13b35e7eeSXin LI // SPDX-License-Identifier: 0BSD 23b35e7eeSXin LI 381ad8388SMartin Matuska /////////////////////////////////////////////////////////////////////////////// 481ad8388SMartin Matuska // 581ad8388SMartin Matuska /// \file range_decoder.h 681ad8388SMartin Matuska /// \brief Range Decoder 781ad8388SMartin Matuska /// 881ad8388SMartin Matuska // Authors: Igor Pavlov 981ad8388SMartin Matuska // Lasse Collin 1081ad8388SMartin Matuska // 1181ad8388SMartin Matuska /////////////////////////////////////////////////////////////////////////////// 1281ad8388SMartin Matuska 1381ad8388SMartin Matuska #ifndef LZMA_RANGE_DECODER_H 1481ad8388SMartin Matuska #define LZMA_RANGE_DECODER_H 1581ad8388SMartin Matuska 1681ad8388SMartin Matuska #include "range_common.h" 1781ad8388SMartin Matuska 1881ad8388SMartin Matuska 193b35e7eeSXin LI // Choose the range decoder variants to use using a bitmask. 203b35e7eeSXin LI // If no bits are set, only the basic version is used. 213b35e7eeSXin LI // If more than one version is selected for the same feature, 223b35e7eeSXin LI // the last one on the list below is used. 233b35e7eeSXin LI // 243b35e7eeSXin LI // Bitwise-or of the following enable branchless C versions: 253b35e7eeSXin LI // 0x01 normal bittrees 263b35e7eeSXin LI // 0x02 fixed-sized reverse bittrees 273b35e7eeSXin LI // 0x04 variable-sized reverse bittrees (not faster) 283b35e7eeSXin LI // 0x08 matched literal (not faster) 293b35e7eeSXin LI // 303b35e7eeSXin LI // GCC & Clang compatible x86-64 inline assembly: 313b35e7eeSXin LI // 0x010 normal bittrees 323b35e7eeSXin LI // 0x020 fixed-sized reverse bittrees 333b35e7eeSXin LI // 0x040 variable-sized reverse bittrees 343b35e7eeSXin LI // 0x080 matched literal 353b35e7eeSXin LI // 0x100 direct bits 363b35e7eeSXin LI // 373b35e7eeSXin LI // The default can be overridden at build time by defining 383b35e7eeSXin LI // LZMA_RANGE_DECODER_CONFIG to the desired mask. 393b35e7eeSXin LI // 403b35e7eeSXin LI // 2024-02-22: Feedback from benchmarks: 413b35e7eeSXin LI // - Brancless C (0x003) can be better than basic on x86-64 but often it's 423b35e7eeSXin LI // slightly worse on other archs. Since asm is much better on x86-64, 433b35e7eeSXin LI // branchless C is not used at all. 443b35e7eeSXin LI // - With x86-64 asm, there are slight differences between GCC and Clang 453b35e7eeSXin LI // and different processors. Overall 0x1F0 seems to be the best choice. 463b35e7eeSXin LI #ifndef LZMA_RANGE_DECODER_CONFIG 473b35e7eeSXin LI # if defined(__x86_64__) && !defined(__ILP32__) \ 483b35e7eeSXin LI && !defined(__NVCOMPILER) \ 493b35e7eeSXin LI && (defined(__GNUC__) || defined(__clang__)) 503b35e7eeSXin LI # define LZMA_RANGE_DECODER_CONFIG 0x1F0 513b35e7eeSXin LI # else 523b35e7eeSXin LI # define LZMA_RANGE_DECODER_CONFIG 0 533b35e7eeSXin LI # endif 543b35e7eeSXin LI #endif 553b35e7eeSXin LI 563b35e7eeSXin LI 573b35e7eeSXin LI // Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. 583b35e7eeSXin LI // This is useful for updating probability variables in branchless decoding: 593b35e7eeSXin LI // 603b35e7eeSXin LI // uint32_t decoded_bit = ...; 613b35e7eeSXin LI // probability tmp = RC_BIT_MODEL_OFFSET; 623b35e7eeSXin LI // tmp &= decoded_bit - 1; 633b35e7eeSXin LI // prob -= (prob + tmp) >> RC_MOVE_BITS; 643b35e7eeSXin LI #define RC_BIT_MODEL_OFFSET \ 653b35e7eeSXin LI ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) 663b35e7eeSXin LI 673b35e7eeSXin LI 6881ad8388SMartin Matuska typedef struct { 6981ad8388SMartin Matuska uint32_t range; 7081ad8388SMartin Matuska uint32_t code; 7181ad8388SMartin Matuska uint32_t init_bytes_left; 7281ad8388SMartin Matuska } lzma_range_decoder; 7381ad8388SMartin Matuska 7481ad8388SMartin Matuska 7581ad8388SMartin Matuska /// Reads the first five bytes to initialize the range decoder. 7653200025SRui Paulo static inline lzma_ret 7781ad8388SMartin Matuska rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, 7881ad8388SMartin Matuska size_t *restrict in_pos, size_t in_size) 7981ad8388SMartin Matuska { 8081ad8388SMartin Matuska while (rc->init_bytes_left > 0) { 8181ad8388SMartin Matuska if (*in_pos == in_size) 8253200025SRui Paulo return LZMA_OK; 8353200025SRui Paulo 8453200025SRui Paulo // The first byte is always 0x00. It could have been omitted 8553200025SRui Paulo // in LZMA2 but it wasn't, so one byte is wasted in every 8653200025SRui Paulo // LZMA2 chunk. 8753200025SRui Paulo if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00) 8853200025SRui Paulo return LZMA_DATA_ERROR; 8981ad8388SMartin Matuska 9081ad8388SMartin Matuska rc->code = (rc->code << 8) | in[*in_pos]; 9181ad8388SMartin Matuska ++*in_pos; 9281ad8388SMartin Matuska --rc->init_bytes_left; 9381ad8388SMartin Matuska } 9481ad8388SMartin Matuska 9553200025SRui Paulo return LZMA_STREAM_END; 9681ad8388SMartin Matuska } 9781ad8388SMartin Matuska 9881ad8388SMartin Matuska 9981ad8388SMartin Matuska /// Makes local copies of range decoder and *in_pos variables. Doing this 10081ad8388SMartin Matuska /// improves speed significantly. The range decoder macros expect also 1013b35e7eeSXin LI /// variables 'in' and 'in_size' to be defined. 1023b35e7eeSXin LI #define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \ 10381ad8388SMartin Matuska lzma_range_decoder rc = range_decoder; \ 1043b35e7eeSXin LI const uint8_t *rc_in_ptr = in + (in_pos); \ 1053b35e7eeSXin LI const uint8_t *rc_in_end = in + in_size; \ 1063b35e7eeSXin LI const uint8_t *rc_in_fast_end \ 1073b35e7eeSXin LI = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ 1083b35e7eeSXin LI ? rc_in_ptr \ 1093b35e7eeSXin LI : rc_in_end - (fast_mode_in_required); \ 1103b35e7eeSXin LI (void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \ 11181ad8388SMartin Matuska uint32_t rc_bound 11281ad8388SMartin Matuska 11381ad8388SMartin Matuska 1143b35e7eeSXin LI /// Evaluates to true if there is enough input remaining to use fast mode. 1153b35e7eeSXin LI #define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) 1163b35e7eeSXin LI 1173b35e7eeSXin LI 11881ad8388SMartin Matuska /// Stores the local copes back to the range decoder structure. 11981ad8388SMartin Matuska #define rc_from_local(range_decoder, in_pos) \ 12081ad8388SMartin Matuska do { \ 12181ad8388SMartin Matuska range_decoder = rc; \ 1223b35e7eeSXin LI in_pos = (size_t)(rc_in_ptr - in); \ 12381ad8388SMartin Matuska } while (0) 12481ad8388SMartin Matuska 12581ad8388SMartin Matuska 12681ad8388SMartin Matuska /// Resets the range decoder structure. 12781ad8388SMartin Matuska #define rc_reset(range_decoder) \ 12881ad8388SMartin Matuska do { \ 12981ad8388SMartin Matuska (range_decoder).range = UINT32_MAX; \ 13081ad8388SMartin Matuska (range_decoder).code = 0; \ 13181ad8388SMartin Matuska (range_decoder).init_bytes_left = 5; \ 13281ad8388SMartin Matuska } while (0) 13381ad8388SMartin Matuska 13481ad8388SMartin Matuska 13581ad8388SMartin Matuska /// When decoding has been properly finished, rc.code is always zero unless 13681ad8388SMartin Matuska /// the input stream is corrupt. So checking this can catch some corrupt 13781ad8388SMartin Matuska /// files especially if they don't have any other integrity check. 13881ad8388SMartin Matuska #define rc_is_finished(range_decoder) \ 13981ad8388SMartin Matuska ((range_decoder).code == 0) 14081ad8388SMartin Matuska 14181ad8388SMartin Matuska 1423b35e7eeSXin LI // Read the next input byte if needed. 1433b35e7eeSXin LI #define rc_normalize() \ 1448db56defSXin LI do { \ 1458db56defSXin LI if (rc.range < RC_TOP_VALUE) { \ 1463b35e7eeSXin LI rc.range <<= RC_SHIFT_BITS; \ 1473b35e7eeSXin LI rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ 1483b35e7eeSXin LI } \ 1493b35e7eeSXin LI } while (0) 1503b35e7eeSXin LI 1513b35e7eeSXin LI 1523b35e7eeSXin LI /// If more input is needed but there is 1533b35e7eeSXin LI /// no more input available, "goto out" is used to jump out of the main 1543b35e7eeSXin LI /// decoder loop. The "_safe" macros are used in the Resumable decoder 1553b35e7eeSXin LI /// mode in order to save the sequence to continue decoding from that 1563b35e7eeSXin LI /// point later. 1573b35e7eeSXin LI #define rc_normalize_safe(seq) \ 1583b35e7eeSXin LI do { \ 1593b35e7eeSXin LI if (rc.range < RC_TOP_VALUE) { \ 1603b35e7eeSXin LI if (rc_in_ptr == rc_in_end) { \ 16181ad8388SMartin Matuska coder->sequence = seq; \ 16281ad8388SMartin Matuska goto out; \ 16381ad8388SMartin Matuska } \ 16481ad8388SMartin Matuska rc.range <<= RC_SHIFT_BITS; \ 1653b35e7eeSXin LI rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ 16681ad8388SMartin Matuska } \ 16781ad8388SMartin Matuska } while (0) 16881ad8388SMartin Matuska 16981ad8388SMartin Matuska 17081ad8388SMartin Matuska /// Start decoding a bit. This must be used together with rc_update_0() 17181ad8388SMartin Matuska /// and rc_update_1(): 17281ad8388SMartin Matuska /// 1733b35e7eeSXin LI /// rc_if_0(prob) { 17481ad8388SMartin Matuska /// rc_update_0(prob); 17581ad8388SMartin Matuska /// // Do something 17681ad8388SMartin Matuska /// } else { 17781ad8388SMartin Matuska /// rc_update_1(prob); 17881ad8388SMartin Matuska /// // Do something else 17981ad8388SMartin Matuska /// } 18081ad8388SMartin Matuska /// 1813b35e7eeSXin LI #define rc_if_0(prob) \ 1823b35e7eeSXin LI rc_normalize(); \ 1833b35e7eeSXin LI rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ 1843b35e7eeSXin LI if (rc.code < rc_bound) 1853b35e7eeSXin LI 1863b35e7eeSXin LI 1873b35e7eeSXin LI #define rc_if_0_safe(prob, seq) \ 1883b35e7eeSXin LI rc_normalize_safe(seq); \ 18981ad8388SMartin Matuska rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ 19081ad8388SMartin Matuska if (rc.code < rc_bound) 19181ad8388SMartin Matuska 19281ad8388SMartin Matuska 19381ad8388SMartin Matuska /// Update the range decoder state and the used probability variable to 19481ad8388SMartin Matuska /// match a decoded bit of 0. 1953b35e7eeSXin LI /// 1963b35e7eeSXin LI /// The x86-64 assembly uses the commented method but it seems that, 1973b35e7eeSXin LI /// at least on x86-64, the first version is slightly faster as C code. 19881ad8388SMartin Matuska #define rc_update_0(prob) \ 19981ad8388SMartin Matuska do { \ 20081ad8388SMartin Matuska rc.range = rc_bound; \ 20181ad8388SMartin Matuska prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ 2023b35e7eeSXin LI /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \ 20381ad8388SMartin Matuska } while (0) 20481ad8388SMartin Matuska 20581ad8388SMartin Matuska 20681ad8388SMartin Matuska /// Update the range decoder state and the used probability variable to 20781ad8388SMartin Matuska /// match a decoded bit of 1. 20881ad8388SMartin Matuska #define rc_update_1(prob) \ 20981ad8388SMartin Matuska do { \ 21081ad8388SMartin Matuska rc.range -= rc_bound; \ 21181ad8388SMartin Matuska rc.code -= rc_bound; \ 21281ad8388SMartin Matuska prob -= (prob) >> RC_MOVE_BITS; \ 21381ad8388SMartin Matuska } while (0) 21481ad8388SMartin Matuska 21581ad8388SMartin Matuska 21681ad8388SMartin Matuska /// Decodes one bit and runs action0 or action1 depending on the decoded bit. 21781ad8388SMartin Matuska /// This macro is used as the last step in bittree reverse decoders since 21881ad8388SMartin Matuska /// those don't use "symbol" for anything else than indexing the probability 21981ad8388SMartin Matuska /// arrays. 2203b35e7eeSXin LI #define rc_bit_last(prob, action0, action1) \ 22181ad8388SMartin Matuska do { \ 2223b35e7eeSXin LI rc_if_0(prob) { \ 2233b35e7eeSXin LI rc_update_0(prob); \ 2243b35e7eeSXin LI action0; \ 2253b35e7eeSXin LI } else { \ 2263b35e7eeSXin LI rc_update_1(prob); \ 2273b35e7eeSXin LI action1; \ 2283b35e7eeSXin LI } \ 2293b35e7eeSXin LI } while (0) 2303b35e7eeSXin LI 2313b35e7eeSXin LI 2323b35e7eeSXin LI #define rc_bit_last_safe(prob, action0, action1, seq) \ 2333b35e7eeSXin LI do { \ 2343b35e7eeSXin LI rc_if_0_safe(prob, seq) { \ 23581ad8388SMartin Matuska rc_update_0(prob); \ 23681ad8388SMartin Matuska action0; \ 23781ad8388SMartin Matuska } else { \ 23881ad8388SMartin Matuska rc_update_1(prob); \ 23981ad8388SMartin Matuska action1; \ 24081ad8388SMartin Matuska } \ 24181ad8388SMartin Matuska } while (0) 24281ad8388SMartin Matuska 24381ad8388SMartin Matuska 24481ad8388SMartin Matuska /// Decodes one bit, updates "symbol", and runs action0 or action1 depending 24581ad8388SMartin Matuska /// on the decoded bit. 2463b35e7eeSXin LI #define rc_bit(prob, action0, action1) \ 24781ad8388SMartin Matuska rc_bit_last(prob, \ 24881ad8388SMartin Matuska symbol <<= 1; action0, \ 2493b35e7eeSXin LI symbol = (symbol << 1) + 1; action1); 2503b35e7eeSXin LI 2513b35e7eeSXin LI 2523b35e7eeSXin LI #define rc_bit_safe(prob, action0, action1, seq) \ 2533b35e7eeSXin LI rc_bit_last_safe(prob, \ 2543b35e7eeSXin LI symbol <<= 1; action0, \ 25581ad8388SMartin Matuska symbol = (symbol << 1) + 1; action1, \ 25681ad8388SMartin Matuska seq); 25781ad8388SMartin Matuska 2583b35e7eeSXin LI // Unroll fixed-sized bittree decoding. 2593b35e7eeSXin LI // 2603b35e7eeSXin LI // A compile-time constant in final_add can be used to get rid of the high bit 2613b35e7eeSXin LI // from symbol that is used for the array indexing (1U << bittree_bits). 2623b35e7eeSXin LI // final_add may also be used to add offset to the result (LZMA length 2633b35e7eeSXin LI // decoder does that). 2643b35e7eeSXin LI // 2653b35e7eeSXin LI // The reason to have final_add here is that in the asm code the addition 2663b35e7eeSXin LI // can be done for free: in x86-64 there is SBB instruction with -1 as 2673b35e7eeSXin LI // the immediate value, and final_add is combined with that value. 2683b35e7eeSXin LI #define rc_bittree_bit(prob) \ 2693b35e7eeSXin LI rc_bit(prob, , ) 27081ad8388SMartin Matuska 2713b35e7eeSXin LI #define rc_bittree3(probs, final_add) \ 2723b35e7eeSXin LI do { \ 2733b35e7eeSXin LI symbol = 1; \ 2743b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2753b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2763b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2773b35e7eeSXin LI symbol += (uint32_t)(final_add); \ 2783b35e7eeSXin LI } while (0) 2793b35e7eeSXin LI 2803b35e7eeSXin LI #define rc_bittree6(probs, final_add) \ 2813b35e7eeSXin LI do { \ 2823b35e7eeSXin LI symbol = 1; \ 2833b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2843b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2853b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2863b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2873b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2883b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2893b35e7eeSXin LI symbol += (uint32_t)(final_add); \ 2903b35e7eeSXin LI } while (0) 2913b35e7eeSXin LI 2923b35e7eeSXin LI #define rc_bittree8(probs, final_add) \ 2933b35e7eeSXin LI do { \ 2943b35e7eeSXin LI symbol = 1; \ 2953b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2963b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2973b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2983b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 2993b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 3003b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 3013b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 3023b35e7eeSXin LI rc_bittree_bit(probs[symbol]); \ 3033b35e7eeSXin LI symbol += (uint32_t)(final_add); \ 3043b35e7eeSXin LI } while (0) 3053b35e7eeSXin LI 3063b35e7eeSXin LI 3073b35e7eeSXin LI // Fixed-sized reverse bittree 3083b35e7eeSXin LI #define rc_bittree_rev4(probs) \ 3093b35e7eeSXin LI do { \ 3103b35e7eeSXin LI symbol = 0; \ 3113b35e7eeSXin LI rc_bit_last(probs[symbol + 1], , symbol += 1); \ 3123b35e7eeSXin LI rc_bit_last(probs[symbol + 2], , symbol += 2); \ 3133b35e7eeSXin LI rc_bit_last(probs[symbol + 4], , symbol += 4); \ 3143b35e7eeSXin LI rc_bit_last(probs[symbol + 8], , symbol += 8); \ 3153b35e7eeSXin LI } while (0) 3163b35e7eeSXin LI 3173b35e7eeSXin LI 3183b35e7eeSXin LI // Decode one bit from variable-sized reverse bittree. The loop is done 3193b35e7eeSXin LI // in the code that uses this macro. This could be changed if the assembly 3203b35e7eeSXin LI // version benefited from having the loop done in assembly but it didn't 3213b35e7eeSXin LI // seem so in early 2024. 3223b35e7eeSXin LI // 3233b35e7eeSXin LI // Also, if the loop was done here, the loop counter would likely be local 3243b35e7eeSXin LI // to the macro so that it wouldn't modify yet another input variable. 3253b35e7eeSXin LI // If a _safe version of a macro with a loop was done then a modifiable 3263b35e7eeSXin LI // input variable couldn't be avoided though. 3273b35e7eeSXin LI #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ 3283b35e7eeSXin LI rc_bit(probs[symbol], \ 3293b35e7eeSXin LI , \ 3303b35e7eeSXin LI dest += value_to_add_if_1); 3313b35e7eeSXin LI 3323b35e7eeSXin LI 3333b35e7eeSXin LI // Matched literal 3343b35e7eeSXin LI #define decode_with_match_bit \ 3353b35e7eeSXin LI t_match_byte <<= 1; \ 3363b35e7eeSXin LI t_match_bit = t_match_byte & t_offset; \ 3373b35e7eeSXin LI t_subcoder_index = t_offset + t_match_bit + symbol; \ 3383b35e7eeSXin LI rc_bit(probs[t_subcoder_index], \ 3393b35e7eeSXin LI t_offset &= ~t_match_bit, \ 3403b35e7eeSXin LI t_offset &= t_match_bit) 3413b35e7eeSXin LI 3423b35e7eeSXin LI #define rc_matched_literal(probs_base_var, match_byte) \ 3433b35e7eeSXin LI do { \ 3443b35e7eeSXin LI uint32_t t_match_byte = (match_byte); \ 3453b35e7eeSXin LI uint32_t t_match_bit; \ 3463b35e7eeSXin LI uint32_t t_subcoder_index; \ 3473b35e7eeSXin LI uint32_t t_offset = 0x100; \ 3483b35e7eeSXin LI symbol = 1; \ 3493b35e7eeSXin LI decode_with_match_bit; \ 3503b35e7eeSXin LI decode_with_match_bit; \ 3513b35e7eeSXin LI decode_with_match_bit; \ 3523b35e7eeSXin LI decode_with_match_bit; \ 3533b35e7eeSXin LI decode_with_match_bit; \ 3543b35e7eeSXin LI decode_with_match_bit; \ 3553b35e7eeSXin LI decode_with_match_bit; \ 3563b35e7eeSXin LI decode_with_match_bit; \ 3573b35e7eeSXin LI } while (0) 35881ad8388SMartin Matuska 35981ad8388SMartin Matuska 36081ad8388SMartin Matuska /// Decode a bit without using a probability. 3613b35e7eeSXin LI // 3623b35e7eeSXin LI // NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound 3633b35e7eeSXin LI // calculation to use an arithmetic right shift so there's no need to provide 3643b35e7eeSXin LI // the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't 3653b35e7eeSXin LI // perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); 3663b35e7eeSXin LI #define rc_direct(dest, count_var) \ 36781ad8388SMartin Matuska do { \ 3683b35e7eeSXin LI dest = (dest << 1) + 1; \ 3693b35e7eeSXin LI rc_normalize(); \ 3703b35e7eeSXin LI rc.range >>= 1; \ 3713b35e7eeSXin LI rc.code -= rc.range; \ 3723b35e7eeSXin LI rc_bound = UINT32_C(0) - (rc.code >> 31); \ 3733b35e7eeSXin LI dest += rc_bound; \ 3743b35e7eeSXin LI rc.code += rc.range & rc_bound; \ 3753b35e7eeSXin LI } while (--count_var > 0) 3763b35e7eeSXin LI 3773b35e7eeSXin LI 3783b35e7eeSXin LI 3793b35e7eeSXin LI #define rc_direct_safe(dest, count_var, seq) \ 3803b35e7eeSXin LI do { \ 3813b35e7eeSXin LI rc_normalize_safe(seq); \ 38281ad8388SMartin Matuska rc.range >>= 1; \ 38381ad8388SMartin Matuska rc.code -= rc.range; \ 38481ad8388SMartin Matuska rc_bound = UINT32_C(0) - (rc.code >> 31); \ 38581ad8388SMartin Matuska rc.code += rc.range & rc_bound; \ 38681ad8388SMartin Matuska dest = (dest << 1) + (rc_bound + 1); \ 3873b35e7eeSXin LI } while (--count_var > 0) 3883b35e7eeSXin LI 3893b35e7eeSXin LI 3903b35e7eeSXin LI ////////////////// 3913b35e7eeSXin LI // Branchless C // 3923b35e7eeSXin LI ////////////////// 3933b35e7eeSXin LI 3943b35e7eeSXin LI /// Decode a bit using a branchless method. This reduces the number of 3953b35e7eeSXin LI /// mispredicted branches and thus can improve speed. 3963b35e7eeSXin LI #define rc_c_bit(prob, action_bit, action_neg) \ 3973b35e7eeSXin LI do { \ 3983b35e7eeSXin LI probability *p = &(prob); \ 3993b35e7eeSXin LI rc_normalize(); \ 4003b35e7eeSXin LI rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \ 4013b35e7eeSXin LI uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \ 4023b35e7eeSXin LI action_bit; /* action when rc_mask is 0 or 1 */ \ 4033b35e7eeSXin LI /* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \ 4043b35e7eeSXin LI rc_mask = 0U - rc_mask; \ 4053b35e7eeSXin LI rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \ 4063b35e7eeSXin LI rc_bound ^= rc_mask; \ 4073b35e7eeSXin LI rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \ 4083b35e7eeSXin LI rc.range += rc_bound; \ 4093b35e7eeSXin LI rc_bound &= rc_mask; \ 4103b35e7eeSXin LI rc.code += rc_bound; \ 4113b35e7eeSXin LI action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \ 4123b35e7eeSXin LI rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \ 4133b35e7eeSXin LI rc_mask &= RC_BIT_MODEL_OFFSET; \ 4143b35e7eeSXin LI *p -= (*p + rc_mask) >> RC_MOVE_BITS; \ 41581ad8388SMartin Matuska } while (0) 41681ad8388SMartin Matuska 41781ad8388SMartin Matuska 4183b35e7eeSXin LI // Testing on x86-64 give an impression that only the normal bittrees and 4193b35e7eeSXin LI // the fixed-sized reverse bittrees are worth the branchless C code. 4203b35e7eeSXin LI // It should be tested on other archs for which there isn't assembly code 4213b35e7eeSXin LI // in this file. 4223b35e7eeSXin LI 4233b35e7eeSXin LI // Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA 4243b35e7eeSXin LI // or RISC-V SH1ADD instructions. Compilers might infer it from 4253b35e7eeSXin LI // "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but 4263b35e7eeSXin LI // the use of addition doesn't require such analysis from compilers. 4273b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x01 4283b35e7eeSXin LI #undef rc_bittree_bit 4293b35e7eeSXin LI #define rc_bittree_bit(prob) \ 4303b35e7eeSXin LI rc_c_bit(prob, \ 4313b35e7eeSXin LI symbol = (symbol << 1) + rc_mask, \ 4323b35e7eeSXin LI ) 4333b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x01 4343b35e7eeSXin LI 4353b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x02 4363b35e7eeSXin LI #undef rc_bittree_rev4 4373b35e7eeSXin LI #define rc_bittree_rev4(probs) \ 4383b35e7eeSXin LI do { \ 4393b35e7eeSXin LI symbol = 0; \ 4403b35e7eeSXin LI rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \ 4413b35e7eeSXin LI rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \ 4423b35e7eeSXin LI rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \ 4433b35e7eeSXin LI rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \ 4443b35e7eeSXin LI } while (0) 4453b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x02 4463b35e7eeSXin LI 4473b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x04 4483b35e7eeSXin LI #undef rc_bit_add_if_1 4493b35e7eeSXin LI #define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ 4503b35e7eeSXin LI rc_c_bit(probs[symbol], \ 4513b35e7eeSXin LI symbol = (symbol << 1) + rc_mask, \ 4523b35e7eeSXin LI dest += (value_to_add_if_1) & rc_mask) 4533b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x04 4543b35e7eeSXin LI 4553b35e7eeSXin LI 4563b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x08 4573b35e7eeSXin LI #undef decode_with_match_bit 4583b35e7eeSXin LI #define decode_with_match_bit \ 4593b35e7eeSXin LI t_match_byte <<= 1; \ 4603b35e7eeSXin LI t_match_bit = t_match_byte & t_offset; \ 4613b35e7eeSXin LI t_subcoder_index = t_offset + t_match_bit + symbol; \ 4623b35e7eeSXin LI rc_c_bit(probs[t_subcoder_index], \ 4633b35e7eeSXin LI symbol = (symbol << 1) + rc_mask, \ 4643b35e7eeSXin LI t_offset &= ~t_match_bit ^ rc_mask) 4653b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x08 4663b35e7eeSXin LI 4673b35e7eeSXin LI 4683b35e7eeSXin LI //////////// 4693b35e7eeSXin LI // x86-64 // 4703b35e7eeSXin LI //////////// 4713b35e7eeSXin LI 4723b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x1F0 4733b35e7eeSXin LI 4743b35e7eeSXin LI // rc_asm_y and rc_asm_n are used as arguments to macros to control which 4753b35e7eeSXin LI // strings to include or omit. 4763b35e7eeSXin LI #define rc_asm_y(str) str 4773b35e7eeSXin LI #define rc_asm_n(str) 4783b35e7eeSXin LI 4793b35e7eeSXin LI // There are a few possible variations for normalization. 4803b35e7eeSXin LI // This is the smallest variant which is also used by LZMA SDK. 4813b35e7eeSXin LI // 4823b35e7eeSXin LI // - This has partial register write (the MOV from (%[in_ptr])). 4833b35e7eeSXin LI // 4843b35e7eeSXin LI // - INC saves one byte in code size over ADD. False dependency on 4853b35e7eeSXin LI // partial flags from INC shouldn't become a problem on any processor 4863b35e7eeSXin LI // because the instructions after normalization don't read the flags 4873b35e7eeSXin LI // until SUB which sets all flags. 4883b35e7eeSXin LI // 4893b35e7eeSXin LI #define rc_asm_normalize \ 4903b35e7eeSXin LI "cmp %[top_value], %[range]\n\t" \ 4913b35e7eeSXin LI "jae 1f\n\t" \ 4923b35e7eeSXin LI "shl %[shift_bits], %[code]\n\t" \ 4933b35e7eeSXin LI "mov (%[in_ptr]), %b[code]\n\t" \ 4943b35e7eeSXin LI "shl %[shift_bits], %[range]\n\t" \ 4953b35e7eeSXin LI "inc %[in_ptr]\n" \ 4963b35e7eeSXin LI "1:\n" 4973b35e7eeSXin LI 4983b35e7eeSXin LI // rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)... 4993b35e7eeSXin LI // 5003b35e7eeSXin LI // rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); 5013b35e7eeSXin LI // if (rc.code < rc_bound) 5023b35e7eeSXin LI // 5033b35e7eeSXin LI // ...but the bound is stored in "range": 5043b35e7eeSXin LI // 5053b35e7eeSXin LI // t0 = range; 5063b35e7eeSXin LI // range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); 5073b35e7eeSXin LI // t0 -= range; 5083b35e7eeSXin LI // t1 = code; 5093b35e7eeSXin LI // code -= range; 5103b35e7eeSXin LI // 5113b35e7eeSXin LI // The carry flag (CF) from the last subtraction holds the negation of 5123b35e7eeSXin LI // the decoded bit (if CF==0 then the decoded bit is 1). 5133b35e7eeSXin LI // The values in t0 and t1 are needed for rc_update_0(prob) and 5143b35e7eeSXin LI // rc_update_1(prob). If the bit is 0, rc_update_0(prob)... 5153b35e7eeSXin LI // 5163b35e7eeSXin LI // rc.range = rc_bound; 5173b35e7eeSXin LI // 5183b35e7eeSXin LI // ...has already been done but the "code -= range" has to be reverted using 5193b35e7eeSXin LI // the old value stored in t1. (Also, prob needs to be updated.) 5203b35e7eeSXin LI // 5213b35e7eeSXin LI // If the bit is 1, rc_update_1(prob)... 5223b35e7eeSXin LI // 5233b35e7eeSXin LI // rc.range -= rc_bound; 5243b35e7eeSXin LI // rc.code -= rc_bound; 5253b35e7eeSXin LI // 5263b35e7eeSXin LI // ...is already done for "code" but the value for "range" needs to be taken 5273b35e7eeSXin LI // from t0. (Also, prob needs to be updated here as well.) 5283b35e7eeSXin LI // 5293b35e7eeSXin LI // The assignments from t0 and t1 can be done in a branchless manner with CMOV 5303b35e7eeSXin LI // after the instructions from this macro. The CF from SUB tells which moves 5313b35e7eeSXin LI // are needed. 5323b35e7eeSXin LI #define rc_asm_calc(prob) \ 5333b35e7eeSXin LI "mov %[range], %[t0]\n\t" \ 5343b35e7eeSXin LI "shr %[bit_model_total_bits], %[range]\n\t" \ 5353b35e7eeSXin LI "imul %[" prob "], %[range]\n\t" \ 5363b35e7eeSXin LI "sub %[range], %[t0]\n\t" \ 5373b35e7eeSXin LI "mov %[code], %[t1]\n\t" \ 5383b35e7eeSXin LI "sub %[range], %[code]\n\t" 5393b35e7eeSXin LI 5403b35e7eeSXin LI // Also, prob needs to be updated: The update math depends on the decoded bit. 5413b35e7eeSXin LI // It can be expressed in a few slightly different ways but this is fairly 5423b35e7eeSXin LI // convenient here: 5433b35e7eeSXin LI // 5443b35e7eeSXin LI // prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS; 5453b35e7eeSXin LI // 5463b35e7eeSXin LI // To do it in branchless way when the negation of the decoded bit is in CF, 5473b35e7eeSXin LI // both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired 5483b35e7eeSXin LI // value can be picked with CMOV. The addition can be done using LEA without 5493b35e7eeSXin LI // affecting CF. 5503b35e7eeSXin LI // 5513b35e7eeSXin LI // (This prob update method is a tiny bit different from LZMA SDK 23.01. 5523b35e7eeSXin LI // In the LZMA SDK a single register is reserved solely for a constant to 5533b35e7eeSXin LI // be used with CMOV when updating prob. That is fine since there are enough 5543b35e7eeSXin LI // free registers to do so. The method used here uses one fewer register, 5553b35e7eeSXin LI // which is valuable with inline assembly.) 5563b35e7eeSXin LI // 5573b35e7eeSXin LI // * * * 5583b35e7eeSXin LI // 5593b35e7eeSXin LI // In bittree decoding, each (unrolled) loop iteration decodes one bit 5603b35e7eeSXin LI // and needs one prob variable. To make it faster, the prob variable of 5613b35e7eeSXin LI // the iteration N+1 is loaded during iteration N. There are two possible 5623b35e7eeSXin LI // prob variables to choose from for N+1. Both are loaded from memory and 5633b35e7eeSXin LI // the correct one is chosen with CMOV using the same CF as is used for 5643b35e7eeSXin LI // other things described above. 5653b35e7eeSXin LI // 5663b35e7eeSXin LI // This preloading/prefetching requires an extra register. To avoid 5673b35e7eeSXin LI // useless moves from "preloaded prob register" to "current prob register", 5683b35e7eeSXin LI // the macros swap between the two registers for odd and even iterations. 5693b35e7eeSXin LI // 5703b35e7eeSXin LI // * * * 5713b35e7eeSXin LI // 5723b35e7eeSXin LI // Finally, the decoded bit has to be stored in "symbol". Since the negation 5733b35e7eeSXin LI // of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is, 5743b35e7eeSXin LI // if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0" 5753b35e7eeSXin LI // and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is 5763b35e7eeSXin LI // the same as "symbol += 1". 5773b35e7eeSXin LI // 5783b35e7eeSXin LI // The instructions for all things are intertwined for a few reasons: 5793b35e7eeSXin LI // - freeing temporary registers for new use 5803b35e7eeSXin LI // - not modifying CF too early 5813b35e7eeSXin LI // - instruction scheduling 5823b35e7eeSXin LI // 5833b35e7eeSXin LI // The first and last iterations can cheat a little. For example, 5843b35e7eeSXin LI // on the first iteration "symbol" is known to start from 1 so it 5853b35e7eeSXin LI // doesn't need to be read; it can even be immediately initialized 5863b35e7eeSXin LI // to 2 to prepare for the second iteration of the loop. 5873b35e7eeSXin LI // 5883b35e7eeSXin LI // * * * 5893b35e7eeSXin LI // 5903b35e7eeSXin LI // a = number of the current prob variable (0 or 1) 5913b35e7eeSXin LI // b = number of the next prob variable (1 or 0) 5923b35e7eeSXin LI // *_only = rc_asm_y or _n to include or exclude code marked with them 5933b35e7eeSXin LI #define rc_asm_bittree(a, b, first_only, middle_only, last_only) \ 5943b35e7eeSXin LI first_only( \ 595*26743408SXin LI "movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \ 5963b35e7eeSXin LI "mov $2, %[symbol]\n\t" \ 597*26743408SXin LI "movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \ 5983b35e7eeSXin LI ) \ 5993b35e7eeSXin LI middle_only( \ 6003b35e7eeSXin LI /* Note the scaling of 4 instead of 2: */ \ 601*26743408SXin LI "movzwl (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \ 6023b35e7eeSXin LI ) \ 6033b35e7eeSXin LI last_only( \ 6043b35e7eeSXin LI "add %[symbol], %[symbol]\n\t" \ 6053b35e7eeSXin LI ) \ 6063b35e7eeSXin LI \ 6073b35e7eeSXin LI rc_asm_normalize \ 6083b35e7eeSXin LI rc_asm_calc("prob" #a) \ 6093b35e7eeSXin LI \ 6103b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 6113b35e7eeSXin LI \ 6123b35e7eeSXin LI first_only( \ 613*26743408SXin LI "movzwl 6(%[probs_base]), %[t0]\n\t" \ 6143b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 6153b35e7eeSXin LI ) \ 6163b35e7eeSXin LI middle_only( \ 617*26743408SXin LI "movzwl 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \ 6183b35e7eeSXin LI "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \ 6193b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 6203b35e7eeSXin LI ) \ 6213b35e7eeSXin LI \ 6223b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ 6233b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 6243b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 6253b35e7eeSXin LI "cmovae %[prob" #a "], %[t0]\n\t" \ 6263b35e7eeSXin LI \ 6273b35e7eeSXin LI first_only( \ 6283b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 6293b35e7eeSXin LI ) \ 6303b35e7eeSXin LI middle_only( \ 6313b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 6323b35e7eeSXin LI ) \ 6333b35e7eeSXin LI last_only( \ 6343b35e7eeSXin LI "sbb %[last_sbb], %[symbol]\n\t" \ 6353b35e7eeSXin LI ) \ 6363b35e7eeSXin LI \ 6373b35e7eeSXin LI "shr %[move_bits], %[t0]\n\t" \ 6383b35e7eeSXin LI "sub %[t0], %[prob" #a "]\n\t" \ 6393b35e7eeSXin LI /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ 6403b35e7eeSXin LI "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t" 6413b35e7eeSXin LI 6423b35e7eeSXin LI // NOTE: The order of variables in __asm__ can affect speed and code size. 6433b35e7eeSXin LI #define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \ 6443b35e7eeSXin LI do { \ 6453b35e7eeSXin LI uint32_t t0; \ 6463b35e7eeSXin LI uint32_t t1; \ 6473b35e7eeSXin LI uint32_t t_prob0; \ 6483b35e7eeSXin LI uint32_t t_prob1; \ 6493b35e7eeSXin LI \ 6503b35e7eeSXin LI __asm__( \ 6513b35e7eeSXin LI asm_str \ 6523b35e7eeSXin LI : \ 6533b35e7eeSXin LI [range] "+&r"(rc.range), \ 6543b35e7eeSXin LI [code] "+&r"(rc.code), \ 6553b35e7eeSXin LI [t0] "=&r"(t0), \ 6563b35e7eeSXin LI [t1] "=&r"(t1), \ 6573b35e7eeSXin LI [prob0] "=&r"(t_prob0), \ 6583b35e7eeSXin LI [prob1] "=&r"(t_prob1), \ 6593b35e7eeSXin LI [symbol] "=&r"(symbol), \ 6603b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 6613b35e7eeSXin LI : \ 6623b35e7eeSXin LI [probs_base] "r"(probs_base_var), \ 6633b35e7eeSXin LI [last_sbb] "n"(-1 - (final_add)), \ 6643b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 6653b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS), \ 6663b35e7eeSXin LI [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ 6673b35e7eeSXin LI [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ 6683b35e7eeSXin LI [move_bits] "n"(RC_MOVE_BITS) \ 6693b35e7eeSXin LI : \ 6703b35e7eeSXin LI "cc", "memory"); \ 6713b35e7eeSXin LI } while (0) 6723b35e7eeSXin LI 6733b35e7eeSXin LI 6743b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x010 6753b35e7eeSXin LI #undef rc_bittree3 6763b35e7eeSXin LI #define rc_bittree3(probs_base_var, final_add) \ 6773b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, final_add, \ 6783b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ 6793b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 6803b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \ 6813b35e7eeSXin LI ) 6823b35e7eeSXin LI 6833b35e7eeSXin LI #undef rc_bittree6 6843b35e7eeSXin LI #define rc_bittree6(probs_base_var, final_add) \ 6853b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, final_add, \ 6863b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ 6873b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 6883b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 6893b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 6903b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 6913b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ 6923b35e7eeSXin LI ) 6933b35e7eeSXin LI 6943b35e7eeSXin LI #undef rc_bittree8 6953b35e7eeSXin LI #define rc_bittree8(probs_base_var, final_add) \ 6963b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, final_add, \ 6973b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ 6983b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 6993b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 7003b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 7013b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 7023b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ 7033b35e7eeSXin LI rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ 7043b35e7eeSXin LI rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ 7053b35e7eeSXin LI ) 7063b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x010 7073b35e7eeSXin LI 7083b35e7eeSXin LI 7093b35e7eeSXin LI // Fixed-sized reverse bittree 7103b35e7eeSXin LI // 7113b35e7eeSXin LI // This uses the indexing that constructs the final value in symbol directly. 7123b35e7eeSXin LI // add = 1, 2, 4, 8 7133b35e7eeSXin LI // dcur = -, 4, 8, 16 7143b35e7eeSXin LI // dnext0 = 4, 8, 16, - 7153b35e7eeSXin LI // dnext0 = 6, 12, 24, - 7163b35e7eeSXin LI #define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \ 7173b35e7eeSXin LI first_only, middle_only, last_only) \ 7183b35e7eeSXin LI first_only( \ 719*26743408SXin LI "movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \ 7203b35e7eeSXin LI "xor %[symbol], %[symbol]\n\t" \ 721*26743408SXin LI "movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \ 7223b35e7eeSXin LI ) \ 7233b35e7eeSXin LI middle_only( \ 724*26743408SXin LI "movzwl " #dnext0 "(%[probs_base], %q[symbol], 2), " \ 7253b35e7eeSXin LI "%[prob" #b "]\n\t" \ 7263b35e7eeSXin LI ) \ 7273b35e7eeSXin LI \ 7283b35e7eeSXin LI rc_asm_normalize \ 7293b35e7eeSXin LI rc_asm_calc("prob" #a) \ 7303b35e7eeSXin LI \ 7313b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 7323b35e7eeSXin LI \ 7333b35e7eeSXin LI first_only( \ 734*26743408SXin LI "movzwl 6(%[probs_base]), %[t0]\n\t" \ 7353b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 7363b35e7eeSXin LI ) \ 7373b35e7eeSXin LI middle_only( \ 738*26743408SXin LI "movzwl " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \ 7393b35e7eeSXin LI "cmovae %[t0], %[prob" #b "]\n\t" \ 7403b35e7eeSXin LI ) \ 7413b35e7eeSXin LI \ 7423b35e7eeSXin LI "lea " #add "(%q[symbol]), %[t0]\n\t" \ 7433b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 7443b35e7eeSXin LI middle_only( \ 7453b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 7463b35e7eeSXin LI ) \ 7473b35e7eeSXin LI last_only( \ 7483b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 7493b35e7eeSXin LI ) \ 7503b35e7eeSXin LI "cmovae %[t0], %[symbol]\n\t" \ 7513b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ 7523b35e7eeSXin LI "cmovae %[prob" #a "], %[t0]\n\t" \ 7533b35e7eeSXin LI \ 7543b35e7eeSXin LI "shr %[move_bits], %[t0]\n\t" \ 7553b35e7eeSXin LI "sub %[t0], %[prob" #a "]\n\t" \ 7563b35e7eeSXin LI first_only( \ 7573b35e7eeSXin LI "mov %w[prob" #a "], 2(%[probs_base])\n\t" \ 7583b35e7eeSXin LI ) \ 7593b35e7eeSXin LI middle_only( \ 7603b35e7eeSXin LI "mov %w[prob" #a "], " \ 7613b35e7eeSXin LI #dcur "(%[probs_base], %q[t1], 2)\n\t" \ 7623b35e7eeSXin LI ) \ 7633b35e7eeSXin LI last_only( \ 7643b35e7eeSXin LI "mov %w[prob" #a "], " \ 7653b35e7eeSXin LI #dcur "(%[probs_base], %q[t1], 2)\n\t" \ 7663b35e7eeSXin LI ) 7673b35e7eeSXin LI 7683b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x020 7693b35e7eeSXin LI #undef rc_bittree_rev4 7703b35e7eeSXin LI #define rc_bittree_rev4(probs_base_var) \ 7713b35e7eeSXin LI rc_asm_bittree_n(probs_base_var, 4, \ 7723b35e7eeSXin LI rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \ 7733b35e7eeSXin LI rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \ 7743b35e7eeSXin LI rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \ 7753b35e7eeSXin LI rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \ 7763b35e7eeSXin LI ) 7773b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x020 7783b35e7eeSXin LI 7793b35e7eeSXin LI 7803b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x040 7813b35e7eeSXin LI #undef rc_bit_add_if_1 7823b35e7eeSXin LI #define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \ 7833b35e7eeSXin LI do { \ 7843b35e7eeSXin LI uint32_t t0; \ 7853b35e7eeSXin LI uint32_t t1; \ 7863b35e7eeSXin LI uint32_t t2 = (value_to_add_if_1); \ 7873b35e7eeSXin LI uint32_t t_prob; \ 7883b35e7eeSXin LI uint32_t t_index; \ 7893b35e7eeSXin LI \ 7903b35e7eeSXin LI __asm__( \ 791*26743408SXin LI "movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ 7923b35e7eeSXin LI "mov %[symbol], %[index]\n\t" \ 7933b35e7eeSXin LI \ 7943b35e7eeSXin LI "add %[dest], %[t2]\n\t" \ 7953b35e7eeSXin LI "add %[symbol], %[symbol]\n\t" \ 7963b35e7eeSXin LI \ 7973b35e7eeSXin LI rc_asm_normalize \ 7983b35e7eeSXin LI rc_asm_calc("prob") \ 7993b35e7eeSXin LI \ 8003b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 8013b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ 8023b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 8033b35e7eeSXin LI "cmovae %[prob], %[t0]\n\t" \ 8043b35e7eeSXin LI \ 8053b35e7eeSXin LI "cmovae %[t2], %[dest]\n\t" \ 8063b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 8073b35e7eeSXin LI \ 8083b35e7eeSXin LI "sar %[move_bits], %[t0]\n\t" \ 8093b35e7eeSXin LI "sub %[t0], %[prob]\n\t" \ 8103b35e7eeSXin LI "mov %w[prob], (%[probs_base], %q[index], 2)" \ 8113b35e7eeSXin LI : \ 8123b35e7eeSXin LI [range] "+&r"(rc.range), \ 8133b35e7eeSXin LI [code] "+&r"(rc.code), \ 8143b35e7eeSXin LI [t0] "=&r"(t0), \ 8153b35e7eeSXin LI [t1] "=&r"(t1), \ 8163b35e7eeSXin LI [prob] "=&r"(t_prob), \ 8173b35e7eeSXin LI [index] "=&r"(t_index), \ 8183b35e7eeSXin LI [symbol] "+&r"(symbol), \ 8193b35e7eeSXin LI [t2] "+&r"(t2), \ 8203b35e7eeSXin LI [dest] "+&r"(dest_var), \ 8213b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 8223b35e7eeSXin LI : \ 8233b35e7eeSXin LI [probs_base] "r"(probs_base_var), \ 8243b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 8253b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS), \ 8263b35e7eeSXin LI [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ 8273b35e7eeSXin LI [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ 8283b35e7eeSXin LI [move_bits] "n"(RC_MOVE_BITS) \ 8293b35e7eeSXin LI : \ 8303b35e7eeSXin LI "cc", "memory"); \ 8313b35e7eeSXin LI } while (0) 8323b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x040 8333b35e7eeSXin LI 8343b35e7eeSXin LI 8353b35e7eeSXin LI // Literal decoding uses a normal 8-bit bittree but literal with match byte 8363b35e7eeSXin LI // is more complex in picking the probability variable from the correct 8373b35e7eeSXin LI // subtree. This doesn't use preloading/prefetching of the next prob because 8383b35e7eeSXin LI // there are four choices instead of two. 8393b35e7eeSXin LI // 8403b35e7eeSXin LI // FIXME? The first iteration starts with symbol = 1 so it could be optimized 8413b35e7eeSXin LI // by a tiny amount. 8423b35e7eeSXin LI #define rc_asm_matched_literal(nonlast_only) \ 8433b35e7eeSXin LI "add %[offset], %[symbol]\n\t" \ 8443b35e7eeSXin LI "and %[offset], %[match_bit]\n\t" \ 8453b35e7eeSXin LI "add %[match_bit], %[symbol]\n\t" \ 8463b35e7eeSXin LI \ 847*26743408SXin LI "movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ 8483b35e7eeSXin LI \ 8493b35e7eeSXin LI "add %[symbol], %[symbol]\n\t" \ 8503b35e7eeSXin LI \ 8513b35e7eeSXin LI nonlast_only( \ 8523b35e7eeSXin LI "xor %[match_bit], %[offset]\n\t" \ 8533b35e7eeSXin LI "add %[match_byte], %[match_byte]\n\t" \ 8543b35e7eeSXin LI ) \ 8553b35e7eeSXin LI \ 8563b35e7eeSXin LI rc_asm_normalize \ 8573b35e7eeSXin LI rc_asm_calc("prob") \ 8583b35e7eeSXin LI \ 8593b35e7eeSXin LI "cmovae %[t0], %[range]\n\t" \ 8603b35e7eeSXin LI "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ 8613b35e7eeSXin LI "cmovb %[t1], %[code]\n\t" \ 8623b35e7eeSXin LI "mov %[symbol], %[t1]\n\t" \ 8633b35e7eeSXin LI "cmovae %[prob], %[t0]\n\t" \ 8643b35e7eeSXin LI \ 8653b35e7eeSXin LI nonlast_only( \ 8663b35e7eeSXin LI "cmovae %[match_bit], %[offset]\n\t" \ 8673b35e7eeSXin LI "mov %[match_byte], %[match_bit]\n\t" \ 8683b35e7eeSXin LI ) \ 8693b35e7eeSXin LI \ 8703b35e7eeSXin LI "sbb $-1, %[symbol]\n\t" \ 8713b35e7eeSXin LI \ 8723b35e7eeSXin LI "shr %[move_bits], %[t0]\n\t" \ 8733b35e7eeSXin LI /* Undo symbol += match_bit + offset: */ \ 8743b35e7eeSXin LI "and $0x1FF, %[symbol]\n\t" \ 8753b35e7eeSXin LI "sub %[t0], %[prob]\n\t" \ 8763b35e7eeSXin LI \ 8773b35e7eeSXin LI /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ 8783b35e7eeSXin LI "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t" 8793b35e7eeSXin LI 8803b35e7eeSXin LI 8813b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x080 8823b35e7eeSXin LI #undef rc_matched_literal 8833b35e7eeSXin LI #define rc_matched_literal(probs_base_var, match_byte_value) \ 8843b35e7eeSXin LI do { \ 8853b35e7eeSXin LI uint32_t t0; \ 8863b35e7eeSXin LI uint32_t t1; \ 8873b35e7eeSXin LI uint32_t t_prob; \ 8883b35e7eeSXin LI uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \ 8893b35e7eeSXin LI uint32_t t_match_bit = t_match_byte; \ 8903b35e7eeSXin LI uint32_t t_offset = 0x100; \ 8913b35e7eeSXin LI symbol = 1; \ 8923b35e7eeSXin LI \ 8933b35e7eeSXin LI __asm__( \ 8943b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 8953b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 8963b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 8973b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 8983b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 8993b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 9003b35e7eeSXin LI rc_asm_matched_literal(rc_asm_y) \ 9013b35e7eeSXin LI rc_asm_matched_literal(rc_asm_n) \ 9023b35e7eeSXin LI : \ 9033b35e7eeSXin LI [range] "+&r"(rc.range), \ 9043b35e7eeSXin LI [code] "+&r"(rc.code), \ 9053b35e7eeSXin LI [t0] "=&r"(t0), \ 9063b35e7eeSXin LI [t1] "=&r"(t1), \ 9073b35e7eeSXin LI [prob] "=&r"(t_prob), \ 9083b35e7eeSXin LI [match_bit] "+&r"(t_match_bit), \ 9093b35e7eeSXin LI [symbol] "+&r"(symbol), \ 9103b35e7eeSXin LI [match_byte] "+&r"(t_match_byte), \ 9113b35e7eeSXin LI [offset] "+&r"(t_offset), \ 9123b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 9133b35e7eeSXin LI : \ 9143b35e7eeSXin LI [probs_base] "r"(probs_base_var), \ 9153b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 9163b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS), \ 9173b35e7eeSXin LI [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ 9183b35e7eeSXin LI [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ 9193b35e7eeSXin LI [move_bits] "n"(RC_MOVE_BITS) \ 9203b35e7eeSXin LI : \ 9213b35e7eeSXin LI "cc", "memory"); \ 9223b35e7eeSXin LI } while (0) 9233b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x080 9243b35e7eeSXin LI 9253b35e7eeSXin LI 9263b35e7eeSXin LI // Doing the loop in asm instead of C seems to help a little. 9273b35e7eeSXin LI #if LZMA_RANGE_DECODER_CONFIG & 0x100 9283b35e7eeSXin LI #undef rc_direct 9293b35e7eeSXin LI #define rc_direct(dest_var, count_var) \ 9303b35e7eeSXin LI do { \ 9313b35e7eeSXin LI uint32_t t0; \ 9323b35e7eeSXin LI uint32_t t1; \ 9333b35e7eeSXin LI \ 9343b35e7eeSXin LI __asm__( \ 9353b35e7eeSXin LI "2:\n\t" \ 9363b35e7eeSXin LI "add %[dest], %[dest]\n\t" \ 9373b35e7eeSXin LI "lea 1(%q[dest]), %[t1]\n\t" \ 9383b35e7eeSXin LI \ 9393b35e7eeSXin LI rc_asm_normalize \ 9403b35e7eeSXin LI \ 9413b35e7eeSXin LI "shr $1, %[range]\n\t" \ 9423b35e7eeSXin LI "mov %[code], %[t0]\n\t" \ 9433b35e7eeSXin LI "sub %[range], %[code]\n\t" \ 9443b35e7eeSXin LI "cmovns %[t1], %[dest]\n\t" \ 9453b35e7eeSXin LI "cmovs %[t0], %[code]\n\t" \ 9463b35e7eeSXin LI "dec %[count]\n\t" \ 9473b35e7eeSXin LI "jnz 2b\n\t" \ 9483b35e7eeSXin LI : \ 9493b35e7eeSXin LI [range] "+&r"(rc.range), \ 9503b35e7eeSXin LI [code] "+&r"(rc.code), \ 9513b35e7eeSXin LI [t0] "=&r"(t0), \ 9523b35e7eeSXin LI [t1] "=&r"(t1), \ 9533b35e7eeSXin LI [dest] "+&r"(dest_var), \ 9543b35e7eeSXin LI [count] "+&r"(count_var), \ 9553b35e7eeSXin LI [in_ptr] "+&r"(rc_in_ptr) \ 9563b35e7eeSXin LI : \ 9573b35e7eeSXin LI [top_value] "n"(RC_TOP_VALUE), \ 9583b35e7eeSXin LI [shift_bits] "n"(RC_SHIFT_BITS) \ 9593b35e7eeSXin LI : \ 9603b35e7eeSXin LI "cc", "memory"); \ 9613b35e7eeSXin LI } while (0) 9623b35e7eeSXin LI #endif // LZMA_RANGE_DECODER_CONFIG & 0x100 9633b35e7eeSXin LI 9643b35e7eeSXin LI #endif // x86_64 96581ad8388SMartin Matuska 96681ad8388SMartin Matuska #endif 967