis from compilers.
427 #if LZMA_RANGE_DECODER_CONFIG & 0x01
428 #undef rc_bittree_bit
429 #define rc_bittree_bit(prob) \
430 	rc_c_bit(prob, \
431 		symbol = (symbol << 1) + rc_mask, \
432 		)
433 #endif // LZMA_RANGE_DECODER_CONFIG & 0x01
434 
435 #if LZMA_RANGE_DECODER_CONFIG & 0x02
436 #undef rc_bittree_rev4
437 #define rc_bittree_rev4(probs) \
438 do { \
439 	symbol = 0; \
440 	rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \
441 	rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \
442 	rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \
443 	rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \
444 } while (0)
445 #endif // LZMA_RANGE_DECODER_CONFIG & 0x02
446 
447 #if LZMA_RANGE_DECODER_CONFIG & 0x04
448 #undef rc_bit_add_if_1
449 #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
450 	rc_c_bit(probs[symbol], \
451 		symbol = (symbol << 1) + rc_mask, \
452 		dest += (value_to_add_if_1) & rc_mask)
453 #endif // LZMA_RANGE_DECODER_CONFIG & 0x04
454 
455 
456 #if LZMA_RANGE_DECODER_CONFIG & 0x08
457 #undef decode_with_match_bit
458 #define decode_with_match_bit \
459 		t_match_byte <<= 1; \
460 		t_match_bit = t_match_byte & t_offset; \
461 		t_subcoder_index = t_offset + t_match_bit + symbol; \
462 		rc_c_bit(probs[t_subcoder_index], \
463 			symbol = (symbol << 1) + rc_mask, \
464 			t_offset &= ~t_match_bit ^ rc_mask)
465 #endif // LZMA_RANGE_DECODER_CONFIG & 0x08
466 
467 
468 ////////////
469 // x86-64 //
470 ////////////
471 
472 #if LZMA_RANGE_DECODER_CONFIG & 0x1F0
473 
474 // rc_asm_y and rc_asm_n are used as arguments to macros to control which
475 // strings to include or omit.
476 #define rc_asm_y(str) str
477 #define rc_asm_n(str)
478 
479 // There are a few possible variations for normalization.
480 // This is the smallest variant which is also used by LZMA SDK.
481 //
482 //   - This has partial register write (the MOV from (%[in_ptr])).
483 //
484 //   - INC saves one byte in code size over ADD. False dependency on
485 //     partial flags from INC shouldn't become a problem on any processor
486 //     because the instructions after normalization don't read the flags
487 //     until SUB which sets all flags.
488 //
489 #define rc_asm_normalize \
490 	"cmp	%[top_value], %[range]\n\t" \
491 	"jae	1f\n\t" \
492 	"shl	%[shift_bits], %[code]\n\t" \
493 	"mov	(%[in_ptr]), %b[code]\n\t" \
494 	"shl	%[shift_bits], %[range]\n\t" \
495 	"inc	%[in_ptr]\n" \
496 	"1:\n"
497 
498 // rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)...
499 //
500 //     rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
501 //     if (rc.code < rc_bound)
502 //
503 // ...but the bound is stored in "range":
504 //
505 //     t0 = range;
506 //     range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
507 //     t0 -= range;
508 //     t1 = code;
509 //     code -= range;
510 //
511 // The carry flag (CF) from the last subtraction holds the negation of
512 // the decoded bit (if CF==0 then the decoded bit is 1).
513 // The values in t0 and t1 are needed for rc_update_0(prob) and
514 // rc_update_1(prob). If the bit is 0, rc_update_0(prob)...
515 //
516 //     rc.range = rc_bound;
517 //
518 // ...has already been done but the "code -= range" has to be reverted using
519 // the old value stored in t1. (Also, prob needs to be updated.)
520 //
521 // If the bit is 1, rc_update_1(prob)...
522 //
523 //     rc.range -= rc_bound;
524 //     rc.code -= rc_bound;
525 //
526 // ...is already done for "code" but the value for "range" needs to be taken
527 // from t0. (Also, prob needs to be updated here as well.)
528 //
529 // The assignments from t0 and t1 can be done in a branchless manner with CMOV
530 // after the instructions from this macro. The CF from SUB tells which moves
531 // are needed.
532 #define rc_asm_calc(prob) \
533 		"mov	%[range], %[t0]\n\t" \
534 		"shr	%[bit_model_total_bits], %[range]\n\t" \
535 		"imul	%[" prob "], %[range]\n\t" \
536 		"sub	%[range], %[t0]\n\t" \
537 		"mov	%[code], %[t1]\n\t" \
538 		"sub	%[range], %[code]\n\t"
539 
540 // Also, prob needs to be updated: The update math depends on the decoded bit.
541 // It can be expressed in a few slightly different ways but this is fairly
542 // convenient here:
543 //
544 //     prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS;
545 //
546 // To do it in branchless way when the negation of the decoded bit is in CF,
547 // both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired
548 // value can be picked with CMOV. The addition can be done using LEA without
549 // affecting CF.
550 //
551 // (This prob update method is a tiny bit different from LZMA SDK 23.01.
552 // In the LZMA SDK a single register is reserved solely for a constant to
553 // be used with CMOV when updating prob. That is fine since there are enough
554 // free registers to do so. The method used here uses one fewer register,
555 // which is valuable with inline assembly.)
556 //
557 // * * *
558 //
559 // In bittree decoding, each (unrolled) loop iteration decodes one bit
560 // and needs one prob variable. To make it faster, the prob variable of
561 // the iteration N+1 is loaded during iteration N. There are two possible
562 // prob variables to choose from for N+1. Both are loaded from memory and
563 // the correct one is chosen with CMOV using the same CF as is used for
564 // other things described above.
565 //
566 // This preloading/prefetching requires an extra register. To avoid
567 // useless moves from "preloaded prob register" to "current prob register",
568 // the macros swap between the two registers for odd and even iterations.
569 //
570 // * * *
571 //
572 // Finally, the decoded bit has to be stored in "symbol". Since the negation
573 // of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is,
574 // if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0"
575 // and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is
576 // the same as "symbol += 1".
577 //
578 // The instructions for all things are intertwined for a few reasons:
579 //   - freeing temporary registers for new use
580 //   - not modifying CF too early
581 //   - instruction scheduling
582 //
583 // The first and last iterations can cheat a little. For example,
584 // on the first iteration "symbol" is known to start from 1 so it
585 // doesn't need to be read; it can even be immediately initialized
586 // to 2 to prepare for the second iteration of the loop.
587 //
588 // * * *
589 //
590 // a = number of the current prob variable (0 or 1)
591 // b = number of the next prob variable (1 or 0)
592 // *_only = rc_asm_y or _n to include or exclude code marked with them
593 #define rc_asm_bittree(a, b, first_only, middle_only, last_only) \
594 	first_only( \
595 		"movzw	2(%[probs_base]), %[prob" #a "]\n\t" \
596 		"mov	$2, %[symbol]\n\t" \
597 		"movzw	4(%[probs_base]), %[prob" #b "]\n\t" \
598 	) \
599 	middle_only( \
600 		/* Note the scaling of 4 instead of 2: */ \
601 		"movzw	(%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \
602 	) \
603 	last_only( \
604 		"add	%[symbol], %[symbol]\n\t" \
605 	) \
606 		\
607 		rc_asm_normalize \
608 		rc_asm_calc("prob" #a) \
609 		\
610 		"cmovae	%[t0], %[range]\n\t" \
611 		\
612 	first_only( \
613 		"movzw	6(%[probs_base]), %[t0]\n\t" \
614 		"cmovae	%[t0], %[prob" #b "]\n\t" \
615 	) \
616 	middle_only( \
617 		"movzw	2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \
618 		"lea	(%q[symbol], %q[symbol]), %[symbol]\n\t" \
619 		"cmovae	%[t0], %[prob" #b "]\n\t" \
620 	) \
621 		\
622 		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
623 		"cmovb	%[t1], %[code]\n\t" \
624 		"mov	%[symbol], %[t1]\n\t" \
625 		"cmovae	%[prob" #a "], %[t0]\n\t" \
626 		\
627 	first_only( \
628 		"sbb	$-1, %[symbol]\n\t" \
629 	) \
630 	middle_only( \
631 		"sbb	$-1, %[symbol]\n\t" \
632 	) \
633 	last_only( \
634 		"sbb	%[last_sbb], %[symbol]\n\t" \
635 	) \
636 		\
637 		"shr	%[move_bits], %[t0]\n\t" \
638 		"sub	%[t0], %[prob" #a "]\n\t" \
639 		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
640 		"mov	%w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t"
641 
642 // NOTE: The order of variables in __asm__ can affect speed and code size.
643 #define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \
644 do { \
645 	uint32_t t0; \
646 	uint32_t t1; \
647 	uint32_t t_prob0; \
648 	uint32_t t_prob1; \
649 	\
650 	__asm__( \
651 		asm_str \
652 		: \
653 		[range]     "+&r"(rc.range), \
654 		[code]      "+&r"(rc.code), \
655 		[t0]        "=&r"(t0), \
656 		[t1]        "=&r"(t1), \
657 		[prob0]     "=&r"(t_prob0), \
658 		[prob1]     "=&r"(t_prob1), \
659 		[symbol]    "=&r"(symbol), \
660 		[in_ptr]    "+&r"(rc_in_ptr) \
661 		: \
662 		[probs_base]           "r"(probs_base_var), \
663 		[last_sbb]             "n"(-1 - (final_add)), \
664 		[top_value]            "n"(RC_TOP_VALUE), \
665 		[shift_bits]           "n"(RC_SHIFT_BITS), \
666 		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
667 		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
668 		[move_bits]            "n"(RC_MOVE_BITS) \
669 		: \
670 		"cc", "memory"); \
671 } while (0)
672 
673 
674 #if LZMA_RANGE_DECODER_CONFIG & 0x010
675 #undef rc_bittree3
676 #define rc_bittree3(probs_base_var, final_add) \
677 	rc_asm_bittree_n(probs_base_var, final_add, \
678 		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
679 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
680 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \
681 	)
682 
683 #undef rc_bittree6
684 #define rc_bittree6(probs_base_var, final_add) \
685 	rc_asm_bittree_n(probs_base_var, final_add, \
686 		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
687 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
688 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
689 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
690 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
691 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
692 	)
693 
694 #undef rc_bittree8
695 #define rc_bittree8(probs_base_var, final_add) \
696 	rc_asm_bittree_n(probs_base_var, final_add, \
697 		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
698 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
699 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
700 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
701 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
702 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
703 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
704 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
705 	)
706 #endif // LZMA_RANGE_DECODER_CONFIG & 0x010
707 
708 
709 // Fixed-sized reverse bittree
710 //
711 // This uses the indexing that constructs the final value in symbol directly.
712 // add    = 1,  2,   4,  8
713 // dcur   = -,  4,   8, 16
714 // dnext0 = 4,   8, 16,  -
715 // dnext0 = 6,  12, 24,  -
716 #define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \
717 		first_only, middle_only, last_only) \
718 	first_only( \
719 		"movzw	2(%[probs_base]), %[prob" #a "]\n\t" \
720 		"xor	%[symbol], %[symbol]\n\t" \
721 		"movzw	4(%[probs_base]), %[prob" #b "]\n\t" \
722 	) \
723 	middle_only( \
724 		"movzw	" #dnext0 "(%[probs_base], %q[symbol], 2), " \
725 			"%[prob" #b "]\n\t" \
726 	) \
727 		\
728 		rc_asm_normalize \
729 		rc_asm_calc("prob" #a) \
730 		\
731 		"cmovae	%[t0], %[range]\n\t" \
732 		\
733 	first_only( \
734 		"movzw	6(%[probs_base]), %[t0]\n\t" \
735 		"cmovae	%[t0], %[prob" #b "]\n\t" \
736 	) \
737 	middle_only( \
738 		"movzw	" #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \
739 		"cmovae	%[t0], %[prob" #b "]\n\t" \
740 	) \
741 		\
742 		"lea	" #add "(%q[symbol]), %[t0]\n\t" \
743 		"cmovb	%[t1], %[code]\n\t" \
744 	middle_only( \
745 		"mov	%[symbol], %[t1]\n\t" \
746 	) \
747 	last_only( \
748 		"mov	%[symbol], %[t1]\n\t" \
749 	) \
750 		"cmovae	%[t0], %[symbol]\n\t" \
751 		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
752 		"cmovae	%[prob" #a "], %[t0]\n\t" \
753 		\
754 		"shr	%[move_bits], %[t0]\n\t" \
755 		"sub	%[t0], %[prob" #a "]\n\t" \
756 	first_only( \
757 		"mov	%w[prob" #a "], 2(%[probs_base])\n\t" \
758 	) \
759 	middle_only( \
760 		"mov	%w[prob" #a "], " \
761 			#dcur "(%[probs_base], %q[t1], 2)\n\t" \
762 	) \
763 	last_only( \
764 		"mov	%w[prob" #a "], " \
765 			#dcur "(%[probs_base], %q[t1], 2)\n\t" \
766 	)
767 
768 #if LZMA_RANGE_DECODER_CONFIG & 0x020
769 #undef rc_bittree_rev4
770 #define rc_bittree_rev4(probs_base_var) \
771 rc_asm_bittree_n(probs_base_var, 4, \
772 	rc_asm_bittree_rev(0, 1, 1,  -,  4,  6, rc_asm_y, rc_asm_n, rc_asm_n) \
773 	rc_asm_bittree_rev(1, 0, 2,  4,  8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \
774 	rc_asm_bittree_rev(0, 1, 4,  8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \
775 	rc_asm_bittree_rev(1, 0, 8, 16,  -,  -, rc_asm_n, rc_asm_n, rc_asm_y) \
776 )
777 #endif // LZMA_RANGE_DECODER_CONFIG & 0x020
778 
779 
780 #if LZMA_RANGE_DECODER_CONFIG & 0x040
781 #undef rc_bit_add_if_1
782 #define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \
783 do { \
784 	uint32_t t0; \
785 	uint32_t t1; \
786 	uint32_t t2 = (value_to_add_if_1); \
787 	uint32_t t_prob; \
788 	uint32_t t_index; \
789 	\
790 	__asm__( \
791 		"movzw	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \
792 		"mov	%[symbol], %[index]\n\t" \
793 		\
794 		"add	%[dest], %[t2]\n\t" \
795 		"add	%[symbol], %[symbol]\n\t" \
796 		\
797 		rc_asm_normalize \
798 		rc_asm_calc("prob") \
799 		\
800 		"cmovae	%[t0], %[range]\n\t" \
801 		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \
802 		"cmovb	%[t1], %[code]\n\t" \
803 		"cmovae	%[prob], %[t0]\n\t" \
804 		\
805 		"cmovae	%[t2], %[dest]\n\t" \
806 		"sbb	$-1, %[symbol]\n\t" \
807 		\
808 		"sar	%[move_bits], %[t0]\n\t" \
809 		"sub	%[t0], %[prob]\n\t" \
810 		"mov	%w[prob], (%[probs_base], %q[index], 2)" \
811 		: \
812 		[range]     "+&r"(rc.range), \
813 		[code]      "+&r"(rc.code), \
814 		[t0]        "=&r"(t0), \
815 		[t1]        "=&r"(t1), \
816 		[prob]      "=&r"(t_prob), \
817 		[index]     "=&r"(t_index), \
818 		[symbol]    "+&r"(symbol), \
819 		[t2]        "+&r"(t2), \
820 		[dest]      "+&r"(dest_var), \
821 		[in_ptr]    "+&r"(rc_in_ptr) \
822 		: \
823 		[probs_base]           "r"(probs_base_var), \
824 		[top_value]            "n"(RC_TOP_VALUE), \
825 		[shift_bits]           "n"(RC_SHIFT_BITS), \
826 		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
827 		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
828 		[move_bits]            "n"(RC_MOVE_BITS) \
829 		: \
830 		"cc", "memory"); \
831 } while (0)
832 #endif // LZMA_RANGE_DECODER_CONFIG & 0x040
833 
834 
835 // Literal decoding uses a normal 8-bit bittree but literal with match byte
836 // is more complex in picking the probability variable from the correct
837 // subtree. This doesn't use preloading/prefetching of the next prob because
838 // there are four choices instead of two.
839 //
840 // FIXME? The first iteration starts with symbol = 1 so it could be optimized
841 // by a tiny amount.
842 #define rc_asm_matched_literal(nonlast_only) \
843 		"add	%[offset], %[symbol]\n\t" \
844 		"and	%[offset], %[match_bit]\n\t" \
845 		"add	%[match_bit], %[symbol]\n\t" \
846 		\
847 		"movzw	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \
848 		\
849 		"add	%[symbol], %[symbol]\n\t" \
850 		\
851 	nonlast_only( \
852 		"xor	%[match_bit], %[offset]\n\t" \
853 		"add	%[match_byte], %[match_byte]\n\t" \
854 	) \
855 		\
856 		rc_asm_normalize \
857 		rc_asm_calc("prob") \
858 		\
859 		"cmovae	%[t0], %[range]\n\t" \
860 		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \
861 		"cmovb	%[t1], %[code]\n\t" \
862 		"mov	%[symbol], %[t1]\n\t" \
863 		"cmovae	%[prob], %[t0]\n\t" \
864 		\
865 	nonlast_only( \
866 		"cmovae	%[match_bit], %[offset]\n\t" \
867 		"mov	%[match_byte], %[match_bit]\n\t" \
868 	) \
869 		\
870 		"sbb	$-1, %[symbol]\n\t" \
871 		\
872 		"shr	%[move_bits], %[t0]\n\t" \
873 		/* Undo symbol += match_bit + offset: */ \
874 		"and	$0x1FF, %[symbol]\n\t" \
875 		"sub	%[t0], %[prob]\n\t" \
876 		\
877 		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
878 		"mov	%w[prob], (%[probs_base], %q[t1], 1)\n\t"
879 
880 
881 #if LZMA_RANGE_DECODER_CONFIG & 0x080
882 #undef rc_matched_literal
883 #define rc_matched_literal(probs_base_var, match_byte_value) \
884 do { \
885 	uint32_t t0; \
886 	uint32_t t1; \
887 	uint32_t t_prob; \
888 	uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \
889 	uint32_t t_match_bit = t_match_byte; \
890 	uint32_t t_offset = 0x100; \
891 	symbol = 1; \
892 	\
893 	__asm__( \
894 		rc_asm_matched_literal(rc_asm_y) \
895 		rc_asm_matched_literal(rc_asm_y) \
896 		rc_asm_matched_literal(rc_asm_y) \
897 		rc_asm_matched_literal(rc_asm_y) \
898 		rc_asm_matched_literal(rc_asm_y) \
899 		rc_asm_matched_literal(rc_asm_y) \
900 		rc_asm_matched_literal(rc_asm_y) \
901 		rc_asm_matched_literal(rc_asm_n) \
902 		: \
903 		[range]       "+&r"(rc.range), \
904 		[code]        "+&r"(rc.code), \
905 		[t0]          "=&r"(t0), \
906 		[t1]          "=&r"(t1), \
907 		[prob]        "=&r"(t_prob), \
908 		[match_bit]   "+&r"(t_match_bit), \
909 		[symbol]      "+&r"(symbol), \
910 		[match_byte]  "+&r"(t_match_byte), \
911 		[offset]      "+&r"(t_offset), \
912 		[in_ptr]      "+&r"(rc_in_ptr) \
913 		: \
914 		[probs_base]           "r"(probs_base_var), \
915 		[top_value]            "n"(RC_TOP_VALUE), \
916 		[shift_bits]           "n"(RC_SHIFT_BITS), \
917 		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
918 		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
919 		[move_bits]            "n"(RC_MOVE_BITS) \
920 		: \
921 		"cc", "memory"); \
922 } while (0)
923 #endif // LZMA_RANGE_DECODER_CONFIG & 0x080
924 
925 
926 // Doing the loop in asm instead of C seems to help a little.
927 #if LZMA_RANGE_DECODER_CONFIG & 0x100
928 #undef rc_direct
929 #define rc_direct(dest_var, count_var) \
930 do { \
931 	uint32_t t0; \
932 	uint32_t t1; \
933 	\
934 	__asm__( \
935 		"2:\n\t" \
936 		"add	%[dest], %[dest]\n\t" \
937 		"lea	1(%q[dest]), %[t1]\n\t" \
938 		\
939 		rc_asm_normalize \
940 		\
941 		"shr	$1, %[range]\n\t" \
942 		"mov	%[code], %[t0]\n\t" \
943 		"sub	%[range], %[code]\n\t" \
944 		"cmovns	%[t1], %[dest]\n\t" \
945 		"cmovs	%[t0], %[code]\n\t" \
946 		"dec	%[count]\n\t" \
947 		"jnz	2b\n\t" \
948 		: \
949 		[range]       "+&r"(rc.range), \
950 		[code]        "+&r"(rc.code), \
951 		[t0]          "=&r"(t0), \
952 		[t1]          "=&r"(t1), \
953 		[dest]        "+&r"(dest_var), \
954 		[count]       "+&r"(count_var), \
955 		[in_ptr]      "+&r"(rc_in_ptr) \
956 		: \
957 		[top_value]   "n"(RC_TOP_VALUE), \
958 		[shift_bits]  "n"(RC_SHIFT_BITS) \
959 		: \
960 		"cc", "memory"); \
961 } while (0)
962 #endif // LZMA_RANGE_DECODER_CONFIG & 0x100
963 
964 #endif // x86_64
965 
966 #endif
967