1*3b35e7eeSXin LI // SPDX-License-Identifier: 0BSD 2*3b35e7eeSXin LI 381ad8388SMartin Matuska /////////////////////////////////////////////////////////////////////////////// 481ad8388SMartin Matuska // 581ad8388SMartin Matuska /// \file range_decoder.h 681ad8388SMartin Matuska /// \brief Range Decoder 781ad8388SMartin Matuska /// 881ad8388SMartin Matuska // Authors: Igor Pavlov 981ad8388SMartin Matuska // Lasse Collin 1081ad8388SMartin Matuska // 1181ad8388SMartin Matuska /////////////////////////////////////////////////////////////////////////////// 1281ad8388SMartin Matuska 1381ad8388SMartin Matuska #ifndef LZMA_RANGE_DECODER_H 1481ad8388SMartin Matuska #define LZMA_RANGE_DECODER_H 1581ad8388SMartin Matuska 1681ad8388SMartin Matuska #include "range_common.h" 1781ad8388SMartin Matuska 1881ad8388SMartin Matuska 19*3b35e7eeSXin LI // Choose the range decoder variants to use using a bitmask. 20*3b35e7eeSXin LI // If no bits are set, only the basic version is used. 21*3b35e7eeSXin LI // If more than one version is selected for the same feature, 22*3b35e7eeSXin LI // the last one on the list below is used. 23*3b35e7eeSXin LI // 24*3b35e7eeSXin LI // Bitwise-or of the following enable branchless C versions: 25*3b35e7eeSXin LI // 0x01 normal bittrees 26*3b35e7eeSXin LI // 0x02 fixed-sized reverse bittrees 27*3b35e7eeSXin LI // 0x04 variable-sized reverse bittrees (not faster) 28*3b35e7eeSXin LI // 0x08 matched literal (not faster) 29*3b35e7eeSXin LI // 30*3b35e7eeSXin LI // GCC & Clang compatible x86-64 inline assembly: 31*3b35e7eeSXin LI // 0x010 normal bittrees 32*3b35e7eeSXin LI // 0x020 fixed-sized reverse bittrees 33*3b35e7eeSXin LI // 0x040 variable-sized reverse bittrees 34*3b35e7eeSXin LI // 0x080 matched literal 35*3b35e7eeSXin LI // 0x100 direct bits 36*3b35e7eeSXin LI // 37*3b35e7eeSXin LI // The default can be overridden at build time by defining 38*3b35e7eeSXin LI // LZMA_RANGE_DECODER_CONFIG to the desired mask. 39*3b35e7eeSXin LI // 40*3b35e7eeSXin LI // 2024-02-22: Feedback from benchmarks: 41*3b35e7eeSXin LI // - Brancless C (0x003) can be better than basic on x86-64 but often it's 42*3b35e7eeSXin LI // slightly worse on other archs. Since asm is much better on x86-64, 43*3b35e7eeSXin LI // branchless C is not used at all. 44*3b35e7eeSXin LI // - With x86-64 asm, there are slight differences between GCC and Clang 45*3b35e7eeSXin LI // and different processors. Overall 0x1F0 seems to be the best choice. 46*3b35e7eeSXin LI #ifndef LZMA_RANGE_DECODER_CONFIG 47*3b35e7eeSXin LI # if defined(__x86_64__) && !defined(__ILP32__) \ 48*3b35e7eeSXin LI && !defined(__NVCOMPILER) \ 49*3b35e7eeSXin LI && (defined(__GNUC__) || defined(__clang__)) 50*3b35e7eeSXin LI # define LZMA_RANGE_DECODER_CONFIG 0x1F0 51*3b35e7eeSXin LI # else 52*3b35e7eeSXin LI # define LZMA_RANGE_DECODER_CONFIG 0 53*3b35e7eeSXin LI # endif 54*3b35e7eeSXin LI #endif 55*3b35e7eeSXin LI 56*3b35e7eeSXin LI 57*3b35e7eeSXin LI // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. 58*3b35e7eeSXin LI // This is useful for updating probability variables in branchless decoding: 59*3b35e7eeSXin LI // 60*3b35e7eeSXin LI // uint32_t decoded_bit = ...; 61*3b35e7eeSXin LI // probability tmp = RC_BIT_MODEL_OFFSET; 62*3b35e7eeSXin LI // tmp &= decoded_bit - 1; 63*3b35e7eeSXin LI // prob -= (prob + tmp) >> RC_MOVE_BITS; 64*3b35e7eeSXin LI #define RC_BIT_MODEL_OFFSET \ 65*3b35e7eeSXin LI ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) 66*3b35e7eeSXin LI 67*3b35e7eeSXin LI 6881ad8388SMartin Matuska typedef struct { 6981ad8388SMartin Matuska uint32_t range; 7081ad8388SMartin Matuska uint32_t code; 7181ad8388SMartin Matuska uint32_t init_bytes_left; 7281ad8388SMartin Matuska } lzma_range_decoder; 7381ad8388SMartin Matuska 7481ad8388SMartin Matuska 7581ad8388SMartin Matuska /// Reads the first five bytes to initialize the range decoder. 7653200025SRui Paulo static inline lzma_ret 7781ad8388SMartin Matuska rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, 7881ad8388SMartin Matuska size_t *restrict in_pos, size_t in_size) 7981ad8388SMartin Matuska { 8081ad8388SMartin Matuska while (rc->init_bytes_left > 0) { 8181ad8388SMartin Matuska if (*in_pos == in_size) 8253200025SRui Paulo return LZMA_OK; 8353200025SRui Paulo 8453200025SRui Paulo // The first byte is always 0x00. It could have been omitted 8553200025SRui Paulo // in LZMA2 but it wasn't, so one byte is wasted in every 8653200025SRui Paulo // LZMA2 chunk. 8753200025SRui Paulo if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00) 8853200025SRui Paulo return LZMA_DATA_ERROR; 8981ad8388SMartin Matuska 9081ad8388SMartin Matuska rc->code = (rc->code << 8) | in[*in_pos]; 9181ad8388SMartin Matuska ++*in_pos; 9281ad8388SMartin Matuska --rc->init_bytes_left; 9381ad8388SMartin Matuska } 9481ad8388SMartin Matuska 9553200025SRui Paulo return LZMA_STREAM_END; 9681ad8388SMartin Matuska } 9781ad8388SMartin Matuska 9881ad8388SMartin Matuska 9981ad8388SMartin Matuska /// Makes local copies of range decoder and *in_pos variables. Doing this 10081ad8388SMartin Matuska /// improves speed significantly. The range decoder macros expect also 101*3b35e7eeSXin LI /// variables 'in' and 'in_size' to be defined. 102*3b35e7eeSXin LI #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \ 10381ad8388SMartin Matuska lzma_range_decoder rc = range_decoder; \ 104*3b35e7eeSXin LI const uint8_t *rc_in_ptr = in + (in_pos); \ 105*3b35e7eeSXin LI const uint8_t *rc_in_end = in + in_size; \ 106*3b35e7eeSXin LI const uint8_t *rc_in_fast_end \ 107*3b35e7eeSXin LI = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ 108*3b35e7eeSXin LI ? rc_in_ptr \ 109*3b35e7eeSXin LI : rc_in_end - (fast_mode_in_required); \ 110*3b35e7eeSXin LI (void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \ 11181ad8388SMartin Matuska uint32_t rc_bound 11281ad8388SMartin Matuska 11381ad8388SMartin Matuska 114*3b35e7eeSXin LI /// Evaluates to true if there is enough input remaining to use fast mode. 115*3b35e7eeSXin LI #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) 116*3b35e7eeSXin LI 117*3b35e7eeSXin LI 11881ad8388SMartin Matuska /// Stores the local copes back to the range decoder structure. 11981ad8388SMartin Matuska #define rc_from_local(range_decoder, in_pos) \ 12081ad8388SMartin Matuska do { \ 12181ad8388SMartin Matuska range_decoder = rc; \ 122*3b35e7eeSXin LI in_pos = (size_t)(rc_in_ptr - in); \ 12381ad8388SMartin Matuska } while (0) 12481ad8388SMartin Matuska 12581ad8388SMartin Matuska 12681ad8388SMartin Matuska /// Resets the range decoder structure. 12781ad8388SMartin Matuska #define rc_reset(range_decoder) \ 12881ad8388SMartin Matuska do { \ 12981ad8388SMartin Matuska (range_decoder).range = UINT32_MAX; \ 13081ad8388SMartin Matuska (range_decoder).code = 0; \ 13181ad8388SMartin Matuska (range_decoder).init_bytes_left = 5; \ 13281ad8388SMartin Matuska } while (0) 13381ad8388SMartin Matuska 13481ad8388SMartin Matuska 13581ad8388SMartin Matuska /// When decoding has been properly finished, rc.code is always zero unless 13681ad8388SMartin Matuska /// the input stream is corrupt. So checking this can catch some corrupt 13781ad8388SMartin Matuska /// files especially if they don't have any other integrity check. 13881ad8388SMartin Matuska #define rc_is_finished(range_decoder) \ 13981ad8388SMartin Matuska ((range_decoder).code == 0) 14081ad8388SMartin Matuska 14181ad8388SMartin Matuska 142*3b35e7eeSXin LI // Read the next input byte if needed. 143*3b35e7eeSXin LI #define rc_normalize() \ 1448db56defSXin LI do { \ 1458db56defSXin LI if (rc.range < RC_TOP_VALUE) { \ 146*3b35e7eeSXin LI rc.range <<= RC_SHIFT_BITS; \ 147*3b35e7eeSXin LI rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ 148*3b35e7eeSXin LI } \ 149*3b35e7eeSXin LI } while (0) 150*3b35e7eeSXin LI 151*3b35e7eeSXin LI 152*3b35e7eeSXin LI /// If more input is needed but there is 153*3b35e7eeSXin LI /// no more input available, "goto out" is used to jump out of the main 154*3b35e7eeSXin LI /// decoder loop. The "_safe" macros are used in the Resumable decoder 155*3b35e7eeSXin LI /// mode in order to save the sequence to continue decoding from that 156*3b35e7eeSXin LI /// point later. 157*3b35e7eeSXin LI #define rc_normalize_safe(seq) \ 158*3b35e7eeSXin LI do { \ 159*3b35e7eeSXin LI if (rc.range < RC_TOP_VALUE) { \ 160*3b35e7eeSXin LI if (rc_in_ptr == rc_in_end) { \ 16181ad8388SMartin Matuska coder->sequence = seq; \ 16281ad8388SMartin Matuska goto out; \ 16381ad8388SMartin Matuska } \ 16481ad8388SMartin Matuska rc.range <<= RC_SHIFT_BITS; \ 165*3b35e7eeSXin LI rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ 16681ad8388SMartin Matuska } \ 16781ad8388SMartin Matuska } while (0) 16881ad8388SMartin Matuska 16981ad8388SMartin Matuska 17081ad8388SMartin Matuska /// Start decoding a bit. This must be used together with rc_update_0() 17181ad8388SMartin Matuska /// and rc_update_1(): 17281ad8388SMartin Matuska /// 173*3b35e7eeSXin LI /// rc_if_0(prob) { 17481ad8388SMartin Matuska /// rc_update_0(prob); 17581ad8388SMartin Matuska /// // Do something 17681ad8388SMartin Matuska /// } else { 17781ad8388SMartin Matuska /// rc_update_1(prob); 17881ad8388SMartin Matuska /// // Do something else 17981ad8388SMartin Matuska /// } 18081ad8388SMartin Matuska /// 181*3b35e7eeSXin LI #define rc_if_0(prob) \ 182*3b35e7eeSXin LI rc_normalize(); \ 183*3b35e7eeSXin LI rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ 184*3b35e7eeSXin LI if (rc.code < rc_bound) 185*3b35e7eeSXin LI 186*3b35e7eeSXin LI 187*3b35e7eeSXin LI #define rc_if_0_safe(prob, seq) \ 188*3b35e7eeSXin LI rc_normalize_safe(seq); \ 18981ad8388SMartin Matuska rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ 19081ad8388SMartin Matuska if (rc.code < rc_bound) 19181ad8388SMartin Matuska 19281ad8388SMartin Matuska 19381ad8388SMartin Matuska /// Update the range decoder state and the used probability variable to 19481ad8388SMartin Matuska /// match a decoded bit of 0. 195*3b35e7eeSXin LI /// 196*3b35e7eeSXin LI /// The x86-64 assembly uses the commented method but it seems that, 197*3b35e7eeSXin LI /// at least on x86-64, the first version is slightly faster as C code. 19881ad8388SMartin Matuska #define rc_update_0(prob) \ 19981ad8388SMartin Matuska do { \ 20081ad8388SMartin Matuska rc.range = rc_bound; \ 20181ad8388SMartin Matuska prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ 202*3b35e7eeSXin LI /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \ 20381ad8388SMartin Matuska } while (0) 20481ad8388SMartin Matuska 20581ad8388SMartin Matuska 20681ad8388SMartin Matuska /// Update the range decoder state and the used probability variable to 20781ad8388SMartin Matuska /// match a decoded bit of 1. 20881ad8388SMartin Matuska #define rc_update_1(prob) \ 20981ad8388SMartin Matuska do { \ 21081ad8388SMartin Matuska rc.range -= rc_bound; \ 21181ad8388SMartin Matuska rc.code -= rc_bound; \ 21281ad8388SMartin Matuska prob -= (prob) >> RC_MOVE_BITS; \ 21381ad8388SMartin Matuska } while (0) 21481ad8388SMartin Matuska 21581ad8388SMartin Matuska 21681ad8388SMartin Matuska /// Decodes one bit and runs action0 or action1 depending on the decoded bit. 21781ad8388SMartin Matuska /// This macro is used as the last step in bittree reverse decoders since 21881ad8388SMartin Matuska /// those don't use "symbol" for anything else than indexing the probability 21981ad8388SMartin Matuska /// arrays. 220*3b35e7eeSXin LI #define rc_bit_last(prob, action0, action1) \ 22181ad8388SMartin Matuska do { \ 222*3b35e7eeSXin LI rc_if_0(prob) { \ 223*3b35e7eeSXin LI rc_update_0(prob); \ 224*3b35e7eeSXin LI action0; \ 225*3b35e7eeSXin LI } else { \ 226*3b35e7eeSXin LI rc_update_1(prob); \ 227*3b35e7eeSXin LI action1; \ 228*3b35e7eeSXin LI } \ 229*3b35e7eeSXin LI } while (0) 230*3b35e7eeSXin LI 231*3b35e7eeSXin LI 232*3b35e7eeSXin LI #define rc_bit_last_safe(prob, action0, action1, seq) \ 233*3b35e7eeSXin LI do { \ 234*3b35e7eeSXin LI rc_if_0_safe(prob, seq) { \ 23581ad8388SMartin Matuska rc_update_0(prob); \ 23681ad8388SMartin Matuska action0; \ 23781ad8388SMartin Matuska } else { \ 23881ad8388SMartin Matuska rc_update_1(prob); \ 23981ad8388SMartin Matuska action1; \ 24081ad8388SMartin Matuska } \ 24181ad8388SMartin Matuska } while (0) 24281ad8388SMartin Matuska 24381ad8388SMartin Matuska 24481ad8388SMartin Matuska /// Decodes one bit, updates "symbol", and runs action0 or action1 depending 24581ad8388SMartin Matuska /// on the decoded bit. 246*3b35e7eeSXin LI #define rc_bit(prob, action0, action1) \ 24781ad8388SMartin Matuska rc_bit_last(prob, \ 24881ad8388SMartin Matuska symbol <<= 1; action0, \ 249*3b35e7eeSXin LI symbol = (symbol << 1) + 1; action1); 250*3b35e7eeSXin LI 251*3b35e7eeSXin LI 252*3b35e7eeSXin LI #define rc_bit_safe(prob, action0, action1, seq) \ 253*3b35e7eeSXin LI rc_bit_last_safe(prob, \ 254*3b35e7eeSXin LI symbol <<= 1; action0, \ 25581ad8388SMartin Matuska symbol = (symbol << 1) + 1; action1, \ 25681ad8388SMartin Matuska seq); 25781ad8388SMartin Matuska 258*3b35e7eeSXin LI // Unroll fixed-sized bittree decoding. 259*3b35e7eeSXin LI // 260*3b35e7eeSXin LI // A compile-time constant in final_add can be used to get rid of the high bit 261*3b35e7eeSXin LI // from symbol that is used for the array indexing (1U << bittree_bits). 262*3b35e7eeSXin LI // final_add may also be used to add offset to the result (LZMA length 263*3b35e7eeSXin LI // decoder does that). 264*3b35e7eeSXin LI // 265*3b35e7eeSXin LI // The reason to have final_add here is that in the asm code the addition 266*3b35e7eeSXin LI // can be done for free: in x86-64 there is SBB instruction with -1 as 267*3b35e7eeSXin LI // the immediate value, and final_add is combined with that value. 268*3b35e7eeSXin LI #define rc_bittree_bit(prob) \ 269*3b35e7eeSXin LI rc_bit(prob, , ) 27081ad8388SMartin Matuska 271*3b35e7eeSXin LI #define rc_bittree3(probs, final_add) \ 272*3b35e7eeSXin LI do { \ 273*3b35e7eeSXin LI symbol = 1; \ 274*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 275*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 276*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 277*3b35e7eeSXin LI symbol += (uint32_t)(final_add); \ 278*3b35e7eeSXin LI } while (0) 279*3b35e7eeSXin LI 280*3b35e7eeSXin LI #define rc_bittree6(probs, final_add) \ 281*3b35e7eeSXin LI do { \ 282*3b35e7eeSXin LI symbol = 1; \ 283*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 284*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 285*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 286*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 287*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 288*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 289*3b35e7eeSXin LI symbol += (uint32_t)(final_add); \ 290*3b35e7eeSXin LI } while (0) 291*3b35e7eeSXin LI 292*3b35e7eeSXin LI #define rc_bittree8(probs, final_add) \ 293*3b35e7eeSXin LI do { \ 294*3b35e7eeSXin LI symbol = 1; \ 295*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 296*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 297*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 298*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 299*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 300*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 301*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 302*3b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 303*3b35e7eeSXin LI symbol += (uint32_t)(final_add); \ 304*3b35e7eeSXin LI } while (0) 305*3b35e7eeSXin LI 306*3b35e7eeSXin LI 307*3b35e7eeSXin LI // Fixed-sized reverse bittree 308*3b35e7eeSXin LI #define rc_bittree_rev4(probs) \ 309*3b35e7eeSXin LI do { \ 310*3b35e7eeSXin LI symbol = 0; \ 311*3b35e7eeSXin LI rc_bit_last(probs[symbol + 1], , symbol += 1); \ 312*3b35e7eeSXin LI rc_bit_last(probs[symbol + 2], , symbol += 2); \ 313*3b35e7eeSXin LI rc_bit_last(probs[symbol + 4], , symbol += 4); \ 314*3b35e7eeSXin LI rc_bit_last(probs[symbol + 8], , symbol += 8); \ 315*3b35e7eeSXin LI } while (0) 316*3b35e7eeSXin LI 317*3b35e7eeSXin LI 318*3b35e7eeSXin LI // Decode one bit from variable-sized reverse bittree. The loop is done 319*3b35e7eeSXin LI // in the code that uses this macro. This could be changed if the assembly 320*3b35e7eeSXin LI // version benefited from having the loop done in assembly but it didn't 321*3b35e7eeSXin LI // seem so in early 2024. 322*3b35e7eeSXin LI // 323*3b35e7eeSXin LI // Also, if the loop was done here, the loop counter would likely be local 324*3b35e7eeSXin LI // to the macro so that it wouldn't modify yet another input variable. 325*3b35e7eeSXin LI // If a _safe version of a macro with a loop was done then a modifiable 326*3b35e7eeSXin LI // input variable couldn't be avoided though. 327*3b35e7eeSXin LI #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ 328*3b35e7eeSXin LI rc_bit(probs[symbol], \ 329*3b35e7eeSXin LI , \ 330*3b35e7eeSXin LI dest += value_to_add_if_1); 331*3b35e7eeSXin LI 332*3b35e7eeSXin LI 333*3b35e7eeSXin LI // Matched literal 334*3b35e7eeSXin LI #define decode_with_match_bit \ 335*3b35e7eeSXin LI t_match_byte <<= 1; \ 336*3b35e7eeSXin LI t_match_bit = t_match_byte & t_offset; \ 337*3b35e7eeSXin LI t_subcoder_index = t_offset + t_match_bit + symbol; \ 338*3b35e7eeSXin LI rc_bit(probs[t_subcoder_index], \ 339*3b35e7eeSXin LI t_offset &= ~t_match_bit, \ 340*3b35e7eeSXin LI t_offset &= t_match_bit) 341*3b35e7eeSXin LI 342*3b35e7eeSXin LI #define rc_matched_literal(probs_base_var, match_byte) \ 343*3b35e7eeSXin LI do { \ 344*3b35e7eeSXin LI uint32_t t_match_byte = (match_byte); \ 345*3b35e7eeSXin LI uint32_t t_match_bit; \ 346*3b35e7eeSXin LI uint32_t t_subcoder_index; \ 347*3b35e7eeSXin LI uint32_t t_offset = 0x100; \ 348*3b35e7eeSXin LI symbol = 1; \ 349*3b35e7eeSXin LI decode_with_match_bit; \ 350*3b35e7eeSXin LI decode_with_match_bit; \ 351*3b35e7eeSXin LI decode_with_match_bit; \ 352*3b35e7eeSXin LI decode_with_match_bit; \ 353*3b35e7eeSXin LI decode_with_match_bit; \ 354*3b35e7eeSXin LI decode_with_match_bit; \ 355*3b35e7eeSXin LI decode_with_match_bit; \ 356*3b35e7eeSXin LI decode_with_match_bit; \ 357*3b35e7eeSXin LI } while (0) 35881ad8388SMartin Matuska 35981ad8388SMartin Matuska 36081ad8388SMartin Matuska /// Decode a bit without using a probability. 361*3b35e7eeSXin LI // 362*3b35e7eeSXin LI // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound 363*3b35e7eeSXin LI // calculation to use an arithmetic right shift so there's no need to provide 364*3b35e7eeSXin LI // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't 365*3b35e7eeSXin LI // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); 366*3b35e7eeSXin LI #define rc_direct(dest, count_var) \ 36781ad8388SMartin Matuska do { \ 368*3b35e7eeSXin LI dest = (dest << 1) + 1; \ 369*3b35e7eeSXin LI rc_normalize(); \ 370*3b35e7eeSXin LI rc.range >>= 1; \ 371*3b35e7eeSXin LI rc.code -= rc.range; \ 372*3b35e7eeSXin LI rc_bound = UINT32_C(0) - (rc.code >> 31); \ 373*3b35e7eeSXin LI dest += rc_bound; \ 374*3b35e7eeSXin LI rc.code += rc.range & rc_bound; \ 375*3b35e7eeSXin LI } while (--count_var > 0) 376*3b35e7eeSXin LI 377*3b35e7eeSXin LI 378*3b35e7eeSXin LI 379*3b35e7eeSXin LI #define rc_direct_safe(dest, count_var, seq) \ 380*3b35e7eeSXin LI do { \ 381*3b35e7eeSXin LI rc_normalize_safe(seq); \ 38281ad8388SMartin Matuska rc.range >>= 1; \ 38381ad8388SMartin Matuska rc.code -= rc.range; \ 38481ad8388SMartin Matuska rc_bound = UINT32_C(0) - (rc.code >> 31); \ 38581ad8388SMartin Matuska rc.code += rc.range & rc_bound; \ 38681ad8388SMartin Matuska dest = (dest << 1) + (rc_bound + 1); \ 387*3b35e7eeSXin LI } while (--count_var > 0) 388*3b35e7eeSXin LI 389*3b35e7eeSXin LI 390*3b35e7eeSXin LI ////////////////// 391*3b35e7eeSXin LI // Branchless C // 392*3b35e7eeSXin LI ////////////////// 393*3b35e7eeSXin LI 394*3b35e7eeSXin LI /// Decode a bit using a branchless method. This reduces the number of 395*3b35e7eeSXin LI /// mispredicted branches and thus can improve speed. 396*3b35e7eeSXin LI #define rc_c_bit(prob, action_bit, action_neg) \ 397*3b35e7eeSXin LI do { \ 398*3b35e7eeSXin LI probability *p = &(prob); \ 399*3b35e7eeSXin LI rc_normalize(); \ 400*3b35e7eeSXin LI rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \ 401*3b35e7eeSXin LI uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \ 402*3b35e7eeSXin LI action_bit; /* action when rc_mask is 0 or 1 */ \ 403*3b35e7eeSXin LI /* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \ 404*3b35e7eeSXin LI rc_mask = 0U - rc_mask; \ 405*3b35e7eeSXin LI rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \ 406*3b35e7eeSXin LI rc_bound ^= rc_mask; \ 407*3b35e7eeSXin LI rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \ 408*3b35e7eeSXin LI rc.range += rc_bound; \ 409*3b35e7eeSXin LI rc_bound &= rc_mask; \ 410*3b35e7eeSXin LI rc.code += rc_bound; \ 411*3b35e7eeSXin LI action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \ 412*3b35e7eeSXin LI rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \ 413*3b35e7eeSXin LI rc_mask &= RC_BIT_MODEL_OFFSET; \ 414*3b35e7eeSXin LI *p -= (*p + rc_mask) >> RC_MOVE_BITS; \ 41581ad8388SMartin Matuska } while (0) 41681ad8388SMartin Matuska 41781ad8388SMartin Matuska 418*3b35e7eeSXin LI // Testing on x86-64 give an impression that only the normal bittrees and 419*3b35e7eeSXin LI // the fixed-sized reverse bittrees are worth the branchless C code. 420*3b35e7eeSXin LI // It should be tested on other archs for which there isn't assembly code 421*3b35e7eeSXin LI // in this file. 422*3b35e7eeSXin LI 423*3b35e7eeSXin LI // Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA 424*3b35e7eeSXin LI // or RISC-V SH1ADD instructions. Compilers might infer it from 425*3b35e7eeSXin LI // "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but 426*3b35e7eeSXin LI // the use of addition doesn't require such analysis from compilers. 427*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x01 428*3b35e7eeSXin LI #undef rc_bittree_bit 429*3b35e7eeSXin LI #define rc_bittree_bit(prob) \ 430*3b35e7eeSXin LI rc_c_bit(prob, \ 431*3b35e7eeSXin LI symbol = (symbol << 1) + rc_mask, \ 432*3b35e7eeSXin LI ) 433*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x01 434*3b35e7eeSXin LI 435*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x02 436*3b35e7eeSXin LI #undef rc_bittree_rev4 437*3b35e7eeSXin LI #define rc_bittree_rev4(probs) \ 438*3b35e7eeSXin LI do { \ 439*3b35e7eeSXin LI symbol = 0; \ 440*3b35e7eeSXin LI rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \ 441*3b35e7eeSXin LI rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \ 442*3b35e7eeSXin LI rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \ 443*3b35e7eeSXin LI rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \ 444*3b35e7eeSXin LI } while (0) 445*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x02 446*3b35e7eeSXin LI 447*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x04 448*3b35e7eeSXin LI #undef rc_bit_add_if_1 449*3b35e7eeSXin LI #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ 450*3b35e7eeSXin LI rc_c_bit(probs[symbol], \ 451*3b35e7eeSXin LI symbol = (symbol << 1) + rc_mask, \ 452*3b35e7eeSXin LI dest += (value_to_add_if_1) & rc_mask) 453*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x04 454*3b35e7eeSXin LI 455*3b35e7eeSXin LI 456*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x08 457*3b35e7eeSXin LI #undef decode_with_match_bit 458*3b35e7eeSXin LI #define decode_with_match_bit \ 459*3b35e7eeSXin LI t_match_byte <<= 1; \ 460*3b35e7eeSXin LI t_match_bit = t_match_byte & t_offset; \ 461*3b35e7eeSXin LI t_subcoder_index = t_offset + t_match_bit + symbol; \ 462*3b35e7eeSXin LI rc_c_bit(probs[t_subcoder_index], \ 463*3b35e7eeSXin LI symbol = (symbol << 1) + rc_mask, \ 464*3b35e7eeSXin LI t_offset &= ~t_match_bit ^ rc_mask) 465*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x08 466*3b35e7eeSXin LI 467*3b35e7eeSXin LI 468*3b35e7eeSXin LI //////////// 469*3b35e7eeSXin LI // x86-64 // 470*3b35e7eeSXin LI //////////// 471*3b35e7eeSXin LI 472*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x1F0 473*3b35e7eeSXin LI 474*3b35e7eeSXin LI // rc_asm_y and rc_asm_n are used as arguments to macros to control which 475*3b35e7eeSXin LI // strings to include or omit. 476*3b35e7eeSXin LI #define rc_asm_y(str) str 477*3b35e7eeSXin LI #define rc_asm_n(str) 478*3b35e7eeSXin LI 479*3b35e7eeSXin LI // There are a few possible variations for normalization. 480*3b35e7eeSXin LI // This is the smallest variant which is also used by LZMA SDK. 481*3b35e7eeSXin LI // 482*3b35e7eeSXin LI // - This has partial register write (the MOV from (%[in_ptr])). 483*3b35e7eeSXin LI // 484*3b35e7eeSXin LI // - INC saves one byte in code size over ADD. False dependency on 485*3b35e7eeSXin LI // partial flags from INC shouldn't become a problem on any processor 486*3b35e7eeSXin LI // because the instructions after normalization don't read the flags 487*3b35e7eeSXin LI // until SUB which sets all flags. 488*3b35e7eeSXin LI // 489*3b35e7eeSXin LI #define rc_asm_normalize \ 490*3b35e7eeSXin LI "cmp %[top_value], %[range]\n\t" \ 491*3b35e7eeSXin LI "jae 1f\n\t" \ 492*3b35e7eeSXin LI "shl %[shift_bits], %[code]\n\t" \ 493*3b35e7eeSXin LI "mov (%[in_ptr]), %b[code]\n\t" \ 494*3b35e7eeSXin LI "shl %[shift_bits], %[range]\n\t" \ 495*3b35e7eeSXin LI "inc %[in_ptr]\n" \ 496*3b35e7eeSXin LI "1:\n" 497*3b35e7eeSXin LI 498*3b35e7eeSXin LI // rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)... 499*3b35e7eeSXin LI // 500*3b35e7eeSXin LI // rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); 501*3b35e7eeSXin LI // if (rc.code < rc_bound) 502*3b35e7eeSXin LI // 503*3b35e7eeSXin LI // ...but the bound is stored in "range": 504*3b35e7eeSXin LI // 505*3b35e7eeSXin LI // t0 = range; 506*3b35e7eeSXin LI // range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); 507*3b35e7eeSXin LI // t0 -= range; 508*3b35e7eeSXin LI // t1 = code; 509*3b35e7eeSXin LI // code -= range; 510*3b35e7eeSXin LI // 511*3b35e7eeSXin LI // The carry flag (CF) from the last subtraction holds the negation of 512*3b35e7eeSXin LI // the decoded bit (if CF==0 then the decoded bit is 1). 513*3b35e7eeSXin LI // The values in t0 and t1 are needed for rc_update_0(prob) and 514*3b35e7eeSXin LI // rc_update_1(prob). If the bit is 0, rc_update_0(prob)... 515*3b35e7eeSXin LI // 516*3b35e7eeSXin LI // rc.range = rc_bound; 517*3b35e7eeSXin LI // 518*3b35e7eeSXin LI // ...has already been done but the "code -= range" has to be reverted using 519*3b35e7eeSXin LI // the old value stored in t1. (Also, prob needs to be updated.) 520*3b35e7eeSXin LI // 521*3b35e7eeSXin LI // If the bit is 1, rc_update_1(prob)... 522*3b35e7eeSXin LI // 523*3b35e7eeSXin LI // rc.range -= rc_bound; 524*3b35e7eeSXin LI // rc.code -= rc_bound; 525*3b35e7eeSXin LI // 526*3b35e7eeSXin LI // ...is already done for "code" but the value for "range" needs to be taken 527*3b35e7eeSXin LI // from t0. (Also, prob needs to be updated here as well.) 528*3b35e7eeSXin LI // 529*3b35e7eeSXin LI // The assignments from t0 and t1 can be done in a branchless manner with CMOV 530*3b35e7eeSXin LI // after the instructions from this macro. The CF from SUB tells which moves 531*3b35e7eeSXin LI // are needed. 532*3b35e7eeSXin LI #define rc_asm_calc(prob) \ 533*3b35e7eeSXin LI "mov %[range], %[t0]\n\t" \ 534*3b35e7eeSXin LI "shr %[bit_model_total_bits], %[range]\n\t" \ 535*3b35e7eeSXin LI "imul %[" prob "], %[range]\n\t" \ 536*3b35e7eeSXin LI "sub %[range], %[t0]\n\t" \ 537*3b35e7eeSXin LI "mov %[code], %[t1]\n\t" \ 538*3b35e7eeSXin LI "sub %[range], %[code]\n\t" 539*3b35e7eeSXin LI 540*3b35e7eeSXin LI // Also, prob needs to be updated: The update math depends on the decoded bit. 541*3b35e7eeSXin LI // It can be expressed in a few slightly different ways but this is fairly 542*3b35e7eeSXin LI // convenient here: 543*3b35e7eeSXin LI // 544*3b35e7eeSXin LI // prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS; 545*3b35e7eeSXin LI // 546*3b35e7eeSXin LI // To do it in branchless way when the negation of the decoded bit is in CF, 547*3b35e7eeSXin LI // both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired 548*3b35e7eeSXin LI // value can be picked with CMOV. The addition can be done using LEA without 549*3b35e7eeSXin LI // affecting CF. 550*3b35e7eeSXin LI // 551*3b35e7eeSXin LI // (This prob update method is a tiny bit different from LZMA SDK 23.01. 552*3b35e7eeSXin LI // In the LZMA SDK a single register is reserved solely for a constant to 553*3b35e7eeSXin LI // be used with CMOV when updating prob. That is fine since there are enough 554*3b35e7eeSXin LI // free registers to do so. The method used here uses one fewer register, 555*3b35e7eeSXin LI // which is valuable with inline assembly.) 556*3b35e7eeSXin LI // 557*3b35e7eeSXin LI // * * * 558*3b35e7eeSXin LI // 559*3b35e7eeSXin LI // In bittree decoding, each (unrolled) loop iteration decodes one bit 560*3b35e7eeSXin LI // and needs one prob variable. To make it faster, the prob variable of 561*3b35e7eeSXin LI // the iteration N+1 is loaded during iteration N. There are two possible 562*3b35e7eeSXin LI // prob variables to choose from for N+1. Both are loaded from memory and 563*3b35e7eeSXin LI // the correct one is chosen with CMOV using the same CF as is used for 564*3b35e7eeSXin LI // other things described above. 565*3b35e7eeSXin LI // 566*3b35e7eeSXin LI // This preloading/prefetching requires an extra register. To avoid 567*3b35e7eeSXin LI // useless moves from "preloaded prob register" to "current prob register", 568*3b35e7eeSXin LI // the macros swap between the two registers for odd and even iterations. 569*3b35e7eeSXin LI // 570*3b35e7eeSXin LI // * * * 571*3b35e7eeSXin LI // 572*3b35e7eeSXin LI // Finally, the decoded bit has to be stored in "symbol". Since the negation 573*3b35e7eeSXin LI // of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is, 574*3b35e7eeSXin LI // if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0" 575*3b35e7eeSXin LI // and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is 576*3b35e7eeSXin LI // the same as "symbol += 1". 577*3b35e7eeSXin LI // 578*3b35e7eeSXin LI // The instructions for all things are intertwined for a few reasons: 579*3b35e7eeSXin LI // - freeing temporary registers for new use 580*3b35e7eeSXin LI // - not modifying CF too early 581*3b35e7eeSXin LI // - instruction scheduling 582*3b35e7eeSXin LI // 583*3b35e7eeSXin LI // The first and last iterations can cheat a little. For example, 584*3b35e7eeSXin LI // on the first iteration "symbol" is known to start from 1 so it 585*3b35e7eeSXin LI // doesn't need to be read; it can even be immediately initialized 586*3b35e7eeSXin LI // to 2 to prepare for the second iteration of the loop. 587*3b35e7eeSXin LI // 588*3b35e7eeSXin LI // * * * 589*3b35e7eeSXin LI // 590*3b35e7eeSXin LI // a = number of the current prob variable (0 or 1) 591*3b35e7eeSXin LI // b = number of the next prob variable (1 or 0) 592*3b35e7eeSXin LI // *_only = rc_asm_y or _n to include or exclude code marked with them 593*3b35e7eeSXin LI #define rc_asm_bittree(a, b, first_only, middle_only, last_only) \ 594*3b35e7eeSXin LI first_only( \ 595*3b35e7eeSXin LI "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ 596*3b35e7eeSXin LI "mov $2, %[symbol]\n\t" \ 597*3b35e7eeSXin LI "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ 598*3b35e7eeSXin LI ) \ 599*3b35e7eeSXin LI middle_only( \ 600*3b35e7eeSXin LI /* Note the scaling of 4 instead of 2: */ \ 601*3b35e7eeSXin LI "movzw (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \ 602*3b35e7eeSXin LI ) \ 603*3b35e7eeSXin LI last_only( \ 604*3b35e7eeSXin LI "add %[symbol], %[symbol]\n\t" \ 605*3b35e7eeSXin LI ) \ 606*3b35e7eeSXin LI \ 607*3b35e7eeSXin LI rc_asm_normalize \ 608*3b35e7eeSXin LI rc_asm_calc("prob" #a) \ 609*3b35e7eeSXin LI \ 610*3b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 611*3b35e7eeSXin LI \ 612*3b35e7eeSXin LI first_only( \ 613*3b35e7eeSXin LI "movzw 6(%[probs_base]), %[t0]\n\t" \ 614*3b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 615*3b35e7eeSXin LI ) \ 616*3b35e7eeSXin LI middle_only( \ 617*3b35e7eeSXin LI "movzw 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \ 618*3b35e7eeSXin LI "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \ 619*3b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 620*3b35e7eeSXin LI ) \ 621*3b35e7eeSXin LI \ 622*3b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ 623*3b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 624*3b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 625*3b35e7eeSXin LI "cmovae %[prob" #a "], %[t0]\n\t" \ 626*3b35e7eeSXin LI \ 627*3b35e7eeSXin LI first_only( \ 628*3b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 629*3b35e7eeSXin LI ) \ 630*3b35e7eeSXin LI middle_only( \ 631*3b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 632*3b35e7eeSXin LI ) \ 633*3b35e7eeSXin LI last_only( \ 634*3b35e7eeSXin LI "sbb %[last_sbb], %[symbol]\n\t" \ 635*3b35e7eeSXin LI ) \ 636*3b35e7eeSXin LI \ 637*3b35e7eeSXin LI "shr %[move_bits], %[t0]\n\t" \ 638*3b35e7eeSXin LI "sub %[t0], %[prob" #a "]\n\t" \ 639*3b35e7eeSXin LI /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ 640*3b35e7eeSXin LI "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t" 641*3b35e7eeSXin LI 642*3b35e7eeSXin LI // NOTE: The order of variables in __asm__ can affect speed and code size. 643*3b35e7eeSXin LI #define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \ 644*3b35e7eeSXin LI do { \ 645*3b35e7eeSXin LI uint32_t t0; \ 646*3b35e7eeSXin LI uint32_t t1; \ 647*3b35e7eeSXin LI uint32_t t_prob0; \ 648*3b35e7eeSXin LI uint32_t t_prob1; \ 649*3b35e7eeSXin LI \ 650*3b35e7eeSXin LI __asm__( \ 651*3b35e7eeSXin LI asm_str \ 652*3b35e7eeSXin LI : \ 653*3b35e7eeSXin LI [range] "+&r"(rc.range), \ 654*3b35e7eeSXin LI [code] "+&r"(rc.code), \ 655*3b35e7eeSXin LI [t0] "=&r"(t0), \ 656*3b35e7eeSXin LI [t1] "=&r"(t1), \ 657*3b35e7eeSXin LI [prob0] "=&r"(t_prob0), \ 658*3b35e7eeSXin LI [prob1] "=&r"(t_prob1), \ 659*3b35e7eeSXin LI [symbol] "=&r"(symbol), \ 660*3b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 661*3b35e7eeSXin LI : \ 662*3b35e7eeSXin LI [probs_base] "r"(probs_base_var), \ 663*3b35e7eeSXin LI [last_sbb] "n"(-1 - (final_add)), \ 664*3b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 665*3b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS), \ 666*3b35e7eeSXin LI [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ 667*3b35e7eeSXin LI [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ 668*3b35e7eeSXin LI [move_bits] "n"(RC_MOVE_BITS) \ 669*3b35e7eeSXin LI : \ 670*3b35e7eeSXin LI "cc", "memory"); \ 671*3b35e7eeSXin LI } while (0) 672*3b35e7eeSXin LI 673*3b35e7eeSXin LI 674*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x010 675*3b35e7eeSXin LI #undef rc_bittree3 676*3b35e7eeSXin LI #define rc_bittree3(probs_base_var, final_add) \ 677*3b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, final_add, \ 678*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ 679*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 680*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \ 681*3b35e7eeSXin LI ) 682*3b35e7eeSXin LI 683*3b35e7eeSXin LI #undef rc_bittree6 684*3b35e7eeSXin LI #define rc_bittree6(probs_base_var, final_add) \ 685*3b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, final_add, \ 686*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ 687*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 688*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 689*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 690*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 691*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ 692*3b35e7eeSXin LI ) 693*3b35e7eeSXin LI 694*3b35e7eeSXin LI #undef rc_bittree8 695*3b35e7eeSXin LI #define rc_bittree8(probs_base_var, final_add) \ 696*3b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, final_add, \ 697*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ 698*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 699*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 700*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 701*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 702*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 703*3b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 704*3b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ 705*3b35e7eeSXin LI ) 706*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x010 707*3b35e7eeSXin LI 708*3b35e7eeSXin LI 709*3b35e7eeSXin LI // Fixed-sized reverse bittree 710*3b35e7eeSXin LI // 711*3b35e7eeSXin LI // This uses the indexing that constructs the final value in symbol directly. 712*3b35e7eeSXin LI // add = 1, 2, 4, 8 713*3b35e7eeSXin LI // dcur = -, 4, 8, 16 714*3b35e7eeSXin LI // dnext0 = 4, 8, 16, - 715*3b35e7eeSXin LI // dnext0 = 6, 12, 24, - 716*3b35e7eeSXin LI #define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \ 717*3b35e7eeSXin LI first_only, middle_only, last_only) \ 718*3b35e7eeSXin LI first_only( \ 719*3b35e7eeSXin LI "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ 720*3b35e7eeSXin LI "xor %[symbol], %[symbol]\n\t" \ 721*3b35e7eeSXin LI "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ 722*3b35e7eeSXin LI ) \ 723*3b35e7eeSXin LI middle_only( \ 724*3b35e7eeSXin LI "movzw " #dnext0 "(%[probs_base], %q[symbol], 2), " \ 725*3b35e7eeSXin LI "%[prob" #b "]\n\t" \ 726*3b35e7eeSXin LI ) \ 727*3b35e7eeSXin LI \ 728*3b35e7eeSXin LI rc_asm_normalize \ 729*3b35e7eeSXin LI rc_asm_calc("prob" #a) \ 730*3b35e7eeSXin LI \ 731*3b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 732*3b35e7eeSXin LI \ 733*3b35e7eeSXin LI first_only( \ 734*3b35e7eeSXin LI "movzw 6(%[probs_base]), %[t0]\n\t" \ 735*3b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 736*3b35e7eeSXin LI ) \ 737*3b35e7eeSXin LI middle_only( \ 738*3b35e7eeSXin LI "movzw " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \ 739*3b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 740*3b35e7eeSXin LI ) \ 741*3b35e7eeSXin LI \ 742*3b35e7eeSXin LI "lea " #add "(%q[symbol]), %[t0]\n\t" \ 743*3b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 744*3b35e7eeSXin LI middle_only( \ 745*3b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 746*3b35e7eeSXin LI ) \ 747*3b35e7eeSXin LI last_only( \ 748*3b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 749*3b35e7eeSXin LI ) \ 750*3b35e7eeSXin LI "cmovae %[t0], %[symbol]\n\t" \ 751*3b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ 752*3b35e7eeSXin LI "cmovae %[prob" #a "], %[t0]\n\t" \ 753*3b35e7eeSXin LI \ 754*3b35e7eeSXin LI "shr %[move_bits], %[t0]\n\t" \ 755*3b35e7eeSXin LI "sub %[t0], %[prob" #a "]\n\t" \ 756*3b35e7eeSXin LI first_only( \ 757*3b35e7eeSXin LI "mov %w[prob" #a "], 2(%[probs_base])\n\t" \ 758*3b35e7eeSXin LI ) \ 759*3b35e7eeSXin LI middle_only( \ 760*3b35e7eeSXin LI "mov %w[prob" #a "], " \ 761*3b35e7eeSXin LI #dcur "(%[probs_base], %q[t1], 2)\n\t" \ 762*3b35e7eeSXin LI ) \ 763*3b35e7eeSXin LI last_only( \ 764*3b35e7eeSXin LI "mov %w[prob" #a "], " \ 765*3b35e7eeSXin LI #dcur "(%[probs_base], %q[t1], 2)\n\t" \ 766*3b35e7eeSXin LI ) 767*3b35e7eeSXin LI 768*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x020 769*3b35e7eeSXin LI #undef rc_bittree_rev4 770*3b35e7eeSXin LI #define rc_bittree_rev4(probs_base_var) \ 771*3b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, 4, \ 772*3b35e7eeSXin LI rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \ 773*3b35e7eeSXin LI rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \ 774*3b35e7eeSXin LI rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \ 775*3b35e7eeSXin LI rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \ 776*3b35e7eeSXin LI ) 777*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x020 778*3b35e7eeSXin LI 779*3b35e7eeSXin LI 780*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x040 781*3b35e7eeSXin LI #undef rc_bit_add_if_1 782*3b35e7eeSXin LI #define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \ 783*3b35e7eeSXin LI do { \ 784*3b35e7eeSXin LI uint32_t t0; \ 785*3b35e7eeSXin LI uint32_t t1; \ 786*3b35e7eeSXin LI uint32_t t2 = (value_to_add_if_1); \ 787*3b35e7eeSXin LI uint32_t t_prob; \ 788*3b35e7eeSXin LI uint32_t t_index; \ 789*3b35e7eeSXin LI \ 790*3b35e7eeSXin LI __asm__( \ 791*3b35e7eeSXin LI "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ 792*3b35e7eeSXin LI "mov %[symbol], %[index]\n\t" \ 793*3b35e7eeSXin LI \ 794*3b35e7eeSXin LI "add %[dest], %[t2]\n\t" \ 795*3b35e7eeSXin LI "add %[symbol], %[symbol]\n\t" \ 796*3b35e7eeSXin LI \ 797*3b35e7eeSXin LI rc_asm_normalize \ 798*3b35e7eeSXin LI rc_asm_calc("prob") \ 799*3b35e7eeSXin LI \ 800*3b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 801*3b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ 802*3b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 803*3b35e7eeSXin LI "cmovae %[prob], %[t0]\n\t" \ 804*3b35e7eeSXin LI \ 805*3b35e7eeSXin LI "cmovae %[t2], %[dest]\n\t" \ 806*3b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 807*3b35e7eeSXin LI \ 808*3b35e7eeSXin LI "sar %[move_bits], %[t0]\n\t" \ 809*3b35e7eeSXin LI "sub %[t0], %[prob]\n\t" \ 810*3b35e7eeSXin LI "mov %w[prob], (%[probs_base], %q[index], 2)" \ 811*3b35e7eeSXin LI : \ 812*3b35e7eeSXin LI [range] "+&r"(rc.range), \ 813*3b35e7eeSXin LI [code] "+&r"(rc.code), \ 814*3b35e7eeSXin LI [t0] "=&r"(t0), \ 815*3b35e7eeSXin LI [t1] "=&r"(t1), \ 816*3b35e7eeSXin LI [prob] "=&r"(t_prob), \ 817*3b35e7eeSXin LI [index] "=&r"(t_index), \ 818*3b35e7eeSXin LI [symbol] "+&r"(symbol), \ 819*3b35e7eeSXin LI [t2] "+&r"(t2), \ 820*3b35e7eeSXin LI [dest] "+&r"(dest_var), \ 821*3b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 822*3b35e7eeSXin LI : \ 823*3b35e7eeSXin LI [probs_base] "r"(probs_base_var), \ 824*3b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 825*3b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS), \ 826*3b35e7eeSXin LI [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ 827*3b35e7eeSXin LI [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ 828*3b35e7eeSXin LI [move_bits] "n"(RC_MOVE_BITS) \ 829*3b35e7eeSXin LI : \ 830*3b35e7eeSXin LI "cc", "memory"); \ 831*3b35e7eeSXin LI } while (0) 832*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x040 833*3b35e7eeSXin LI 834*3b35e7eeSXin LI 835*3b35e7eeSXin LI // Literal decoding uses a normal 8-bit bittree but literal with match byte 836*3b35e7eeSXin LI // is more complex in picking the probability variable from the correct 837*3b35e7eeSXin LI // subtree. This doesn't use preloading/prefetching of the next prob because 838*3b35e7eeSXin LI // there are four choices instead of two. 839*3b35e7eeSXin LI // 840*3b35e7eeSXin LI // FIXME? The first iteration starts with symbol = 1 so it could be optimized 841*3b35e7eeSXin LI // by a tiny amount. 842*3b35e7eeSXin LI #define rc_asm_matched_literal(nonlast_only) \ 843*3b35e7eeSXin LI "add %[offset], %[symbol]\n\t" \ 844*3b35e7eeSXin LI "and %[offset], %[match_bit]\n\t" \ 845*3b35e7eeSXin LI "add %[match_bit], %[symbol]\n\t" \ 846*3b35e7eeSXin LI \ 847*3b35e7eeSXin LI "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ 848*3b35e7eeSXin LI \ 849*3b35e7eeSXin LI "add %[symbol], %[symbol]\n\t" \ 850*3b35e7eeSXin LI \ 851*3b35e7eeSXin LI nonlast_only( \ 852*3b35e7eeSXin LI "xor %[match_bit], %[offset]\n\t" \ 853*3b35e7eeSXin LI "add %[match_byte], %[match_byte]\n\t" \ 854*3b35e7eeSXin LI ) \ 855*3b35e7eeSXin LI \ 856*3b35e7eeSXin LI rc_asm_normalize \ 857*3b35e7eeSXin LI rc_asm_calc("prob") \ 858*3b35e7eeSXin LI \ 859*3b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 860*3b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ 861*3b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 862*3b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 863*3b35e7eeSXin LI "cmovae %[prob], %[t0]\n\t" \ 864*3b35e7eeSXin LI \ 865*3b35e7eeSXin LI nonlast_only( \ 866*3b35e7eeSXin LI "cmovae %[match_bit], %[offset]\n\t" \ 867*3b35e7eeSXin LI "mov %[match_byte], %[match_bit]\n\t" \ 868*3b35e7eeSXin LI ) \ 869*3b35e7eeSXin LI \ 870*3b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 871*3b35e7eeSXin LI \ 872*3b35e7eeSXin LI "shr %[move_bits], %[t0]\n\t" \ 873*3b35e7eeSXin LI /* Undo symbol += match_bit + offset: */ \ 874*3b35e7eeSXin LI "and $0x1FF, %[symbol]\n\t" \ 875*3b35e7eeSXin LI "sub %[t0], %[prob]\n\t" \ 876*3b35e7eeSXin LI \ 877*3b35e7eeSXin LI /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ 878*3b35e7eeSXin LI "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t" 879*3b35e7eeSXin LI 880*3b35e7eeSXin LI 881*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x080 882*3b35e7eeSXin LI #undef rc_matched_literal 883*3b35e7eeSXin LI #define rc_matched_literal(probs_base_var, match_byte_value) \ 884*3b35e7eeSXin LI do { \ 885*3b35e7eeSXin LI uint32_t t0; \ 886*3b35e7eeSXin LI uint32_t t1; \ 887*3b35e7eeSXin LI uint32_t t_prob; \ 888*3b35e7eeSXin LI uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \ 889*3b35e7eeSXin LI uint32_t t_match_bit = t_match_byte; \ 890*3b35e7eeSXin LI uint32_t t_offset = 0x100; \ 891*3b35e7eeSXin LI symbol = 1; \ 892*3b35e7eeSXin LI \ 893*3b35e7eeSXin LI __asm__( \ 894*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 895*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 896*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 897*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 898*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 899*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 900*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 901*3b35e7eeSXin LI rc_asm_matched_literal(rc_asm_n) \ 902*3b35e7eeSXin LI : \ 903*3b35e7eeSXin LI [range] "+&r"(rc.range), \ 904*3b35e7eeSXin LI [code] "+&r"(rc.code), \ 905*3b35e7eeSXin LI [t0] "=&r"(t0), \ 906*3b35e7eeSXin LI [t1] "=&r"(t1), \ 907*3b35e7eeSXin LI [prob] "=&r"(t_prob), \ 908*3b35e7eeSXin LI [match_bit] "+&r"(t_match_bit), \ 909*3b35e7eeSXin LI [symbol] "+&r"(symbol), \ 910*3b35e7eeSXin LI [match_byte] "+&r"(t_match_byte), \ 911*3b35e7eeSXin LI [offset] "+&r"(t_offset), \ 912*3b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 913*3b35e7eeSXin LI : \ 914*3b35e7eeSXin LI [probs_base] "r"(probs_base_var), \ 915*3b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 916*3b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS), \ 917*3b35e7eeSXin LI [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ 918*3b35e7eeSXin LI [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ 919*3b35e7eeSXin LI [move_bits] "n"(RC_MOVE_BITS) \ 920*3b35e7eeSXin LI : \ 921*3b35e7eeSXin LI "cc", "memory"); \ 922*3b35e7eeSXin LI } while (0) 923*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x080 924*3b35e7eeSXin LI 925*3b35e7eeSXin LI 926*3b35e7eeSXin LI // Doing the loop in asm instead of C seems to help a little. 927*3b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x100 928*3b35e7eeSXin LI #undef rc_direct 929*3b35e7eeSXin LI #define rc_direct(dest_var, count_var) \ 930*3b35e7eeSXin LI do { \ 931*3b35e7eeSXin LI uint32_t t0; \ 932*3b35e7eeSXin LI uint32_t t1; \ 933*3b35e7eeSXin LI \ 934*3b35e7eeSXin LI __asm__( \ 935*3b35e7eeSXin LI "2:\n\t" \ 936*3b35e7eeSXin LI "add %[dest], %[dest]\n\t" \ 937*3b35e7eeSXin LI "lea 1(%q[dest]), %[t1]\n\t" \ 938*3b35e7eeSXin LI \ 939*3b35e7eeSXin LI rc_asm_normalize \ 940*3b35e7eeSXin LI \ 941*3b35e7eeSXin LI "shr $1, %[range]\n\t" \ 942*3b35e7eeSXin LI "mov %[code], %[t0]\n\t" \ 943*3b35e7eeSXin LI "sub %[range], %[code]\n\t" \ 944*3b35e7eeSXin LI "cmovns %[t1], %[dest]\n\t" \ 945*3b35e7eeSXin LI "cmovs %[t0], %[code]\n\t" \ 946*3b35e7eeSXin LI "dec %[count]\n\t" \ 947*3b35e7eeSXin LI "jnz 2b\n\t" \ 948*3b35e7eeSXin LI : \ 949*3b35e7eeSXin LI [range] "+&r"(rc.range), \ 950*3b35e7eeSXin LI [code] "+&r"(rc.code), \ 951*3b35e7eeSXin LI [t0] "=&r"(t0), \ 952*3b35e7eeSXin LI [t1] "=&r"(t1), \ 953*3b35e7eeSXin LI [dest] "+&r"(dest_var), \ 954*3b35e7eeSXin LI [count] "+&r"(count_var), \ 955*3b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 956*3b35e7eeSXin LI : \ 957*3b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 958*3b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS) \ 959*3b35e7eeSXin LI : \ 960*3b35e7eeSXin LI "cc", "memory"); \ 961*3b35e7eeSXin LI } while (0) 962*3b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x100 963*3b35e7eeSXin LI 964*3b35e7eeSXin LI #endif // x86_64 96581ad8388SMartin Matuska 96681ad8388SMartin Matuska #endif 967