xref: /freebsd/contrib/xz/src/liblzma/lzma/lzma_encoder.c (revision 829f0bcb5fe24bb523c5a9e7bd3bb79412e06906)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       lzma_encoder.c
4 /// \brief      LZMA encoder
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #include "lzma2_encoder.h"
15 #include "lzma_encoder_private.h"
16 #include "fastpos.h"
17 
18 
19 /////////////
20 // Literal //
21 /////////////
22 
23 static inline void
24 literal_matched(lzma_range_encoder *rc, probability *subcoder,
25 		uint32_t match_byte, uint32_t symbol)
26 {
27 	uint32_t offset = 0x100;
28 	symbol += UINT32_C(1) << 8;
29 
30 	do {
31 		match_byte <<= 1;
32 		const uint32_t match_bit = match_byte & offset;
33 		const uint32_t subcoder_index
34 				= offset + match_bit + (symbol >> 8);
35 		const uint32_t bit = (symbol >> 7) & 1;
36 		rc_bit(rc, &subcoder[subcoder_index], bit);
37 
38 		symbol <<= 1;
39 		offset &= ~(match_byte ^ symbol);
40 
41 	} while (symbol < (UINT32_C(1) << 16));
42 }
43 
44 
45 static inline void
46 literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
47 {
48 	// Locate the literal byte to be encoded and the subcoder.
49 	const uint8_t cur_byte = mf->buffer[
50 			mf->read_pos - mf->read_ahead];
51 	probability *subcoder = literal_subcoder(coder->literal,
52 			coder->literal_context_bits, coder->literal_pos_mask,
53 			position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
54 
55 	if (is_literal_state(coder->state)) {
56 		// Previous LZMA-symbol was a literal. Encode a normal
57 		// literal without a match byte.
58 		rc_bittree(&coder->rc, subcoder, 8, cur_byte);
59 	} else {
60 		// Previous LZMA-symbol was a match. Use the last byte of
61 		// the match as a "match byte". That is, compare the bits
62 		// of the current literal and the match byte.
63 		const uint8_t match_byte = mf->buffer[
64 				mf->read_pos - coder->reps[0] - 1
65 				- mf->read_ahead];
66 		literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
67 	}
68 
69 	update_literal(coder->state);
70 }
71 
72 
73 //////////////////
74 // Match length //
75 //////////////////
76 
77 static void
78 length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
79 {
80 	const uint32_t table_size = lc->table_size;
81 	lc->counters[pos_state] = table_size;
82 
83 	const uint32_t a0 = rc_bit_0_price(lc->choice);
84 	const uint32_t a1 = rc_bit_1_price(lc->choice);
85 	const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
86 	const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
87 	uint32_t *const prices = lc->prices[pos_state];
88 
89 	uint32_t i;
90 	for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
91 		prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
92 				LEN_LOW_BITS, i);
93 
94 	for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
95 		prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
96 				LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
97 
98 	for (; i < table_size; ++i)
99 		prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
100 				i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
101 
102 	return;
103 }
104 
105 
106 static inline void
107 length(lzma_range_encoder *rc, lzma_length_encoder *lc,
108 		const uint32_t pos_state, uint32_t len, const bool fast_mode)
109 {
110 	assert(len <= MATCH_LEN_MAX);
111 	len -= MATCH_LEN_MIN;
112 
113 	if (len < LEN_LOW_SYMBOLS) {
114 		rc_bit(rc, &lc->choice, 0);
115 		rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
116 	} else {
117 		rc_bit(rc, &lc->choice, 1);
118 		len -= LEN_LOW_SYMBOLS;
119 
120 		if (len < LEN_MID_SYMBOLS) {
121 			rc_bit(rc, &lc->choice2, 0);
122 			rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
123 		} else {
124 			rc_bit(rc, &lc->choice2, 1);
125 			len -= LEN_MID_SYMBOLS;
126 			rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
127 		}
128 	}
129 
130 	// Only getoptimum uses the prices so don't update the table when
131 	// in fast mode.
132 	if (!fast_mode)
133 		if (--lc->counters[pos_state] == 0)
134 			length_update_prices(lc, pos_state);
135 }
136 
137 
138 ///////////
139 // Match //
140 ///////////
141 
142 static inline void
143 match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
144 		const uint32_t distance, const uint32_t len)
145 {
146 	update_match(coder->state);
147 
148 	length(&coder->rc, &coder->match_len_encoder, pos_state, len,
149 			coder->fast_mode);
150 
151 	const uint32_t dist_slot = get_dist_slot(distance);
152 	const uint32_t dist_state = get_dist_state(len);
153 	rc_bittree(&coder->rc, coder->dist_slot[dist_state],
154 			DIST_SLOT_BITS, dist_slot);
155 
156 	if (dist_slot >= DIST_MODEL_START) {
157 		const uint32_t footer_bits = (dist_slot >> 1) - 1;
158 		const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
159 		const uint32_t dist_reduced = distance - base;
160 
161 		if (dist_slot < DIST_MODEL_END) {
162 			// Careful here: base - dist_slot - 1 can be -1, but
163 			// rc_bittree_reverse starts at probs[1], not probs[0].
164 			rc_bittree_reverse(&coder->rc,
165 				coder->dist_special + base - dist_slot - 1,
166 				footer_bits, dist_reduced);
167 		} else {
168 			rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
169 					footer_bits - ALIGN_BITS);
170 			rc_bittree_reverse(
171 					&coder->rc, coder->dist_align,
172 					ALIGN_BITS, dist_reduced & ALIGN_MASK);
173 			++coder->align_price_count;
174 		}
175 	}
176 
177 	coder->reps[3] = coder->reps[2];
178 	coder->reps[2] = coder->reps[1];
179 	coder->reps[1] = coder->reps[0];
180 	coder->reps[0] = distance;
181 	++coder->match_price_count;
182 }
183 
184 
185 ////////////////////
186 // Repeated match //
187 ////////////////////
188 
189 static inline void
190 rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
191 		const uint32_t rep, const uint32_t len)
192 {
193 	if (rep == 0) {
194 		rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
195 		rc_bit(&coder->rc,
196 				&coder->is_rep0_long[coder->state][pos_state],
197 				len != 1);
198 	} else {
199 		const uint32_t distance = coder->reps[rep];
200 		rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
201 
202 		if (rep == 1) {
203 			rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
204 		} else {
205 			rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
206 			rc_bit(&coder->rc, &coder->is_rep2[coder->state],
207 					rep - 2);
208 
209 			if (rep == 3)
210 				coder->reps[3] = coder->reps[2];
211 
212 			coder->reps[2] = coder->reps[1];
213 		}
214 
215 		coder->reps[1] = coder->reps[0];
216 		coder->reps[0] = distance;
217 	}
218 
219 	if (len == 1) {
220 		update_short_rep(coder->state);
221 	} else {
222 		length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
223 				coder->fast_mode);
224 		update_long_rep(coder->state);
225 	}
226 }
227 
228 
229 //////////
230 // Main //
231 //////////
232 
233 static void
234 encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
235 		uint32_t back, uint32_t len, uint32_t position)
236 {
237 	const uint32_t pos_state = position & coder->pos_mask;
238 
239 	if (back == UINT32_MAX) {
240 		// Literal i.e. eight-bit byte
241 		assert(len == 1);
242 		rc_bit(&coder->rc,
243 				&coder->is_match[coder->state][pos_state], 0);
244 		literal(coder, mf, position);
245 	} else {
246 		// Some type of match
247 		rc_bit(&coder->rc,
248 			&coder->is_match[coder->state][pos_state], 1);
249 
250 		if (back < REPS) {
251 			// It's a repeated match i.e. the same distance
252 			// has been used earlier.
253 			rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
254 			rep_match(coder, pos_state, back, len);
255 		} else {
256 			// Normal match
257 			rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
258 			match(coder, pos_state, back - REPS, len);
259 		}
260 	}
261 
262 	assert(mf->read_ahead >= len);
263 	mf->read_ahead -= len;
264 }
265 
266 
267 static bool
268 encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
269 {
270 	assert(mf_position(mf) == 0);
271 
272 	if (mf->read_pos == mf->read_limit) {
273 		if (mf->action == LZMA_RUN)
274 			return false; // We cannot do anything.
275 
276 		// We are finishing (we cannot get here when flushing).
277 		assert(mf->write_pos == mf->read_pos);
278 		assert(mf->action == LZMA_FINISH);
279 	} else {
280 		// Do the actual initialization. The first LZMA symbol must
281 		// always be a literal.
282 		mf_skip(mf, 1);
283 		mf->read_ahead = 0;
284 		rc_bit(&coder->rc, &coder->is_match[0][0], 0);
285 		rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]);
286 	}
287 
288 	// Initialization is done (except if empty file).
289 	coder->is_initialized = true;
290 
291 	return true;
292 }
293 
294 
295 static void
296 encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
297 {
298 	const uint32_t pos_state = position & coder->pos_mask;
299 	rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
300 	rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
301 	match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
302 }
303 
304 
305 /// Number of bytes that a single encoding loop in lzma_lzma_encode() can
306 /// consume from the dictionary. This limit comes from lzma_lzma_optimum()
307 /// and may need to be updated if that function is significantly modified.
308 #define LOOP_INPUT_MAX (OPTS + 1)
309 
310 
311 extern lzma_ret
312 lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
313 		uint8_t *restrict out, size_t *restrict out_pos,
314 		size_t out_size, uint32_t limit)
315 {
316 	// Initialize the stream if no data has been encoded yet.
317 	if (!coder->is_initialized && !encode_init(coder, mf))
318 		return LZMA_OK;
319 
320 	// Get the lowest bits of the uncompressed offset from the LZ layer.
321 	uint32_t position = mf_position(mf);
322 
323 	while (true) {
324 		// Encode pending bits, if any. Calling this before encoding
325 		// the next symbol is needed only with plain LZMA, since
326 		// LZMA2 always provides big enough buffer to flush
327 		// everything out from the range encoder. For the same reason,
328 		// rc_encode() never returns true when this function is used
329 		// as part of LZMA2 encoder.
330 		if (rc_encode(&coder->rc, out, out_pos, out_size)) {
331 			assert(limit == UINT32_MAX);
332 			return LZMA_OK;
333 		}
334 
335 		// With LZMA2 we need to take care that compressed size of
336 		// a chunk doesn't get too big.
337 		// FIXME? Check if this could be improved.
338 		if (limit != UINT32_MAX
339 				&& (mf->read_pos - mf->read_ahead >= limit
340 					|| *out_pos + rc_pending(&coder->rc)
341 						>= LZMA2_CHUNK_MAX
342 							- LOOP_INPUT_MAX))
343 			break;
344 
345 		// Check that there is some input to process.
346 		if (mf->read_pos >= mf->read_limit) {
347 			if (mf->action == LZMA_RUN)
348 				return LZMA_OK;
349 
350 			if (mf->read_ahead == 0)
351 				break;
352 		}
353 
354 		// Get optimal match (repeat position and length).
355 		// Value ranges for pos:
356 		//   - [0, REPS): repeated match
357 		//   - [REPS, UINT32_MAX):
358 		//     match at (pos - REPS)
359 		//   - UINT32_MAX: not a match but a literal
360 		// Value ranges for len:
361 		//   - [MATCH_LEN_MIN, MATCH_LEN_MAX]
362 		uint32_t len;
363 		uint32_t back;
364 
365 		if (coder->fast_mode)
366 			lzma_lzma_optimum_fast(coder, mf, &back, &len);
367 		else
368 			lzma_lzma_optimum_normal(
369 					coder, mf, &back, &len, position);
370 
371 		encode_symbol(coder, mf, back, len, position);
372 
373 		position += len;
374 	}
375 
376 	if (!coder->is_flushed) {
377 		coder->is_flushed = true;
378 
379 		// We don't support encoding plain LZMA streams without EOPM,
380 		// and LZMA2 doesn't use EOPM at LZMA level.
381 		if (limit == UINT32_MAX)
382 			encode_eopm(coder, position);
383 
384 		// Flush the remaining bytes from the range encoder.
385 		rc_flush(&coder->rc);
386 
387 		// Copy the remaining bytes to the output buffer. If there
388 		// isn't enough output space, we will copy out the remaining
389 		// bytes on the next call to this function by using
390 		// the rc_encode() call in the encoding loop above.
391 		if (rc_encode(&coder->rc, out, out_pos, out_size)) {
392 			assert(limit == UINT32_MAX);
393 			return LZMA_OK;
394 		}
395 	}
396 
397 	// Make it ready for the next LZMA2 chunk.
398 	coder->is_flushed = false;
399 
400 	return LZMA_STREAM_END;
401 }
402 
403 
404 static lzma_ret
405 lzma_encode(void *coder, lzma_mf *restrict mf,
406 		uint8_t *restrict out, size_t *restrict out_pos,
407 		size_t out_size)
408 {
409 	// Plain LZMA has no support for sync-flushing.
410 	if (unlikely(mf->action == LZMA_SYNC_FLUSH))
411 		return LZMA_OPTIONS_ERROR;
412 
413 	return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
414 }
415 
416 
417 ////////////////////
418 // Initialization //
419 ////////////////////
420 
421 static bool
422 is_options_valid(const lzma_options_lzma *options)
423 {
424 	// Validate some of the options. LZ encoder validates nice_len too
425 	// but we need a valid value here earlier.
426 	return is_lclppb_valid(options)
427 			&& options->nice_len >= MATCH_LEN_MIN
428 			&& options->nice_len <= MATCH_LEN_MAX
429 			&& (options->mode == LZMA_MODE_FAST
430 				|| options->mode == LZMA_MODE_NORMAL);
431 }
432 
433 
434 static void
435 set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
436 {
437 	// LZ encoder initialization does the validation for these so we
438 	// don't need to validate here.
439 	lz_options->before_size = OPTS;
440 	lz_options->dict_size = options->dict_size;
441 	lz_options->after_size = LOOP_INPUT_MAX;
442 	lz_options->match_len_max = MATCH_LEN_MAX;
443 	lz_options->nice_len = options->nice_len;
444 	lz_options->match_finder = options->mf;
445 	lz_options->depth = options->depth;
446 	lz_options->preset_dict = options->preset_dict;
447 	lz_options->preset_dict_size = options->preset_dict_size;
448 	return;
449 }
450 
451 
452 static void
453 length_encoder_reset(lzma_length_encoder *lencoder,
454 		const uint32_t num_pos_states, const bool fast_mode)
455 {
456 	bit_reset(lencoder->choice);
457 	bit_reset(lencoder->choice2);
458 
459 	for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
460 		bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
461 		bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
462 	}
463 
464 	bittree_reset(lencoder->high, LEN_HIGH_BITS);
465 
466 	if (!fast_mode)
467 		for (uint32_t pos_state = 0; pos_state < num_pos_states;
468 				++pos_state)
469 			length_update_prices(lencoder, pos_state);
470 
471 	return;
472 }
473 
474 
475 extern lzma_ret
476 lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
477 		const lzma_options_lzma *options)
478 {
479 	if (!is_options_valid(options))
480 		return LZMA_OPTIONS_ERROR;
481 
482 	coder->pos_mask = (1U << options->pb) - 1;
483 	coder->literal_context_bits = options->lc;
484 	coder->literal_pos_mask = (1U << options->lp) - 1;
485 
486 	// Range coder
487 	rc_reset(&coder->rc);
488 
489 	// State
490 	coder->state = STATE_LIT_LIT;
491 	for (size_t i = 0; i < REPS; ++i)
492 		coder->reps[i] = 0;
493 
494 	literal_init(coder->literal, options->lc, options->lp);
495 
496 	// Bit encoders
497 	for (size_t i = 0; i < STATES; ++i) {
498 		for (size_t j = 0; j <= coder->pos_mask; ++j) {
499 			bit_reset(coder->is_match[i][j]);
500 			bit_reset(coder->is_rep0_long[i][j]);
501 		}
502 
503 		bit_reset(coder->is_rep[i]);
504 		bit_reset(coder->is_rep0[i]);
505 		bit_reset(coder->is_rep1[i]);
506 		bit_reset(coder->is_rep2[i]);
507 	}
508 
509 	for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
510 		bit_reset(coder->dist_special[i]);
511 
512 	// Bit tree encoders
513 	for (size_t i = 0; i < DIST_STATES; ++i)
514 		bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
515 
516 	bittree_reset(coder->dist_align, ALIGN_BITS);
517 
518 	// Length encoders
519 	length_encoder_reset(&coder->match_len_encoder,
520 			1U << options->pb, coder->fast_mode);
521 
522 	length_encoder_reset(&coder->rep_len_encoder,
523 			1U << options->pb, coder->fast_mode);
524 
525 	// Price counts are incremented every time appropriate probabilities
526 	// are changed. price counts are set to zero when the price tables
527 	// are updated, which is done when the appropriate price counts have
528 	// big enough value, and lzma_mf.read_ahead == 0 which happens at
529 	// least every OPTS (a few thousand) possible price count increments.
530 	//
531 	// By resetting price counts to UINT32_MAX / 2, we make sure that the
532 	// price tables will be initialized before they will be used (since
533 	// the value is definitely big enough), and that it is OK to increment
534 	// price counts without risk of integer overflow (since UINT32_MAX / 2
535 	// is small enough). The current code doesn't increment price counts
536 	// before initializing price tables, but it maybe done in future if
537 	// we add support for saving the state between LZMA2 chunks.
538 	coder->match_price_count = UINT32_MAX / 2;
539 	coder->align_price_count = UINT32_MAX / 2;
540 
541 	coder->opts_end_index = 0;
542 	coder->opts_current_index = 0;
543 
544 	return LZMA_OK;
545 }
546 
547 
548 extern lzma_ret
549 lzma_lzma_encoder_create(void **coder_ptr,
550 		const lzma_allocator *allocator,
551 		const lzma_options_lzma *options, lzma_lz_options *lz_options)
552 {
553 	// Allocate lzma_lzma1_encoder if it wasn't already allocated.
554 	if (*coder_ptr == NULL) {
555 		*coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
556 		if (*coder_ptr == NULL)
557 			return LZMA_MEM_ERROR;
558 	}
559 
560 	lzma_lzma1_encoder *coder = *coder_ptr;
561 
562 	// Set compression mode. Note that we haven't validated the options
563 	// yet. Invalid options will get rejected by lzma_lzma_encoder_reset()
564 	// call at the end of this function.
565 	switch (options->mode) {
566 		case LZMA_MODE_FAST:
567 			coder->fast_mode = true;
568 			break;
569 
570 		case LZMA_MODE_NORMAL: {
571 			coder->fast_mode = false;
572 
573 			// Set dist_table_size.
574 			// Round the dictionary size up to next 2^n.
575 			//
576 			// Currently the maximum encoder dictionary size
577 			// is 1.5 GiB due to lz_encoder.c and here we need
578 			// to be below 2 GiB to make the rounded up value
579 			// fit in an uint32_t and avoid an infite while-loop
580 			// (and undefined behavior due to a too large shift).
581 			// So do the same check as in LZ encoder,
582 			// limiting to 1.5 GiB.
583 			if (options->dict_size > (UINT32_C(1) << 30)
584 					+ (UINT32_C(1) << 29))
585 				return LZMA_OPTIONS_ERROR;
586 
587 			uint32_t log_size = 0;
588 			while ((UINT32_C(1) << log_size) < options->dict_size)
589 				++log_size;
590 
591 			coder->dist_table_size = log_size * 2;
592 
593 			// Length encoders' price table size
594 			coder->match_len_encoder.table_size
595 				= options->nice_len + 1 - MATCH_LEN_MIN;
596 			coder->rep_len_encoder.table_size
597 				= options->nice_len + 1 - MATCH_LEN_MIN;
598 			break;
599 		}
600 
601 		default:
602 			return LZMA_OPTIONS_ERROR;
603 	}
604 
605 	// We don't need to write the first byte as literal if there is
606 	// a non-empty preset dictionary. encode_init() wouldn't even work
607 	// if there is a non-empty preset dictionary, because encode_init()
608 	// assumes that position is zero and previous byte is also zero.
609 	coder->is_initialized = options->preset_dict != NULL
610 			&& options->preset_dict_size > 0;
611 	coder->is_flushed = false;
612 
613 	set_lz_options(lz_options, options);
614 
615 	return lzma_lzma_encoder_reset(coder, options);
616 }
617 
618 
619 static lzma_ret
620 lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
621 		const void *options, lzma_lz_options *lz_options)
622 {
623 	lz->code = &lzma_encode;
624 	return lzma_lzma_encoder_create(
625 			&lz->coder, allocator, options, lz_options);
626 }
627 
628 
629 extern lzma_ret
630 lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
631 		const lzma_filter_info *filters)
632 {
633 	return lzma_lz_encoder_init(
634 			next, allocator, filters, &lzma_encoder_init);
635 }
636 
637 
638 extern uint64_t
639 lzma_lzma_encoder_memusage(const void *options)
640 {
641 	if (!is_options_valid(options))
642 		return UINT64_MAX;
643 
644 	lzma_lz_options lz_options;
645 	set_lz_options(&lz_options, options);
646 
647 	const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
648 	if (lz_memusage == UINT64_MAX)
649 		return UINT64_MAX;
650 
651 	return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
652 }
653 
654 
655 extern bool
656 lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
657 {
658 	if (!is_lclppb_valid(options))
659 		return true;
660 
661 	*byte = (options->pb * 5 + options->lp) * 9 + options->lc;
662 	assert(*byte <= (4 * 5 + 4) * 9 + 8);
663 
664 	return false;
665 }
666 
667 
668 #ifdef HAVE_ENCODER_LZMA1
669 extern lzma_ret
670 lzma_lzma_props_encode(const void *options, uint8_t *out)
671 {
672 	if (options == NULL)
673 		return LZMA_PROG_ERROR;
674 
675 	const lzma_options_lzma *const opt = options;
676 
677 	if (lzma_lzma_lclppb_encode(opt, out))
678 		return LZMA_PROG_ERROR;
679 
680 	write32le(out + 1, opt->dict_size);
681 
682 	return LZMA_OK;
683 }
684 #endif
685 
686 
687 extern LZMA_API(lzma_bool)
688 lzma_mode_is_supported(lzma_mode mode)
689 {
690 	return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
691 }
692