xref: /freebsd/contrib/xz/src/liblzma/rangecoder/range_decoder.h (revision 26743408e9ff53ac0e041407c359ed3c17c15596)
13b35e7eeSXin LI // SPDX-License-Identifier: 0BSD
23b35e7eeSXin LI 
381ad8388SMartin Matuska ///////////////////////////////////////////////////////////////////////////////
481ad8388SMartin Matuska //
581ad8388SMartin Matuska /// \file       range_decoder.h
681ad8388SMartin Matuska /// \brief      Range Decoder
781ad8388SMartin Matuska ///
881ad8388SMartin Matuska //  Authors:    Igor Pavlov
981ad8388SMartin Matuska //              Lasse Collin
1081ad8388SMartin Matuska //
1181ad8388SMartin Matuska ///////////////////////////////////////////////////////////////////////////////
1281ad8388SMartin Matuska 
1381ad8388SMartin Matuska #ifndef LZMA_RANGE_DECODER_H
1481ad8388SMartin Matuska #define LZMA_RANGE_DECODER_H
1581ad8388SMartin Matuska 
1681ad8388SMartin Matuska #include "range_common.h"
1781ad8388SMartin Matuska 
1881ad8388SMartin Matuska 
193b35e7eeSXin LI // Choose the range decoder variants to use using a bitmask.
203b35e7eeSXin LI // If no bits are set, only the basic version is used.
213b35e7eeSXin LI // If more than one version is selected for the same feature,
223b35e7eeSXin LI // the last one on the list below is used.
233b35e7eeSXin LI //
243b35e7eeSXin LI // Bitwise-or of the following enable branchless C versions:
253b35e7eeSXin LI //   0x01   normal bittrees
263b35e7eeSXin LI //   0x02   fixed-sized reverse bittrees
273b35e7eeSXin LI //   0x04   variable-sized reverse bittrees (not faster)
283b35e7eeSXin LI //   0x08   matched literal (not faster)
293b35e7eeSXin LI //
303b35e7eeSXin LI // GCC & Clang compatible x86-64 inline assembly:
313b35e7eeSXin LI //   0x010   normal bittrees
323b35e7eeSXin LI //   0x020   fixed-sized reverse bittrees
333b35e7eeSXin LI //   0x040   variable-sized reverse bittrees
343b35e7eeSXin LI //   0x080   matched literal
353b35e7eeSXin LI //   0x100   direct bits
363b35e7eeSXin LI //
373b35e7eeSXin LI // The default can be overridden at build time by defining
383b35e7eeSXin LI // LZMA_RANGE_DECODER_CONFIG to the desired mask.
393b35e7eeSXin LI //
403b35e7eeSXin LI // 2024-02-22: Feedback from benchmarks:
413b35e7eeSXin LI //   - Brancless C (0x003) can be better than basic on x86-64 but often it's
423b35e7eeSXin LI //     slightly worse on other archs. Since asm is much better on x86-64,
433b35e7eeSXin LI //     branchless C is not used at all.
443b35e7eeSXin LI //   - With x86-64 asm, there are slight differences between GCC and Clang
453b35e7eeSXin LI //     and different processors. Overall 0x1F0 seems to be the best choice.
463b35e7eeSXin LI #ifndef LZMA_RANGE_DECODER_CONFIG
473b35e7eeSXin LI #	if defined(__x86_64__) && !defined(__ILP32__) \
483b35e7eeSXin LI 			&& !defined(__NVCOMPILER) \
493b35e7eeSXin LI 			&& (defined(__GNUC__) || defined(__clang__))
503b35e7eeSXin LI #		define LZMA_RANGE_DECODER_CONFIG 0x1F0
513b35e7eeSXin LI #	else
523b35e7eeSXin LI #		define LZMA_RANGE_DECODER_CONFIG 0
533b35e7eeSXin LI #	endif
543b35e7eeSXin LI #endif
553b35e7eeSXin LI 
563b35e7eeSXin LI 
573b35e7eeSXin LI // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped.
583b35e7eeSXin LI // This is useful for updating probability variables in branchless decoding:
593b35e7eeSXin LI //
603b35e7eeSXin LI //     uint32_t decoded_bit = ...;
613b35e7eeSXin LI //     probability tmp = RC_BIT_MODEL_OFFSET;
623b35e7eeSXin LI //     tmp &= decoded_bit - 1;
633b35e7eeSXin LI //     prob -= (prob + tmp) >> RC_MOVE_BITS;
643b35e7eeSXin LI #define RC_BIT_MODEL_OFFSET \
653b35e7eeSXin LI 	((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL)
663b35e7eeSXin LI 
673b35e7eeSXin LI 
6881ad8388SMartin Matuska typedef struct {
6981ad8388SMartin Matuska 	uint32_t range;
7081ad8388SMartin Matuska 	uint32_t code;
7181ad8388SMartin Matuska 	uint32_t init_bytes_left;
7281ad8388SMartin Matuska } lzma_range_decoder;
7381ad8388SMartin Matuska 
7481ad8388SMartin Matuska 
7581ad8388SMartin Matuska /// Reads the first five bytes to initialize the range decoder.
7653200025SRui Paulo static inline lzma_ret
7781ad8388SMartin Matuska rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
7881ad8388SMartin Matuska 		size_t *restrict in_pos, size_t in_size)
7981ad8388SMartin Matuska {
8081ad8388SMartin Matuska 	while (rc->init_bytes_left > 0) {
8181ad8388SMartin Matuska 		if (*in_pos == in_size)
8253200025SRui Paulo 			return LZMA_OK;
8353200025SRui Paulo 
8453200025SRui Paulo 		// The first byte is always 0x00. It could have been omitted
8553200025SRui Paulo 		// in LZMA2 but it wasn't, so one byte is wasted in every
8653200025SRui Paulo 		// LZMA2 chunk.
8753200025SRui Paulo 		if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00)
8853200025SRui Paulo 			return LZMA_DATA_ERROR;
8981ad8388SMartin Matuska 
9081ad8388SMartin Matuska 		rc->code = (rc->code << 8) | in[*in_pos];
9181ad8388SMartin Matuska 		++*in_pos;
9281ad8388SMartin Matuska 		--rc->init_bytes_left;
9381ad8388SMartin Matuska 	}
9481ad8388SMartin Matuska 
9553200025SRui Paulo 	return LZMA_STREAM_END;
9681ad8388SMartin Matuska }
9781ad8388SMartin Matuska 
9881ad8388SMartin Matuska 
9981ad8388SMartin Matuska /// Makes local copies of range decoder and *in_pos variables. Doing this
10081ad8388SMartin Matuska /// improves speed significantly. The range decoder macros expect also
1013b35e7eeSXin LI /// variables 'in' and 'in_size' to be defined.
1023b35e7eeSXin LI #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \
10381ad8388SMartin Matuska 	lzma_range_decoder rc = range_decoder; \
1043b35e7eeSXin LI 	const uint8_t *rc_in_ptr = in + (in_pos); \
1053b35e7eeSXin LI 	const uint8_t *rc_in_end = in + in_size; \
1063b35e7eeSXin LI 	const uint8_t *rc_in_fast_end \
1073b35e7eeSXin LI 			= (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \
1083b35e7eeSXin LI 			? rc_in_ptr \
1093b35e7eeSXin LI 			: rc_in_end - (fast_mode_in_required); \
1103b35e7eeSXin LI 	(void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \
11181ad8388SMartin Matuska 	uint32_t rc_bound
11281ad8388SMartin Matuska 
11381ad8388SMartin Matuska 
1143b35e7eeSXin LI /// Evaluates to true if there is enough input remaining to use fast mode.
1153b35e7eeSXin LI #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end)
1163b35e7eeSXin LI 
1173b35e7eeSXin LI 
11881ad8388SMartin Matuska /// Stores the local copes back to the range decoder structure.
11981ad8388SMartin Matuska #define rc_from_local(range_decoder, in_pos) \
12081ad8388SMartin Matuska do { \
12181ad8388SMartin Matuska 	range_decoder = rc; \
1223b35e7eeSXin LI 	in_pos = (size_t)(rc_in_ptr - in); \
12381ad8388SMartin Matuska } while (0)
12481ad8388SMartin Matuska 
12581ad8388SMartin Matuska 
12681ad8388SMartin Matuska /// Resets the range decoder structure.
12781ad8388SMartin Matuska #define rc_reset(range_decoder) \
12881ad8388SMartin Matuska do { \
12981ad8388SMartin Matuska 	(range_decoder).range = UINT32_MAX; \
13081ad8388SMartin Matuska 	(range_decoder).code = 0; \
13181ad8388SMartin Matuska 	(range_decoder).init_bytes_left = 5; \
13281ad8388SMartin Matuska } while (0)
13381ad8388SMartin Matuska 
13481ad8388SMartin Matuska 
13581ad8388SMartin Matuska /// When decoding has been properly finished, rc.code is always zero unless
13681ad8388SMartin Matuska /// the input stream is corrupt. So checking this can catch some corrupt
13781ad8388SMartin Matuska /// files especially if they don't have any other integrity check.
13881ad8388SMartin Matuska #define rc_is_finished(range_decoder) \
13981ad8388SMartin Matuska 	((range_decoder).code == 0)
14081ad8388SMartin Matuska 
14181ad8388SMartin Matuska 
1423b35e7eeSXin LI // Read the next input byte if needed.
1433b35e7eeSXin LI #define rc_normalize() \
1448db56defSXin LI do { \
1458db56defSXin LI 	if (rc.range < RC_TOP_VALUE) { \
1463b35e7eeSXin LI 		rc.range <<= RC_SHIFT_BITS; \
1473b35e7eeSXin LI 		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
1483b35e7eeSXin LI 	} \
1493b35e7eeSXin LI } while (0)
1503b35e7eeSXin LI 
1513b35e7eeSXin LI 
1523b35e7eeSXin LI /// If more input is needed but there is
1533b35e7eeSXin LI /// no more input available, "goto out" is used to jump out of the main
1543b35e7eeSXin LI /// decoder loop. The "_safe" macros are used in the Resumable decoder
1553b35e7eeSXin LI /// mode in order to save the sequence to continue decoding from that
1563b35e7eeSXin LI /// point later.
1573b35e7eeSXin LI #define rc_normalize_safe(seq) \
1583b35e7eeSXin LI do { \
1593b35e7eeSXin LI 	if (rc.range < RC_TOP_VALUE) { \
1603b35e7eeSXin LI 		if (rc_in_ptr == rc_in_end) { \
16181ad8388SMartin Matuska 			coder->sequence = seq; \
16281ad8388SMartin Matuska 			goto out; \
16381ad8388SMartin Matuska 		} \
16481ad8388SMartin Matuska 		rc.range <<= RC_SHIFT_BITS; \
1653b35e7eeSXin LI 		rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
16681ad8388SMartin Matuska 	} \
16781ad8388SMartin Matuska } while (0)
16881ad8388SMartin Matuska 
16981ad8388SMartin Matuska 
17081ad8388SMartin Matuska /// Start decoding a bit. This must be used together with rc_update_0()
17181ad8388SMartin Matuska /// and rc_update_1():
17281ad8388SMartin Matuska ///
1733b35e7eeSXin LI ///     rc_if_0(prob) {
17481ad8388SMartin Matuska ///         rc_update_0(prob);
17581ad8388SMartin Matuska ///         // Do something
17681ad8388SMartin Matuska ///     } else {
17781ad8388SMartin Matuska ///         rc_update_1(prob);
17881ad8388SMartin Matuska ///         // Do something else
17981ad8388SMartin Matuska ///     }
18081ad8388SMartin Matuska ///
1813b35e7eeSXin LI #define rc_if_0(prob) \
1823b35e7eeSXin LI 	rc_normalize(); \
1833b35e7eeSXin LI 	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
1843b35e7eeSXin LI 	if (rc.code < rc_bound)
1853b35e7eeSXin LI 
1863b35e7eeSXin LI 
1873b35e7eeSXin LI #define rc_if_0_safe(prob, seq) \
1883b35e7eeSXin LI 	rc_normalize_safe(seq); \
18981ad8388SMartin Matuska 	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
19081ad8388SMartin Matuska 	if (rc.code < rc_bound)
19181ad8388SMartin Matuska 
19281ad8388SMartin Matuska 
19381ad8388SMartin Matuska /// Update the range decoder state and the used probability variable to
19481ad8388SMartin Matuska /// match a decoded bit of 0.
1953b35e7eeSXin LI ///
1963b35e7eeSXin LI /// The x86-64 assembly uses the commented method but it seems that,
1973b35e7eeSXin LI /// at least on x86-64, the first version is slightly faster as C code.
19881ad8388SMartin Matuska #define rc_update_0(prob) \
19981ad8388SMartin Matuska do { \
20081ad8388SMartin Matuska 	rc.range = rc_bound; \
20181ad8388SMartin Matuska 	prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
2023b35e7eeSXin LI 	/* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \
20381ad8388SMartin Matuska } while (0)
20481ad8388SMartin Matuska 
20581ad8388SMartin Matuska 
20681ad8388SMartin Matuska /// Update the range decoder state and the used probability variable to
20781ad8388SMartin Matuska /// match a decoded bit of 1.
20881ad8388SMartin Matuska #define rc_update_1(prob) \
20981ad8388SMartin Matuska do { \
21081ad8388SMartin Matuska 	rc.range -= rc_bound; \
21181ad8388SMartin Matuska 	rc.code -= rc_bound; \
21281ad8388SMartin Matuska 	prob -= (prob) >> RC_MOVE_BITS; \
21381ad8388SMartin Matuska } while (0)
21481ad8388SMartin Matuska 
21581ad8388SMartin Matuska 
21681ad8388SMartin Matuska /// Decodes one bit and runs action0 or action1 depending on the decoded bit.
21781ad8388SMartin Matuska /// This macro is used as the last step in bittree reverse decoders since
21881ad8388SMartin Matuska /// those don't use "symbol" for anything else than indexing the probability
21981ad8388SMartin Matuska /// arrays.
2203b35e7eeSXin LI #define rc_bit_last(prob, action0, action1) \
22181ad8388SMartin Matuska do { \
2223b35e7eeSXin LI 	rc_if_0(prob) { \
2233b35e7eeSXin LI 		rc_update_0(prob); \
2243b35e7eeSXin LI 		action0; \
2253b35e7eeSXin LI 	} else { \
2263b35e7eeSXin LI 		rc_update_1(prob); \
2273b35e7eeSXin LI 		action1; \
2283b35e7eeSXin LI 	} \
2293b35e7eeSXin LI } while (0)
2303b35e7eeSXin LI 
2313b35e7eeSXin LI 
2323b35e7eeSXin LI #define rc_bit_last_safe(prob, action0, action1, seq) \
2333b35e7eeSXin LI do { \
2343b35e7eeSXin LI 	rc_if_0_safe(prob, seq) { \
23581ad8388SMartin Matuska 		rc_update_0(prob); \
23681ad8388SMartin Matuska 		action0; \
23781ad8388SMartin Matuska 	} else { \
23881ad8388SMartin Matuska 		rc_update_1(prob); \
23981ad8388SMartin Matuska 		action1; \
24081ad8388SMartin Matuska 	} \
24181ad8388SMartin Matuska } while (0)
24281ad8388SMartin Matuska 
24381ad8388SMartin Matuska 
24481ad8388SMartin Matuska /// Decodes one bit, updates "symbol", and runs action0 or action1 depending
24581ad8388SMartin Matuska /// on the decoded bit.
2463b35e7eeSXin LI #define rc_bit(prob, action0, action1) \
24781ad8388SMartin Matuska 	rc_bit_last(prob, \
24881ad8388SMartin Matuska 		symbol <<= 1; action0, \
2493b35e7eeSXin LI 		symbol = (symbol << 1) + 1; action1);
2503b35e7eeSXin LI 
2513b35e7eeSXin LI 
2523b35e7eeSXin LI #define rc_bit_safe(prob, action0, action1, seq) \
2533b35e7eeSXin LI 	rc_bit_last_safe(prob, \
2543b35e7eeSXin LI 		symbol <<= 1; action0, \
25581ad8388SMartin Matuska 		symbol = (symbol << 1) + 1; action1, \
25681ad8388SMartin Matuska 		seq);
25781ad8388SMartin Matuska 
2583b35e7eeSXin LI // Unroll fixed-sized bittree decoding.
2593b35e7eeSXin LI //
2603b35e7eeSXin LI // A compile-time constant in final_add can be used to get rid of the high bit
2613b35e7eeSXin LI // from symbol that is used for the array indexing (1U << bittree_bits).
2623b35e7eeSXin LI // final_add may also be used to add offset to the result (LZMA length
2633b35e7eeSXin LI // decoder does that).
2643b35e7eeSXin LI //
2653b35e7eeSXin LI // The reason to have final_add here is that in the asm code the addition
2663b35e7eeSXin LI // can be done for free: in x86-64 there is SBB instruction with -1 as
2673b35e7eeSXin LI // the immediate value, and final_add is combined with that value.
2683b35e7eeSXin LI #define rc_bittree_bit(prob) \
2693b35e7eeSXin LI 	rc_bit(prob, , )
27081ad8388SMartin Matuska 
2713b35e7eeSXin LI #define rc_bittree3(probs, final_add) \
2723b35e7eeSXin LI do { \
2733b35e7eeSXin LI 	symbol = 1; \
2743b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2753b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2763b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2773b35e7eeSXin LI 	symbol += (uint32_t)(final_add); \
2783b35e7eeSXin LI } while (0)
2793b35e7eeSXin LI 
2803b35e7eeSXin LI #define rc_bittree6(probs, final_add) \
2813b35e7eeSXin LI do { \
2823b35e7eeSXin LI 	symbol = 1; \
2833b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2843b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2853b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2863b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2873b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2883b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2893b35e7eeSXin LI 	symbol += (uint32_t)(final_add); \
2903b35e7eeSXin LI } while (0)
2913b35e7eeSXin LI 
2923b35e7eeSXin LI #define rc_bittree8(probs, final_add) \
2933b35e7eeSXin LI do { \
2943b35e7eeSXin LI 	symbol = 1; \
2953b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2963b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2973b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2983b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
2993b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
3003b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
3013b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
3023b35e7eeSXin LI 	rc_bittree_bit(probs[symbol]); \
3033b35e7eeSXin LI 	symbol += (uint32_t)(final_add); \
3043b35e7eeSXin LI } while (0)
3053b35e7eeSXin LI 
3063b35e7eeSXin LI 
3073b35e7eeSXin LI // Fixed-sized reverse bittree
3083b35e7eeSXin LI #define rc_bittree_rev4(probs) \
3093b35e7eeSXin LI do { \
3103b35e7eeSXin LI 	symbol = 0; \
3113b35e7eeSXin LI 	rc_bit_last(probs[symbol + 1], , symbol += 1); \
3123b35e7eeSXin LI 	rc_bit_last(probs[symbol + 2], , symbol += 2); \
3133b35e7eeSXin LI 	rc_bit_last(probs[symbol + 4], , symbol += 4); \
3143b35e7eeSXin LI 	rc_bit_last(probs[symbol + 8], , symbol += 8); \
3153b35e7eeSXin LI } while (0)
3163b35e7eeSXin LI 
3173b35e7eeSXin LI 
3183b35e7eeSXin LI // Decode one bit from variable-sized reverse bittree. The loop is done
3193b35e7eeSXin LI // in the code that uses this macro. This could be changed if the assembly
3203b35e7eeSXin LI // version benefited from having the loop done in assembly but it didn't
3213b35e7eeSXin LI // seem so in early 2024.
3223b35e7eeSXin LI //
3233b35e7eeSXin LI // Also, if the loop was done here, the loop counter would likely be local
3243b35e7eeSXin LI // to the macro so that it wouldn't modify yet another input variable.
3253b35e7eeSXin LI // If a _safe version of a macro with a loop was done then a modifiable
3263b35e7eeSXin LI // input variable couldn't be avoided though.
3273b35e7eeSXin LI #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
3283b35e7eeSXin LI 	rc_bit(probs[symbol], \
3293b35e7eeSXin LI 		, \
3303b35e7eeSXin LI 		dest += value_to_add_if_1);
3313b35e7eeSXin LI 
3323b35e7eeSXin LI 
3333b35e7eeSXin LI // Matched literal
3343b35e7eeSXin LI #define decode_with_match_bit \
3353b35e7eeSXin LI 		t_match_byte <<= 1; \
3363b35e7eeSXin LI 		t_match_bit = t_match_byte & t_offset; \
3373b35e7eeSXin LI 		t_subcoder_index = t_offset + t_match_bit + symbol; \
3383b35e7eeSXin LI 		rc_bit(probs[t_subcoder_index], \
3393b35e7eeSXin LI 				t_offset &= ~t_match_bit, \
3403b35e7eeSXin LI 				t_offset &= t_match_bit)
3413b35e7eeSXin LI 
3423b35e7eeSXin LI #define rc_matched_literal(probs_base_var, match_byte) \
3433b35e7eeSXin LI do { \
3443b35e7eeSXin LI 	uint32_t t_match_byte = (match_byte); \
3453b35e7eeSXin LI 	uint32_t t_match_bit; \
3463b35e7eeSXin LI 	uint32_t t_subcoder_index; \
3473b35e7eeSXin LI 	uint32_t t_offset = 0x100; \
3483b35e7eeSXin LI 	symbol = 1; \
3493b35e7eeSXin LI 	decode_with_match_bit; \
3503b35e7eeSXin LI 	decode_with_match_bit; \
3513b35e7eeSXin LI 	decode_with_match_bit; \
3523b35e7eeSXin LI 	decode_with_match_bit; \
3533b35e7eeSXin LI 	decode_with_match_bit; \
3543b35e7eeSXin LI 	decode_with_match_bit; \
3553b35e7eeSXin LI 	decode_with_match_bit; \
3563b35e7eeSXin LI 	decode_with_match_bit; \
3573b35e7eeSXin LI } while (0)
35881ad8388SMartin Matuska 
35981ad8388SMartin Matuska 
36081ad8388SMartin Matuska /// Decode a bit without using a probability.
3613b35e7eeSXin LI //
3623b35e7eeSXin LI // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound
3633b35e7eeSXin LI // calculation to use an arithmetic right shift so there's no need to provide
3643b35e7eeSXin LI // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't
3653b35e7eeSXin LI // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31);
3663b35e7eeSXin LI #define rc_direct(dest, count_var) \
36781ad8388SMartin Matuska do { \
3683b35e7eeSXin LI 	dest = (dest << 1) + 1; \
3693b35e7eeSXin LI 	rc_normalize(); \
3703b35e7eeSXin LI 	rc.range >>= 1; \
3713b35e7eeSXin LI 	rc.code -= rc.range; \
3723b35e7eeSXin LI 	rc_bound = UINT32_C(0) - (rc.code >> 31); \
3733b35e7eeSXin LI 	dest += rc_bound; \
3743b35e7eeSXin LI 	rc.code += rc.range & rc_bound; \
3753b35e7eeSXin LI } while (--count_var > 0)
3763b35e7eeSXin LI 
3773b35e7eeSXin LI 
3783b35e7eeSXin LI 
3793b35e7eeSXin LI #define rc_direct_safe(dest, count_var, seq) \
3803b35e7eeSXin LI do { \
3813b35e7eeSXin LI 	rc_normalize_safe(seq); \
38281ad8388SMartin Matuska 	rc.range >>= 1; \
38381ad8388SMartin Matuska 	rc.code -= rc.range; \
38481ad8388SMartin Matuska 	rc_bound = UINT32_C(0) - (rc.code >> 31); \
38581ad8388SMartin Matuska 	rc.code += rc.range & rc_bound; \
38681ad8388SMartin Matuska 	dest = (dest << 1) + (rc_bound + 1); \
3873b35e7eeSXin LI } while (--count_var > 0)
3883b35e7eeSXin LI 
3893b35e7eeSXin LI 
3903b35e7eeSXin LI //////////////////
3913b35e7eeSXin LI // Branchless C //
3923b35e7eeSXin LI //////////////////
3933b35e7eeSXin LI 
3943b35e7eeSXin LI /// Decode a bit using a branchless method. This reduces the number of
3953b35e7eeSXin LI /// mispredicted branches and thus can improve speed.
3963b35e7eeSXin LI #define rc_c_bit(prob, action_bit, action_neg) \
3973b35e7eeSXin LI do { \
3983b35e7eeSXin LI 	probability *p = &(prob); \
3993b35e7eeSXin LI 	rc_normalize(); \
4003b35e7eeSXin LI 	rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \
4013b35e7eeSXin LI 	uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \
4023b35e7eeSXin LI 	action_bit; /* action when rc_mask is 0 or 1 */ \
4033b35e7eeSXin LI 	/* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \
4043b35e7eeSXin LI 	rc_mask = 0U - rc_mask; \
4053b35e7eeSXin LI 	rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \
4063b35e7eeSXin LI 	rc_bound ^= rc_mask; \
4073b35e7eeSXin LI 	rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \
4083b35e7eeSXin LI 	rc.range += rc_bound; \
4093b35e7eeSXin LI 	rc_bound &= rc_mask; \
4103b35e7eeSXin LI 	rc.code += rc_bound; \
4113b35e7eeSXin LI 	action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \
4123b35e7eeSXin LI 	rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \
4133b35e7eeSXin LI 	rc_mask &= RC_BIT_MODEL_OFFSET; \
4143b35e7eeSXin LI 	*p -= (*p + rc_mask) >> RC_MOVE_BITS; \
41581ad8388SMartin Matuska } while (0)
41681ad8388SMartin Matuska 
41781ad8388SMartin Matuska 
4183b35e7eeSXin LI // Testing on x86-64 give an impression that only the normal bittrees and
4193b35e7eeSXin LI // the fixed-sized reverse bittrees are worth the branchless C code.
4203b35e7eeSXin LI // It should be tested on other archs for which there isn't assembly code
4213b35e7eeSXin LI // in this file.
4223b35e7eeSXin LI 
4233b35e7eeSXin LI // Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA
4243b35e7eeSXin LI // or RISC-V SH1ADD instructions. Compilers might infer it from
4253b35e7eeSXin LI // "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but
4263b35e7eeSXin LI // the use of addition doesn't require such analysis from compilers.
4273b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x01
4283b35e7eeSXin LI #undef rc_bittree_bit
4293b35e7eeSXin LI #define rc_bittree_bit(prob) \
4303b35e7eeSXin LI 	rc_c_bit(prob, \
4313b35e7eeSXin LI 		symbol = (symbol << 1) + rc_mask, \
4323b35e7eeSXin LI 		)
4333b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x01
4343b35e7eeSXin LI 
4353b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x02
4363b35e7eeSXin LI #undef rc_bittree_rev4
4373b35e7eeSXin LI #define rc_bittree_rev4(probs) \
4383b35e7eeSXin LI do { \
4393b35e7eeSXin LI 	symbol = 0; \
4403b35e7eeSXin LI 	rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \
4413b35e7eeSXin LI 	rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \
4423b35e7eeSXin LI 	rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \
4433b35e7eeSXin LI 	rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \
4443b35e7eeSXin LI } while (0)
4453b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x02
4463b35e7eeSXin LI 
4473b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x04
4483b35e7eeSXin LI #undef rc_bit_add_if_1
4493b35e7eeSXin LI #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
4503b35e7eeSXin LI 	rc_c_bit(probs[symbol], \
4513b35e7eeSXin LI 		symbol = (symbol << 1) + rc_mask, \
4523b35e7eeSXin LI 		dest += (value_to_add_if_1) & rc_mask)
4533b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x04
4543b35e7eeSXin LI 
4553b35e7eeSXin LI 
4563b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x08
4573b35e7eeSXin LI #undef decode_with_match_bit
4583b35e7eeSXin LI #define decode_with_match_bit \
4593b35e7eeSXin LI 		t_match_byte <<= 1; \
4603b35e7eeSXin LI 		t_match_bit = t_match_byte & t_offset; \
4613b35e7eeSXin LI 		t_subcoder_index = t_offset + t_match_bit + symbol; \
4623b35e7eeSXin LI 		rc_c_bit(probs[t_subcoder_index], \
4633b35e7eeSXin LI 			symbol = (symbol << 1) + rc_mask, \
4643b35e7eeSXin LI 			t_offset &= ~t_match_bit ^ rc_mask)
4653b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x08
4663b35e7eeSXin LI 
4673b35e7eeSXin LI 
4683b35e7eeSXin LI ////////////
4693b35e7eeSXin LI // x86-64 //
4703b35e7eeSXin LI ////////////
4713b35e7eeSXin LI 
4723b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x1F0
4733b35e7eeSXin LI 
4743b35e7eeSXin LI // rc_asm_y and rc_asm_n are used as arguments to macros to control which
4753b35e7eeSXin LI // strings to include or omit.
4763b35e7eeSXin LI #define rc_asm_y(str) str
4773b35e7eeSXin LI #define rc_asm_n(str)
4783b35e7eeSXin LI 
4793b35e7eeSXin LI // There are a few possible variations for normalization.
4803b35e7eeSXin LI // This is the smallest variant which is also used by LZMA SDK.
4813b35e7eeSXin LI //
4823b35e7eeSXin LI //   - This has partial register write (the MOV from (%[in_ptr])).
4833b35e7eeSXin LI //
4843b35e7eeSXin LI //   - INC saves one byte in code size over ADD. False dependency on
4853b35e7eeSXin LI //     partial flags from INC shouldn't become a problem on any processor
4863b35e7eeSXin LI //     because the instructions after normalization don't read the flags
4873b35e7eeSXin LI //     until SUB which sets all flags.
4883b35e7eeSXin LI //
4893b35e7eeSXin LI #define rc_asm_normalize \
4903b35e7eeSXin LI 	"cmp	%[top_value], %[range]\n\t" \
4913b35e7eeSXin LI 	"jae	1f\n\t" \
4923b35e7eeSXin LI 	"shl	%[shift_bits], %[code]\n\t" \
4933b35e7eeSXin LI 	"mov	(%[in_ptr]), %b[code]\n\t" \
4943b35e7eeSXin LI 	"shl	%[shift_bits], %[range]\n\t" \
4953b35e7eeSXin LI 	"inc	%[in_ptr]\n" \
4963b35e7eeSXin LI 	"1:\n"
4973b35e7eeSXin LI 
4983b35e7eeSXin LI // rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)...
4993b35e7eeSXin LI //
5003b35e7eeSXin LI //     rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
5013b35e7eeSXin LI //     if (rc.code < rc_bound)
5023b35e7eeSXin LI //
5033b35e7eeSXin LI // ...but the bound is stored in "range":
5043b35e7eeSXin LI //
5053b35e7eeSXin LI //     t0 = range;
5063b35e7eeSXin LI //     range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
5073b35e7eeSXin LI //     t0 -= range;
5083b35e7eeSXin LI //     t1 = code;
5093b35e7eeSXin LI //     code -= range;
5103b35e7eeSXin LI //
5113b35e7eeSXin LI // The carry flag (CF) from the last subtraction holds the negation of
5123b35e7eeSXin LI // the decoded bit (if CF==0 then the decoded bit is 1).
5133b35e7eeSXin LI // The values in t0 and t1 are needed for rc_update_0(prob) and
5143b35e7eeSXin LI // rc_update_1(prob). If the bit is 0, rc_update_0(prob)...
5153b35e7eeSXin LI //
5163b35e7eeSXin LI //     rc.range = rc_bound;
5173b35e7eeSXin LI //
5183b35e7eeSXin LI // ...has already been done but the "code -= range" has to be reverted using
5193b35e7eeSXin LI // the old value stored in t1. (Also, prob needs to be updated.)
5203b35e7eeSXin LI //
5213b35e7eeSXin LI // If the bit is 1, rc_update_1(prob)...
5223b35e7eeSXin LI //
5233b35e7eeSXin LI //     rc.range -= rc_bound;
5243b35e7eeSXin LI //     rc.code -= rc_bound;
5253b35e7eeSXin LI //
5263b35e7eeSXin LI // ...is already done for "code" but the value for "range" needs to be taken
5273b35e7eeSXin LI // from t0. (Also, prob needs to be updated here as well.)
5283b35e7eeSXin LI //
5293b35e7eeSXin LI // The assignments from t0 and t1 can be done in a branchless manner with CMOV
5303b35e7eeSXin LI // after the instructions from this macro. The CF from SUB tells which moves
5313b35e7eeSXin LI // are needed.
5323b35e7eeSXin LI #define rc_asm_calc(prob) \
5333b35e7eeSXin LI 		"mov	%[range], %[t0]\n\t" \
5343b35e7eeSXin LI 		"shr	%[bit_model_total_bits], %[range]\n\t" \
5353b35e7eeSXin LI 		"imul	%[" prob "], %[range]\n\t" \
5363b35e7eeSXin LI 		"sub	%[range], %[t0]\n\t" \
5373b35e7eeSXin LI 		"mov	%[code], %[t1]\n\t" \
5383b35e7eeSXin LI 		"sub	%[range], %[code]\n\t"
5393b35e7eeSXin LI 
5403b35e7eeSXin LI // Also, prob needs to be updated: The update math depends on the decoded bit.
5413b35e7eeSXin LI // It can be expressed in a few slightly different ways but this is fairly
5423b35e7eeSXin LI // convenient here:
5433b35e7eeSXin LI //
5443b35e7eeSXin LI //     prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS;
5453b35e7eeSXin LI //
5463b35e7eeSXin LI // To do it in branchless way when the negation of the decoded bit is in CF,
5473b35e7eeSXin LI // both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired
5483b35e7eeSXin LI // value can be picked with CMOV. The addition can be done using LEA without
5493b35e7eeSXin LI // affecting CF.
5503b35e7eeSXin LI //
5513b35e7eeSXin LI // (This prob update method is a tiny bit different from LZMA SDK 23.01.
5523b35e7eeSXin LI // In the LZMA SDK a single register is reserved solely for a constant to
5533b35e7eeSXin LI // be used with CMOV when updating prob. That is fine since there are enough
5543b35e7eeSXin LI // free registers to do so. The method used here uses one fewer register,
5553b35e7eeSXin LI // which is valuable with inline assembly.)
5563b35e7eeSXin LI //
5573b35e7eeSXin LI // * * *
5583b35e7eeSXin LI //
5593b35e7eeSXin LI // In bittree decoding, each (unrolled) loop iteration decodes one bit
5603b35e7eeSXin LI // and needs one prob variable. To make it faster, the prob variable of
5613b35e7eeSXin LI // the iteration N+1 is loaded during iteration N. There are two possible
5623b35e7eeSXin LI // prob variables to choose from for N+1. Both are loaded from memory and
5633b35e7eeSXin LI // the correct one is chosen with CMOV using the same CF as is used for
5643b35e7eeSXin LI // other things described above.
5653b35e7eeSXin LI //
5663b35e7eeSXin LI // This preloading/prefetching requires an extra register. To avoid
5673b35e7eeSXin LI // useless moves from "preloaded prob register" to "current prob register",
5683b35e7eeSXin LI // the macros swap between the two registers for odd and even iterations.
5693b35e7eeSXin LI //
5703b35e7eeSXin LI // * * *
5713b35e7eeSXin LI //
5723b35e7eeSXin LI // Finally, the decoded bit has to be stored in "symbol". Since the negation
5733b35e7eeSXin LI // of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is,
5743b35e7eeSXin LI // if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0"
5753b35e7eeSXin LI // and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is
5763b35e7eeSXin LI // the same as "symbol += 1".
5773b35e7eeSXin LI //
5783b35e7eeSXin LI // The instructions for all things are intertwined for a few reasons:
5793b35e7eeSXin LI //   - freeing temporary registers for new use
5803b35e7eeSXin LI //   - not modifying CF too early
5813b35e7eeSXin LI //   - instruction scheduling
5823b35e7eeSXin LI //
5833b35e7eeSXin LI // The first and last iterations can cheat a little. For example,
5843b35e7eeSXin LI // on the first iteration "symbol" is known to start from 1 so it
5853b35e7eeSXin LI // doesn't need to be read; it can even be immediately initialized
5863b35e7eeSXin LI // to 2 to prepare for the second iteration of the loop.
5873b35e7eeSXin LI //
5883b35e7eeSXin LI // * * *
5893b35e7eeSXin LI //
5903b35e7eeSXin LI // a = number of the current prob variable (0 or 1)
5913b35e7eeSXin LI // b = number of the next prob variable (1 or 0)
5923b35e7eeSXin LI // *_only = rc_asm_y or _n to include or exclude code marked with them
5933b35e7eeSXin LI #define rc_asm_bittree(a, b, first_only, middle_only, last_only) \
5943b35e7eeSXin LI 	first_only( \
595*26743408SXin LI 		"movzwl	2(%[probs_base]), %[prob" #a "]\n\t" \
5963b35e7eeSXin LI 		"mov	$2, %[symbol]\n\t" \
597*26743408SXin LI 		"movzwl	4(%[probs_base]), %[prob" #b "]\n\t" \
5983b35e7eeSXin LI 	) \
5993b35e7eeSXin LI 	middle_only( \
6003b35e7eeSXin LI 		/* Note the scaling of 4 instead of 2: */ \
601*26743408SXin LI 		"movzwl	(%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \
6023b35e7eeSXin LI 	) \
6033b35e7eeSXin LI 	last_only( \
6043b35e7eeSXin LI 		"add	%[symbol], %[symbol]\n\t" \
6053b35e7eeSXin LI 	) \
6063b35e7eeSXin LI 		\
6073b35e7eeSXin LI 		rc_asm_normalize \
6083b35e7eeSXin LI 		rc_asm_calc("prob" #a) \
6093b35e7eeSXin LI 		\
6103b35e7eeSXin LI 		"cmovae	%[t0], %[range]\n\t" \
6113b35e7eeSXin LI 		\
6123b35e7eeSXin LI 	first_only( \
613*26743408SXin LI 		"movzwl	6(%[probs_base]), %[t0]\n\t" \
6143b35e7eeSXin LI 		"cmovae	%[t0], %[prob" #b "]\n\t" \
6153b35e7eeSXin LI 	) \
6163b35e7eeSXin LI 	middle_only( \
617*26743408SXin LI 		"movzwl	2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \
6183b35e7eeSXin LI 		"lea	(%q[symbol], %q[symbol]), %[symbol]\n\t" \
6193b35e7eeSXin LI 		"cmovae	%[t0], %[prob" #b "]\n\t" \
6203b35e7eeSXin LI 	) \
6213b35e7eeSXin LI 		\
6223b35e7eeSXin LI 		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
6233b35e7eeSXin LI 		"cmovb	%[t1], %[code]\n\t" \
6243b35e7eeSXin LI 		"mov	%[symbol], %[t1]\n\t" \
6253b35e7eeSXin LI 		"cmovae	%[prob" #a "], %[t0]\n\t" \
6263b35e7eeSXin LI 		\
6273b35e7eeSXin LI 	first_only( \
6283b35e7eeSXin LI 		"sbb	$-1, %[symbol]\n\t" \
6293b35e7eeSXin LI 	) \
6303b35e7eeSXin LI 	middle_only( \
6313b35e7eeSXin LI 		"sbb	$-1, %[symbol]\n\t" \
6323b35e7eeSXin LI 	) \
6333b35e7eeSXin LI 	last_only( \
6343b35e7eeSXin LI 		"sbb	%[last_sbb], %[symbol]\n\t" \
6353b35e7eeSXin LI 	) \
6363b35e7eeSXin LI 		\
6373b35e7eeSXin LI 		"shr	%[move_bits], %[t0]\n\t" \
6383b35e7eeSXin LI 		"sub	%[t0], %[prob" #a "]\n\t" \
6393b35e7eeSXin LI 		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
6403b35e7eeSXin LI 		"mov	%w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t"
6413b35e7eeSXin LI 
6423b35e7eeSXin LI // NOTE: The order of variables in __asm__ can affect speed and code size.
6433b35e7eeSXin LI #define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \
6443b35e7eeSXin LI do { \
6453b35e7eeSXin LI 	uint32_t t0; \
6463b35e7eeSXin LI 	uint32_t t1; \
6473b35e7eeSXin LI 	uint32_t t_prob0; \
6483b35e7eeSXin LI 	uint32_t t_prob1; \
6493b35e7eeSXin LI 	\
6503b35e7eeSXin LI 	__asm__( \
6513b35e7eeSXin LI 		asm_str \
6523b35e7eeSXin LI 		: \
6533b35e7eeSXin LI 		[range]     "+&r"(rc.range), \
6543b35e7eeSXin LI 		[code]      "+&r"(rc.code), \
6553b35e7eeSXin LI 		[t0]        "=&r"(t0), \
6563b35e7eeSXin LI 		[t1]        "=&r"(t1), \
6573b35e7eeSXin LI 		[prob0]     "=&r"(t_prob0), \
6583b35e7eeSXin LI 		[prob1]     "=&r"(t_prob1), \
6593b35e7eeSXin LI 		[symbol]    "=&r"(symbol), \
6603b35e7eeSXin LI 		[in_ptr]    "+&r"(rc_in_ptr) \
6613b35e7eeSXin LI 		: \
6623b35e7eeSXin LI 		[probs_base]           "r"(probs_base_var), \
6633b35e7eeSXin LI 		[last_sbb]             "n"(-1 - (final_add)), \
6643b35e7eeSXin LI 		[top_value]            "n"(RC_TOP_VALUE), \
6653b35e7eeSXin LI 		[shift_bits]           "n"(RC_SHIFT_BITS), \
6663b35e7eeSXin LI 		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
6673b35e7eeSXin LI 		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
6683b35e7eeSXin LI 		[move_bits]            "n"(RC_MOVE_BITS) \
6693b35e7eeSXin LI 		: \
6703b35e7eeSXin LI 		"cc", "memory"); \
6713b35e7eeSXin LI } while (0)
6723b35e7eeSXin LI 
6733b35e7eeSXin LI 
6743b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x010
6753b35e7eeSXin LI #undef rc_bittree3
6763b35e7eeSXin LI #define rc_bittree3(probs_base_var, final_add) \
6773b35e7eeSXin LI 	rc_asm_bittree_n(probs_base_var, final_add, \
6783b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
6793b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
6803b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \
6813b35e7eeSXin LI 	)
6823b35e7eeSXin LI 
6833b35e7eeSXin LI #undef rc_bittree6
6843b35e7eeSXin LI #define rc_bittree6(probs_base_var, final_add) \
6853b35e7eeSXin LI 	rc_asm_bittree_n(probs_base_var, final_add, \
6863b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
6873b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
6883b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
6893b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
6903b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
6913b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
6923b35e7eeSXin LI 	)
6933b35e7eeSXin LI 
6943b35e7eeSXin LI #undef rc_bittree8
6953b35e7eeSXin LI #define rc_bittree8(probs_base_var, final_add) \
6963b35e7eeSXin LI 	rc_asm_bittree_n(probs_base_var, final_add, \
6973b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
6983b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
6993b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
7003b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
7013b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
7023b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
7033b35e7eeSXin LI 		rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
7043b35e7eeSXin LI 		rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
7053b35e7eeSXin LI 	)
7063b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x010
7073b35e7eeSXin LI 
7083b35e7eeSXin LI 
7093b35e7eeSXin LI // Fixed-sized reverse bittree
7103b35e7eeSXin LI //
7113b35e7eeSXin LI // This uses the indexing that constructs the final value in symbol directly.
7123b35e7eeSXin LI // add    = 1,  2,   4,  8
7133b35e7eeSXin LI // dcur   = -,  4,   8, 16
7143b35e7eeSXin LI // dnext0 = 4,   8, 16,  -
7153b35e7eeSXin LI // dnext0 = 6,  12, 24,  -
7163b35e7eeSXin LI #define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \
7173b35e7eeSXin LI 		first_only, middle_only, last_only) \
7183b35e7eeSXin LI 	first_only( \
719*26743408SXin LI 		"movzwl	2(%[probs_base]), %[prob" #a "]\n\t" \
7203b35e7eeSXin LI 		"xor	%[symbol], %[symbol]\n\t" \
721*26743408SXin LI 		"movzwl	4(%[probs_base]), %[prob" #b "]\n\t" \
7223b35e7eeSXin LI 	) \
7233b35e7eeSXin LI 	middle_only( \
724*26743408SXin LI 		"movzwl	" #dnext0 "(%[probs_base], %q[symbol], 2), " \
7253b35e7eeSXin LI 			"%[prob" #b "]\n\t" \
7263b35e7eeSXin LI 	) \
7273b35e7eeSXin LI 		\
7283b35e7eeSXin LI 		rc_asm_normalize \
7293b35e7eeSXin LI 		rc_asm_calc("prob" #a) \
7303b35e7eeSXin LI 		\
7313b35e7eeSXin LI 		"cmovae	%[t0], %[range]\n\t" \
7323b35e7eeSXin LI 		\
7333b35e7eeSXin LI 	first_only( \
734*26743408SXin LI 		"movzwl	6(%[probs_base]), %[t0]\n\t" \
7353b35e7eeSXin LI 		"cmovae	%[t0], %[prob" #b "]\n\t" \
7363b35e7eeSXin LI 	) \
7373b35e7eeSXin LI 	middle_only( \
738*26743408SXin LI 		"movzwl	" #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \
7393b35e7eeSXin LI 		"cmovae	%[t0], %[prob" #b "]\n\t" \
7403b35e7eeSXin LI 	) \
7413b35e7eeSXin LI 		\
7423b35e7eeSXin LI 		"lea	" #add "(%q[symbol]), %[t0]\n\t" \
7433b35e7eeSXin LI 		"cmovb	%[t1], %[code]\n\t" \
7443b35e7eeSXin LI 	middle_only( \
7453b35e7eeSXin LI 		"mov	%[symbol], %[t1]\n\t" \
7463b35e7eeSXin LI 	) \
7473b35e7eeSXin LI 	last_only( \
7483b35e7eeSXin LI 		"mov	%[symbol], %[t1]\n\t" \
7493b35e7eeSXin LI 	) \
7503b35e7eeSXin LI 		"cmovae	%[t0], %[symbol]\n\t" \
7513b35e7eeSXin LI 		"lea	%c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
7523b35e7eeSXin LI 		"cmovae	%[prob" #a "], %[t0]\n\t" \
7533b35e7eeSXin LI 		\
7543b35e7eeSXin LI 		"shr	%[move_bits], %[t0]\n\t" \
7553b35e7eeSXin LI 		"sub	%[t0], %[prob" #a "]\n\t" \
7563b35e7eeSXin LI 	first_only( \
7573b35e7eeSXin LI 		"mov	%w[prob" #a "], 2(%[probs_base])\n\t" \
7583b35e7eeSXin LI 	) \
7593b35e7eeSXin LI 	middle_only( \
7603b35e7eeSXin LI 		"mov	%w[prob" #a "], " \
7613b35e7eeSXin LI 			#dcur "(%[probs_base], %q[t1], 2)\n\t" \
7623b35e7eeSXin LI 	) \
7633b35e7eeSXin LI 	last_only( \
7643b35e7eeSXin LI 		"mov	%w[prob" #a "], " \
7653b35e7eeSXin LI 			#dcur "(%[probs_base], %q[t1], 2)\n\t" \
7663b35e7eeSXin LI 	)
7673b35e7eeSXin LI 
7683b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x020
7693b35e7eeSXin LI #undef rc_bittree_rev4
7703b35e7eeSXin LI #define rc_bittree_rev4(probs_base_var) \
7713b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, 4, \
7723b35e7eeSXin LI 	rc_asm_bittree_rev(0, 1, 1,  -,  4,  6, rc_asm_y, rc_asm_n, rc_asm_n) \
7733b35e7eeSXin LI 	rc_asm_bittree_rev(1, 0, 2,  4,  8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \
7743b35e7eeSXin LI 	rc_asm_bittree_rev(0, 1, 4,  8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \
7753b35e7eeSXin LI 	rc_asm_bittree_rev(1, 0, 8, 16,  -,  -, rc_asm_n, rc_asm_n, rc_asm_y) \
7763b35e7eeSXin LI )
7773b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x020
7783b35e7eeSXin LI 
7793b35e7eeSXin LI 
7803b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x040
7813b35e7eeSXin LI #undef rc_bit_add_if_1
7823b35e7eeSXin LI #define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \
7833b35e7eeSXin LI do { \
7843b35e7eeSXin LI 	uint32_t t0; \
7853b35e7eeSXin LI 	uint32_t t1; \
7863b35e7eeSXin LI 	uint32_t t2 = (value_to_add_if_1); \
7873b35e7eeSXin LI 	uint32_t t_prob; \
7883b35e7eeSXin LI 	uint32_t t_index; \
7893b35e7eeSXin LI 	\
7903b35e7eeSXin LI 	__asm__( \
791*26743408SXin LI 		"movzwl	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \
7923b35e7eeSXin LI 		"mov	%[symbol], %[index]\n\t" \
7933b35e7eeSXin LI 		\
7943b35e7eeSXin LI 		"add	%[dest], %[t2]\n\t" \
7953b35e7eeSXin LI 		"add	%[symbol], %[symbol]\n\t" \
7963b35e7eeSXin LI 		\
7973b35e7eeSXin LI 		rc_asm_normalize \
7983b35e7eeSXin LI 		rc_asm_calc("prob") \
7993b35e7eeSXin LI 		\
8003b35e7eeSXin LI 		"cmovae	%[t0], %[range]\n\t" \
8013b35e7eeSXin LI 		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \
8023b35e7eeSXin LI 		"cmovb	%[t1], %[code]\n\t" \
8033b35e7eeSXin LI 		"cmovae	%[prob], %[t0]\n\t" \
8043b35e7eeSXin LI 		\
8053b35e7eeSXin LI 		"cmovae	%[t2], %[dest]\n\t" \
8063b35e7eeSXin LI 		"sbb	$-1, %[symbol]\n\t" \
8073b35e7eeSXin LI 		\
8083b35e7eeSXin LI 		"sar	%[move_bits], %[t0]\n\t" \
8093b35e7eeSXin LI 		"sub	%[t0], %[prob]\n\t" \
8103b35e7eeSXin LI 		"mov	%w[prob], (%[probs_base], %q[index], 2)" \
8113b35e7eeSXin LI 		: \
8123b35e7eeSXin LI 		[range]     "+&r"(rc.range), \
8133b35e7eeSXin LI 		[code]      "+&r"(rc.code), \
8143b35e7eeSXin LI 		[t0]        "=&r"(t0), \
8153b35e7eeSXin LI 		[t1]        "=&r"(t1), \
8163b35e7eeSXin LI 		[prob]      "=&r"(t_prob), \
8173b35e7eeSXin LI 		[index]     "=&r"(t_index), \
8183b35e7eeSXin LI 		[symbol]    "+&r"(symbol), \
8193b35e7eeSXin LI 		[t2]        "+&r"(t2), \
8203b35e7eeSXin LI 		[dest]      "+&r"(dest_var), \
8213b35e7eeSXin LI 		[in_ptr]    "+&r"(rc_in_ptr) \
8223b35e7eeSXin LI 		: \
8233b35e7eeSXin LI 		[probs_base]           "r"(probs_base_var), \
8243b35e7eeSXin LI 		[top_value]            "n"(RC_TOP_VALUE), \
8253b35e7eeSXin LI 		[shift_bits]           "n"(RC_SHIFT_BITS), \
8263b35e7eeSXin LI 		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
8273b35e7eeSXin LI 		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
8283b35e7eeSXin LI 		[move_bits]            "n"(RC_MOVE_BITS) \
8293b35e7eeSXin LI 		: \
8303b35e7eeSXin LI 		"cc", "memory"); \
8313b35e7eeSXin LI } while (0)
8323b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x040
8333b35e7eeSXin LI 
8343b35e7eeSXin LI 
8353b35e7eeSXin LI // Literal decoding uses a normal 8-bit bittree but literal with match byte
8363b35e7eeSXin LI // is more complex in picking the probability variable from the correct
8373b35e7eeSXin LI // subtree. This doesn't use preloading/prefetching of the next prob because
8383b35e7eeSXin LI // there are four choices instead of two.
8393b35e7eeSXin LI //
8403b35e7eeSXin LI // FIXME? The first iteration starts with symbol = 1 so it could be optimized
8413b35e7eeSXin LI // by a tiny amount.
8423b35e7eeSXin LI #define rc_asm_matched_literal(nonlast_only) \
8433b35e7eeSXin LI 		"add	%[offset], %[symbol]\n\t" \
8443b35e7eeSXin LI 		"and	%[offset], %[match_bit]\n\t" \
8453b35e7eeSXin LI 		"add	%[match_bit], %[symbol]\n\t" \
8463b35e7eeSXin LI 		\
847*26743408SXin LI 		"movzwl	(%[probs_base], %q[symbol], 2), %[prob]\n\t" \
8483b35e7eeSXin LI 		\
8493b35e7eeSXin LI 		"add	%[symbol], %[symbol]\n\t" \
8503b35e7eeSXin LI 		\
8513b35e7eeSXin LI 	nonlast_only( \
8523b35e7eeSXin LI 		"xor	%[match_bit], %[offset]\n\t" \
8533b35e7eeSXin LI 		"add	%[match_byte], %[match_byte]\n\t" \
8543b35e7eeSXin LI 	) \
8553b35e7eeSXin LI 		\
8563b35e7eeSXin LI 		rc_asm_normalize \
8573b35e7eeSXin LI 		rc_asm_calc("prob") \
8583b35e7eeSXin LI 		\
8593b35e7eeSXin LI 		"cmovae	%[t0], %[range]\n\t" \
8603b35e7eeSXin LI 		"lea	%c[bit_model_offset](%q[prob]), %[t0]\n\t" \
8613b35e7eeSXin LI 		"cmovb	%[t1], %[code]\n\t" \
8623b35e7eeSXin LI 		"mov	%[symbol], %[t1]\n\t" \
8633b35e7eeSXin LI 		"cmovae	%[prob], %[t0]\n\t" \
8643b35e7eeSXin LI 		\
8653b35e7eeSXin LI 	nonlast_only( \
8663b35e7eeSXin LI 		"cmovae	%[match_bit], %[offset]\n\t" \
8673b35e7eeSXin LI 		"mov	%[match_byte], %[match_bit]\n\t" \
8683b35e7eeSXin LI 	) \
8693b35e7eeSXin LI 		\
8703b35e7eeSXin LI 		"sbb	$-1, %[symbol]\n\t" \
8713b35e7eeSXin LI 		\
8723b35e7eeSXin LI 		"shr	%[move_bits], %[t0]\n\t" \
8733b35e7eeSXin LI 		/* Undo symbol += match_bit + offset: */ \
8743b35e7eeSXin LI 		"and	$0x1FF, %[symbol]\n\t" \
8753b35e7eeSXin LI 		"sub	%[t0], %[prob]\n\t" \
8763b35e7eeSXin LI 		\
8773b35e7eeSXin LI 		/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
8783b35e7eeSXin LI 		"mov	%w[prob], (%[probs_base], %q[t1], 1)\n\t"
8793b35e7eeSXin LI 
8803b35e7eeSXin LI 
8813b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x080
8823b35e7eeSXin LI #undef rc_matched_literal
8833b35e7eeSXin LI #define rc_matched_literal(probs_base_var, match_byte_value) \
8843b35e7eeSXin LI do { \
8853b35e7eeSXin LI 	uint32_t t0; \
8863b35e7eeSXin LI 	uint32_t t1; \
8873b35e7eeSXin LI 	uint32_t t_prob; \
8883b35e7eeSXin LI 	uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \
8893b35e7eeSXin LI 	uint32_t t_match_bit = t_match_byte; \
8903b35e7eeSXin LI 	uint32_t t_offset = 0x100; \
8913b35e7eeSXin LI 	symbol = 1; \
8923b35e7eeSXin LI 	\
8933b35e7eeSXin LI 	__asm__( \
8943b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_y) \
8953b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_y) \
8963b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_y) \
8973b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_y) \
8983b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_y) \
8993b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_y) \
9003b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_y) \
9013b35e7eeSXin LI 		rc_asm_matched_literal(rc_asm_n) \
9023b35e7eeSXin LI 		: \
9033b35e7eeSXin LI 		[range]       "+&r"(rc.range), \
9043b35e7eeSXin LI 		[code]        "+&r"(rc.code), \
9053b35e7eeSXin LI 		[t0]          "=&r"(t0), \
9063b35e7eeSXin LI 		[t1]          "=&r"(t1), \
9073b35e7eeSXin LI 		[prob]        "=&r"(t_prob), \
9083b35e7eeSXin LI 		[match_bit]   "+&r"(t_match_bit), \
9093b35e7eeSXin LI 		[symbol]      "+&r"(symbol), \
9103b35e7eeSXin LI 		[match_byte]  "+&r"(t_match_byte), \
9113b35e7eeSXin LI 		[offset]      "+&r"(t_offset), \
9123b35e7eeSXin LI 		[in_ptr]      "+&r"(rc_in_ptr) \
9133b35e7eeSXin LI 		: \
9143b35e7eeSXin LI 		[probs_base]           "r"(probs_base_var), \
9153b35e7eeSXin LI 		[top_value]            "n"(RC_TOP_VALUE), \
9163b35e7eeSXin LI 		[shift_bits]           "n"(RC_SHIFT_BITS), \
9173b35e7eeSXin LI 		[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
9183b35e7eeSXin LI 		[bit_model_offset]     "n"(RC_BIT_MODEL_OFFSET), \
9193b35e7eeSXin LI 		[move_bits]            "n"(RC_MOVE_BITS) \
9203b35e7eeSXin LI 		: \
9213b35e7eeSXin LI 		"cc", "memory"); \
9223b35e7eeSXin LI } while (0)
9233b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x080
9243b35e7eeSXin LI 
9253b35e7eeSXin LI 
9263b35e7eeSXin LI // Doing the loop in asm instead of C seems to help a little.
9273b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x100
9283b35e7eeSXin LI #undef rc_direct
9293b35e7eeSXin LI #define rc_direct(dest_var, count_var) \
9303b35e7eeSXin LI do { \
9313b35e7eeSXin LI 	uint32_t t0; \
9323b35e7eeSXin LI 	uint32_t t1; \
9333b35e7eeSXin LI 	\
9343b35e7eeSXin LI 	__asm__( \
9353b35e7eeSXin LI 		"2:\n\t" \
9363b35e7eeSXin LI 		"add	%[dest], %[dest]\n\t" \
9373b35e7eeSXin LI 		"lea	1(%q[dest]), %[t1]\n\t" \
9383b35e7eeSXin LI 		\
9393b35e7eeSXin LI 		rc_asm_normalize \
9403b35e7eeSXin LI 		\
9413b35e7eeSXin LI 		"shr	$1, %[range]\n\t" \
9423b35e7eeSXin LI 		"mov	%[code], %[t0]\n\t" \
9433b35e7eeSXin LI 		"sub	%[range], %[code]\n\t" \
9443b35e7eeSXin LI 		"cmovns	%[t1], %[dest]\n\t" \
9453b35e7eeSXin LI 		"cmovs	%[t0], %[code]\n\t" \
9463b35e7eeSXin LI 		"dec	%[count]\n\t" \
9473b35e7eeSXin LI 		"jnz	2b\n\t" \
9483b35e7eeSXin LI 		: \
9493b35e7eeSXin LI 		[range]       "+&r"(rc.range), \
9503b35e7eeSXin LI 		[code]        "+&r"(rc.code), \
9513b35e7eeSXin LI 		[t0]          "=&r"(t0), \
9523b35e7eeSXin LI 		[t1]          "=&r"(t1), \
9533b35e7eeSXin LI 		[dest]        "+&r"(dest_var), \
9543b35e7eeSXin LI 		[count]       "+&r"(count_var), \
9553b35e7eeSXin LI 		[in_ptr]      "+&r"(rc_in_ptr) \
9563b35e7eeSXin LI 		: \
9573b35e7eeSXin LI 		[top_value]   "n"(RC_TOP_VALUE), \
9583b35e7eeSXin LI 		[shift_bits]  "n"(RC_SHIFT_BITS) \
9593b35e7eeSXin LI 		: \
9603b35e7eeSXin LI 		"cc", "memory"); \
9613b35e7eeSXin LI } while (0)
9623b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x100
9633b35e7eeSXin LI 
9643b35e7eeSXin LI #endif // x86_64
96581ad8388SMartin Matuska 
96681ad8388SMartin Matuska #endif
967