xref: /freebsd/contrib/xz/src/liblzma/lzma/lzma_decoder.c (revision f2b7bf8afcfd630e0fbd8417f1ce974de79feaf0)
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       lzma_decoder.c
4 /// \brief      LZMA decoder
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13 
14 #include "lz_decoder.h"
15 #include "lzma_common.h"
16 #include "lzma_decoder.h"
17 #include "range_decoder.h"
18 
19 
20 #ifdef HAVE_SMALL
21 
22 // Macros for (somewhat) size-optimized code.
23 #define seq_4(seq) seq
24 
25 #define seq_6(seq) seq
26 
27 #define seq_8(seq) seq
28 
29 #define seq_len(seq) \
30 	seq ## _CHOICE, \
31 	seq ## _CHOICE2, \
32 	seq ## _BITTREE
33 
34 #define len_decode(target, ld, pos_state, seq) \
35 do { \
36 case seq ## _CHOICE: \
37 	rc_if_0(ld.choice, seq ## _CHOICE) { \
38 		rc_update_0(ld.choice); \
39 		probs = ld.low[pos_state];\
40 		limit = LEN_LOW_SYMBOLS; \
41 		target = MATCH_LEN_MIN; \
42 	} else { \
43 		rc_update_1(ld.choice); \
44 case seq ## _CHOICE2: \
45 		rc_if_0(ld.choice2, seq ## _CHOICE2) { \
46 			rc_update_0(ld.choice2); \
47 			probs = ld.mid[pos_state]; \
48 			limit = LEN_MID_SYMBOLS; \
49 			target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
50 		} else { \
51 			rc_update_1(ld.choice2); \
52 			probs = ld.high; \
53 			limit = LEN_HIGH_SYMBOLS; \
54 			target = MATCH_LEN_MIN + LEN_LOW_SYMBOLS \
55 					+ LEN_MID_SYMBOLS; \
56 		} \
57 	} \
58 	symbol = 1; \
59 case seq ## _BITTREE: \
60 	do { \
61 		rc_bit(probs[symbol], , , seq ## _BITTREE); \
62 	} while (symbol < limit); \
63 	target += symbol - limit; \
64 } while (0)
65 
66 #else // HAVE_SMALL
67 
68 // Unrolled versions
69 #define seq_4(seq) \
70 	seq ## 0, \
71 	seq ## 1, \
72 	seq ## 2, \
73 	seq ## 3
74 
75 #define seq_6(seq) \
76 	seq ## 0, \
77 	seq ## 1, \
78 	seq ## 2, \
79 	seq ## 3, \
80 	seq ## 4, \
81 	seq ## 5
82 
83 #define seq_8(seq) \
84 	seq ## 0, \
85 	seq ## 1, \
86 	seq ## 2, \
87 	seq ## 3, \
88 	seq ## 4, \
89 	seq ## 5, \
90 	seq ## 6, \
91 	seq ## 7
92 
93 #define seq_len(seq) \
94 	seq ## _CHOICE, \
95 	seq ## _LOW0, \
96 	seq ## _LOW1, \
97 	seq ## _LOW2, \
98 	seq ## _CHOICE2, \
99 	seq ## _MID0, \
100 	seq ## _MID1, \
101 	seq ## _MID2, \
102 	seq ## _HIGH0, \
103 	seq ## _HIGH1, \
104 	seq ## _HIGH2, \
105 	seq ## _HIGH3, \
106 	seq ## _HIGH4, \
107 	seq ## _HIGH5, \
108 	seq ## _HIGH6, \
109 	seq ## _HIGH7
110 
111 #define len_decode(target, ld, pos_state, seq) \
112 do { \
113 	symbol = 1; \
114 case seq ## _CHOICE: \
115 	rc_if_0(ld.choice, seq ## _CHOICE) { \
116 		rc_update_0(ld.choice); \
117 		rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW0); \
118 		rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW1); \
119 		rc_bit_case(ld.low[pos_state][symbol], , , seq ## _LOW2); \
120 		target = symbol - LEN_LOW_SYMBOLS + MATCH_LEN_MIN; \
121 	} else { \
122 		rc_update_1(ld.choice); \
123 case seq ## _CHOICE2: \
124 		rc_if_0(ld.choice2, seq ## _CHOICE2) { \
125 			rc_update_0(ld.choice2); \
126 			rc_bit_case(ld.mid[pos_state][symbol], , , \
127 					seq ## _MID0); \
128 			rc_bit_case(ld.mid[pos_state][symbol], , , \
129 					seq ## _MID1); \
130 			rc_bit_case(ld.mid[pos_state][symbol], , , \
131 					seq ## _MID2); \
132 			target = symbol - LEN_MID_SYMBOLS \
133 					+ MATCH_LEN_MIN + LEN_LOW_SYMBOLS; \
134 		} else { \
135 			rc_update_1(ld.choice2); \
136 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH0); \
137 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH1); \
138 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH2); \
139 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH3); \
140 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH4); \
141 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH5); \
142 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH6); \
143 			rc_bit_case(ld.high[symbol], , , seq ## _HIGH7); \
144 			target = symbol - LEN_HIGH_SYMBOLS \
145 					+ MATCH_LEN_MIN \
146 					+ LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; \
147 		} \
148 	} \
149 } while (0)
150 
151 #endif // HAVE_SMALL
152 
153 
154 /// Length decoder probabilities; see comments in lzma_common.h.
155 typedef struct {
156 	probability choice;
157 	probability choice2;
158 	probability low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
159 	probability mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
160 	probability high[LEN_HIGH_SYMBOLS];
161 } lzma_length_decoder;
162 
163 
164 typedef struct {
165 	///////////////////
166 	// Probabilities //
167 	///////////////////
168 
169 	/// Literals; see comments in lzma_common.h.
170 	probability literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
171 
172 	/// If 1, it's a match. Otherwise it's a single 8-bit literal.
173 	probability is_match[STATES][POS_STATES_MAX];
174 
175 	/// If 1, it's a repeated match. The distance is one of rep0 .. rep3.
176 	probability is_rep[STATES];
177 
178 	/// If 0, distance of a repeated match is rep0.
179 	/// Otherwise check is_rep1.
180 	probability is_rep0[STATES];
181 
182 	/// If 0, distance of a repeated match is rep1.
183 	/// Otherwise check is_rep2.
184 	probability is_rep1[STATES];
185 
186 	/// If 0, distance of a repeated match is rep2. Otherwise it is rep3.
187 	probability is_rep2[STATES];
188 
189 	/// If 1, the repeated match has length of one byte. Otherwise
190 	/// the length is decoded from rep_len_decoder.
191 	probability is_rep0_long[STATES][POS_STATES_MAX];
192 
193 	/// Probability tree for the highest two bits of the match distance.
194 	/// There is a separate probability tree for match lengths of
195 	/// 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
196 	probability dist_slot[DIST_STATES][DIST_SLOTS];
197 
198 	/// Probability trees for additional bits for match distance when the
199 	/// distance is in the range [4, 127].
200 	probability pos_special[FULL_DISTANCES - DIST_MODEL_END];
201 
202 	/// Probability tree for the lowest four bits of a match distance
203 	/// that is equal to or greater than 128.
204 	probability pos_align[ALIGN_SIZE];
205 
206 	/// Length of a normal match
207 	lzma_length_decoder match_len_decoder;
208 
209 	/// Length of a repeated match
210 	lzma_length_decoder rep_len_decoder;
211 
212 	///////////////////
213 	// Decoder state //
214 	///////////////////
215 
216 	// Range coder
217 	lzma_range_decoder rc;
218 
219 	// Types of the most recently seen LZMA symbols
220 	lzma_lzma_state state;
221 
222 	uint32_t rep0;      ///< Distance of the latest match
223 	uint32_t rep1;      ///< Distance of second latest match
224 	uint32_t rep2;      ///< Distance of third latest match
225 	uint32_t rep3;      ///< Distance of fourth latest match
226 
227 	uint32_t pos_mask; // (1U << pb) - 1
228 	uint32_t literal_context_bits;
229 	uint32_t literal_pos_mask;
230 
231 	/// Uncompressed size as bytes, or LZMA_VLI_UNKNOWN if end of
232 	/// payload marker is expected.
233 	lzma_vli uncompressed_size;
234 
235 	////////////////////////////////
236 	// State of incomplete symbol //
237 	////////////////////////////////
238 
239 	/// Position where to continue the decoder loop
240 	enum {
241 		SEQ_NORMALIZE,
242 		SEQ_IS_MATCH,
243 		seq_8(SEQ_LITERAL),
244 		seq_8(SEQ_LITERAL_MATCHED),
245 		SEQ_LITERAL_WRITE,
246 		SEQ_IS_REP,
247 		seq_len(SEQ_MATCH_LEN),
248 		seq_6(SEQ_DIST_SLOT),
249 		SEQ_DIST_MODEL,
250 		SEQ_DIRECT,
251 		seq_4(SEQ_ALIGN),
252 		SEQ_EOPM,
253 		SEQ_IS_REP0,
254 		SEQ_SHORTREP,
255 		SEQ_IS_REP0_LONG,
256 		SEQ_IS_REP1,
257 		SEQ_IS_REP2,
258 		seq_len(SEQ_REP_LEN),
259 		SEQ_COPY,
260 	} sequence;
261 
262 	/// Base of the current probability tree
263 	probability *probs;
264 
265 	/// Symbol being decoded. This is also used as an index variable in
266 	/// bittree decoders: probs[symbol]
267 	uint32_t symbol;
268 
269 	/// Used as a loop termination condition on bittree decoders and
270 	/// direct bits decoder.
271 	uint32_t limit;
272 
273 	/// Matched literal decoder: 0x100 or 0 to help avoiding branches.
274 	/// Bittree reverse decoders: Offset of the next bit: 1 << offset
275 	uint32_t offset;
276 
277 	/// If decoding a literal: match byte.
278 	/// If decoding a match: length of the match.
279 	uint32_t len;
280 } lzma_lzma1_decoder;
281 
282 
283 static lzma_ret
284 lzma_decode(void *coder_ptr, lzma_dict *restrict dictptr,
285 		const uint8_t *restrict in,
286 		size_t *restrict in_pos, size_t in_size)
287 {
288 	lzma_lzma1_decoder *restrict coder = coder_ptr;
289 
290 	////////////////////
291 	// Initialization //
292 	////////////////////
293 
294 	{
295 		const lzma_ret ret = rc_read_init(
296 				&coder->rc, in, in_pos, in_size);
297 		if (ret != LZMA_STREAM_END)
298 			return ret;
299 	}
300 
301 	///////////////
302 	// Variables //
303 	///////////////
304 
305 	// Making local copies of often-used variables improves both
306 	// speed and readability.
307 
308 	lzma_dict dict = *dictptr;
309 
310 	const size_t dict_start = dict.pos;
311 
312 	// Range decoder
313 	rc_to_local(coder->rc, *in_pos);
314 
315 	// State
316 	uint32_t state = coder->state;
317 	uint32_t rep0 = coder->rep0;
318 	uint32_t rep1 = coder->rep1;
319 	uint32_t rep2 = coder->rep2;
320 	uint32_t rep3 = coder->rep3;
321 
322 	const uint32_t pos_mask = coder->pos_mask;
323 
324 	// These variables are actually needed only if we last time ran
325 	// out of input in the middle of the decoder loop.
326 	probability *probs = coder->probs;
327 	uint32_t symbol = coder->symbol;
328 	uint32_t limit = coder->limit;
329 	uint32_t offset = coder->offset;
330 	uint32_t len = coder->len;
331 
332 	const uint32_t literal_pos_mask = coder->literal_pos_mask;
333 	const uint32_t literal_context_bits = coder->literal_context_bits;
334 
335 	// Temporary variables
336 	uint32_t pos_state = dict.pos & pos_mask;
337 
338 	lzma_ret ret = LZMA_OK;
339 
340 	// If uncompressed size is known, there must be no end of payload
341 	// marker.
342 	const bool no_eopm = coder->uncompressed_size
343 			!= LZMA_VLI_UNKNOWN;
344 	if (no_eopm && coder->uncompressed_size < dict.limit - dict.pos)
345 		dict.limit = dict.pos + (size_t)(coder->uncompressed_size);
346 
347 	// The main decoder loop. The "switch" is used to restart the decoder at
348 	// correct location. Once restarted, the "switch" is no longer used.
349 	switch (coder->sequence)
350 	while (true) {
351 		// Calculate new pos_state. This is skipped on the first loop
352 		// since we already calculated it when setting up the local
353 		// variables.
354 		pos_state = dict.pos & pos_mask;
355 
356 	case SEQ_NORMALIZE:
357 	case SEQ_IS_MATCH:
358 		if (unlikely(no_eopm && dict.pos == dict.limit))
359 			break;
360 
361 		rc_if_0(coder->is_match[state][pos_state], SEQ_IS_MATCH) {
362 			rc_update_0(coder->is_match[state][pos_state]);
363 
364 			// It's a literal i.e. a single 8-bit byte.
365 
366 			probs = literal_subcoder(coder->literal,
367 					literal_context_bits, literal_pos_mask,
368 					dict.pos, dict_get(&dict, 0));
369 			symbol = 1;
370 
371 			if (is_literal_state(state)) {
372 				// Decode literal without match byte.
373 #ifdef HAVE_SMALL
374 	case SEQ_LITERAL:
375 				do {
376 					rc_bit(probs[symbol], , , SEQ_LITERAL);
377 				} while (symbol < (1 << 8));
378 #else
379 				rc_bit_case(probs[symbol], , , SEQ_LITERAL0);
380 				rc_bit_case(probs[symbol], , , SEQ_LITERAL1);
381 				rc_bit_case(probs[symbol], , , SEQ_LITERAL2);
382 				rc_bit_case(probs[symbol], , , SEQ_LITERAL3);
383 				rc_bit_case(probs[symbol], , , SEQ_LITERAL4);
384 				rc_bit_case(probs[symbol], , , SEQ_LITERAL5);
385 				rc_bit_case(probs[symbol], , , SEQ_LITERAL6);
386 				rc_bit_case(probs[symbol], , , SEQ_LITERAL7);
387 #endif
388 			} else {
389 				// Decode literal with match byte.
390 				//
391 				// We store the byte we compare against
392 				// ("match byte") to "len" to minimize the
393 				// number of variables we need to store
394 				// between decoder calls.
395 				len = dict_get(&dict, rep0) << 1;
396 
397 				// The usage of "offset" allows omitting some
398 				// branches, which should give tiny speed
399 				// improvement on some CPUs. "offset" gets
400 				// set to zero if match_bit didn't match.
401 				offset = 0x100;
402 
403 #ifdef HAVE_SMALL
404 	case SEQ_LITERAL_MATCHED:
405 				do {
406 					const uint32_t match_bit
407 							= len & offset;
408 					const uint32_t subcoder_index
409 							= offset + match_bit
410 							+ symbol;
411 
412 					rc_bit(probs[subcoder_index],
413 							offset &= ~match_bit,
414 							offset &= match_bit,
415 							SEQ_LITERAL_MATCHED);
416 
417 					// It seems to be faster to do this
418 					// here instead of putting it to the
419 					// beginning of the loop and then
420 					// putting the "case" in the middle
421 					// of the loop.
422 					len <<= 1;
423 
424 				} while (symbol < (1 << 8));
425 #else
426 				// Unroll the loop.
427 				uint32_t match_bit;
428 				uint32_t subcoder_index;
429 
430 #	define d(seq) \
431 		case seq: \
432 			match_bit = len & offset; \
433 			subcoder_index = offset + match_bit + symbol; \
434 			rc_bit(probs[subcoder_index], \
435 					offset &= ~match_bit, \
436 					offset &= match_bit, \
437 					seq)
438 
439 				d(SEQ_LITERAL_MATCHED0);
440 				len <<= 1;
441 				d(SEQ_LITERAL_MATCHED1);
442 				len <<= 1;
443 				d(SEQ_LITERAL_MATCHED2);
444 				len <<= 1;
445 				d(SEQ_LITERAL_MATCHED3);
446 				len <<= 1;
447 				d(SEQ_LITERAL_MATCHED4);
448 				len <<= 1;
449 				d(SEQ_LITERAL_MATCHED5);
450 				len <<= 1;
451 				d(SEQ_LITERAL_MATCHED6);
452 				len <<= 1;
453 				d(SEQ_LITERAL_MATCHED7);
454 #	undef d
455 #endif
456 			}
457 
458 			//update_literal(state);
459 			// Use a lookup table to update to literal state,
460 			// since compared to other state updates, this would
461 			// need two branches.
462 			static const lzma_lzma_state next_state[] = {
463 				STATE_LIT_LIT,
464 				STATE_LIT_LIT,
465 				STATE_LIT_LIT,
466 				STATE_LIT_LIT,
467 				STATE_MATCH_LIT_LIT,
468 				STATE_REP_LIT_LIT,
469 				STATE_SHORTREP_LIT_LIT,
470 				STATE_MATCH_LIT,
471 				STATE_REP_LIT,
472 				STATE_SHORTREP_LIT,
473 				STATE_MATCH_LIT,
474 				STATE_REP_LIT
475 			};
476 			state = next_state[state];
477 
478 	case SEQ_LITERAL_WRITE:
479 			if (unlikely(dict_put(&dict, symbol))) {
480 				coder->sequence = SEQ_LITERAL_WRITE;
481 				goto out;
482 			}
483 
484 			continue;
485 		}
486 
487 		// Instead of a new byte we are going to get a byte range
488 		// (distance and length) which will be repeated from our
489 		// output history.
490 
491 		rc_update_1(coder->is_match[state][pos_state]);
492 
493 	case SEQ_IS_REP:
494 		rc_if_0(coder->is_rep[state], SEQ_IS_REP) {
495 			// Not a repeated match
496 			rc_update_0(coder->is_rep[state]);
497 			update_match(state);
498 
499 			// The latest three match distances are kept in
500 			// memory in case there are repeated matches.
501 			rep3 = rep2;
502 			rep2 = rep1;
503 			rep1 = rep0;
504 
505 			// Decode the length of the match.
506 			len_decode(len, coder->match_len_decoder,
507 					pos_state, SEQ_MATCH_LEN);
508 
509 			// Prepare to decode the highest two bits of the
510 			// match distance.
511 			probs = coder->dist_slot[get_dist_state(len)];
512 			symbol = 1;
513 
514 #ifdef HAVE_SMALL
515 	case SEQ_DIST_SLOT:
516 			do {
517 				rc_bit(probs[symbol], , , SEQ_DIST_SLOT);
518 			} while (symbol < DIST_SLOTS);
519 #else
520 			rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT0);
521 			rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT1);
522 			rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT2);
523 			rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT3);
524 			rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT4);
525 			rc_bit_case(probs[symbol], , , SEQ_DIST_SLOT5);
526 #endif
527 			// Get rid of the highest bit that was needed for
528 			// indexing of the probability array.
529 			symbol -= DIST_SLOTS;
530 			assert(symbol <= 63);
531 
532 			if (symbol < DIST_MODEL_START) {
533 				// Match distances [0, 3] have only two bits.
534 				rep0 = symbol;
535 			} else {
536 				// Decode the lowest [1, 29] bits of
537 				// the match distance.
538 				limit = (symbol >> 1) - 1;
539 				assert(limit >= 1 && limit <= 30);
540 				rep0 = 2 + (symbol & 1);
541 
542 				if (symbol < DIST_MODEL_END) {
543 					// Prepare to decode the low bits for
544 					// a distance of [4, 127].
545 					assert(limit <= 5);
546 					rep0 <<= limit;
547 					assert(rep0 <= 96);
548 					// -1 is fine, because we start
549 					// decoding at probs[1], not probs[0].
550 					// NOTE: This violates the C standard,
551 					// since we are doing pointer
552 					// arithmetic past the beginning of
553 					// the array.
554 					assert((int32_t)(rep0 - symbol - 1)
555 							>= -1);
556 					assert((int32_t)(rep0 - symbol - 1)
557 							<= 82);
558 					probs = coder->pos_special + rep0
559 							- symbol - 1;
560 					symbol = 1;
561 					offset = 0;
562 	case SEQ_DIST_MODEL:
563 #ifdef HAVE_SMALL
564 					do {
565 						rc_bit(probs[symbol], ,
566 							rep0 += 1 << offset,
567 							SEQ_DIST_MODEL);
568 					} while (++offset < limit);
569 #else
570 					switch (limit) {
571 					case 5:
572 						assert(offset == 0);
573 						rc_bit(probs[symbol], ,
574 							rep0 += 1,
575 							SEQ_DIST_MODEL);
576 						++offset;
577 						--limit;
578 					case 4:
579 						rc_bit(probs[symbol], ,
580 							rep0 += 1 << offset,
581 							SEQ_DIST_MODEL);
582 						++offset;
583 						--limit;
584 					case 3:
585 						rc_bit(probs[symbol], ,
586 							rep0 += 1 << offset,
587 							SEQ_DIST_MODEL);
588 						++offset;
589 						--limit;
590 					case 2:
591 						rc_bit(probs[symbol], ,
592 							rep0 += 1 << offset,
593 							SEQ_DIST_MODEL);
594 						++offset;
595 						--limit;
596 					case 1:
597 						// We need "symbol" only for
598 						// indexing the probability
599 						// array, thus we can use
600 						// rc_bit_last() here to omit
601 						// the unneeded updating of
602 						// "symbol".
603 						rc_bit_last(probs[symbol], ,
604 							rep0 += 1 << offset,
605 							SEQ_DIST_MODEL);
606 					}
607 #endif
608 				} else {
609 					// The distance is >= 128. Decode the
610 					// lower bits without probabilities
611 					// except the lowest four bits.
612 					assert(symbol >= 14);
613 					assert(limit >= 6);
614 					limit -= ALIGN_BITS;
615 					assert(limit >= 2);
616 	case SEQ_DIRECT:
617 					// Not worth manual unrolling
618 					do {
619 						rc_direct(rep0, SEQ_DIRECT);
620 					} while (--limit > 0);
621 
622 					// Decode the lowest four bits using
623 					// probabilities.
624 					rep0 <<= ALIGN_BITS;
625 					symbol = 1;
626 #ifdef HAVE_SMALL
627 					offset = 0;
628 	case SEQ_ALIGN:
629 					do {
630 						rc_bit(coder->pos_align[
631 								symbol], ,
632 							rep0 += 1 << offset,
633 							SEQ_ALIGN);
634 					} while (++offset < ALIGN_BITS);
635 #else
636 	case SEQ_ALIGN0:
637 					rc_bit(coder->pos_align[symbol], ,
638 							rep0 += 1, SEQ_ALIGN0);
639 	case SEQ_ALIGN1:
640 					rc_bit(coder->pos_align[symbol], ,
641 							rep0 += 2, SEQ_ALIGN1);
642 	case SEQ_ALIGN2:
643 					rc_bit(coder->pos_align[symbol], ,
644 							rep0 += 4, SEQ_ALIGN2);
645 	case SEQ_ALIGN3:
646 					// Like in SEQ_DIST_MODEL, we don't
647 					// need "symbol" for anything else
648 					// than indexing the probability array.
649 					rc_bit_last(coder->pos_align[symbol], ,
650 							rep0 += 8, SEQ_ALIGN3);
651 #endif
652 
653 					if (rep0 == UINT32_MAX) {
654 						// End of payload marker was
655 						// found. It must not be
656 						// present if uncompressed
657 						// size is known.
658 						if (coder->uncompressed_size
659 						!= LZMA_VLI_UNKNOWN) {
660 							ret = LZMA_DATA_ERROR;
661 							goto out;
662 						}
663 
664 	case SEQ_EOPM:
665 						// LZMA1 stream with
666 						// end-of-payload marker.
667 						rc_normalize(SEQ_EOPM);
668 						ret = LZMA_STREAM_END;
669 						goto out;
670 					}
671 				}
672 			}
673 
674 			// Validate the distance we just decoded.
675 			if (unlikely(!dict_is_distance_valid(&dict, rep0))) {
676 				ret = LZMA_DATA_ERROR;
677 				goto out;
678 			}
679 
680 		} else {
681 			rc_update_1(coder->is_rep[state]);
682 
683 			// Repeated match
684 			//
685 			// The match distance is a value that we have had
686 			// earlier. The latest four match distances are
687 			// available as rep0, rep1, rep2 and rep3. We will
688 			// now decode which of them is the new distance.
689 			//
690 			// There cannot be a match if we haven't produced
691 			// any output, so check that first.
692 			if (unlikely(!dict_is_distance_valid(&dict, 0))) {
693 				ret = LZMA_DATA_ERROR;
694 				goto out;
695 			}
696 
697 	case SEQ_IS_REP0:
698 			rc_if_0(coder->is_rep0[state], SEQ_IS_REP0) {
699 				rc_update_0(coder->is_rep0[state]);
700 				// The distance is rep0.
701 
702 	case SEQ_IS_REP0_LONG:
703 				rc_if_0(coder->is_rep0_long[state][pos_state],
704 						SEQ_IS_REP0_LONG) {
705 					rc_update_0(coder->is_rep0_long[
706 							state][pos_state]);
707 
708 					update_short_rep(state);
709 
710 	case SEQ_SHORTREP:
711 					if (unlikely(dict_put(&dict, dict_get(
712 							&dict, rep0)))) {
713 						coder->sequence = SEQ_SHORTREP;
714 						goto out;
715 					}
716 
717 					continue;
718 				}
719 
720 				// Repeating more than one byte at
721 				// distance of rep0.
722 				rc_update_1(coder->is_rep0_long[
723 						state][pos_state]);
724 
725 			} else {
726 				rc_update_1(coder->is_rep0[state]);
727 
728 	case SEQ_IS_REP1:
729 				// The distance is rep1, rep2 or rep3. Once
730 				// we find out which one of these three, it
731 				// is stored to rep0 and rep1, rep2 and rep3
732 				// are updated accordingly.
733 				rc_if_0(coder->is_rep1[state], SEQ_IS_REP1) {
734 					rc_update_0(coder->is_rep1[state]);
735 
736 					const uint32_t distance = rep1;
737 					rep1 = rep0;
738 					rep0 = distance;
739 
740 				} else {
741 					rc_update_1(coder->is_rep1[state]);
742 	case SEQ_IS_REP2:
743 					rc_if_0(coder->is_rep2[state],
744 							SEQ_IS_REP2) {
745 						rc_update_0(coder->is_rep2[
746 								state]);
747 
748 						const uint32_t distance = rep2;
749 						rep2 = rep1;
750 						rep1 = rep0;
751 						rep0 = distance;
752 
753 					} else {
754 						rc_update_1(coder->is_rep2[
755 								state]);
756 
757 						const uint32_t distance = rep3;
758 						rep3 = rep2;
759 						rep2 = rep1;
760 						rep1 = rep0;
761 						rep0 = distance;
762 					}
763 				}
764 			}
765 
766 			update_long_rep(state);
767 
768 			// Decode the length of the repeated match.
769 			len_decode(len, coder->rep_len_decoder,
770 					pos_state, SEQ_REP_LEN);
771 		}
772 
773 		/////////////////////////////////
774 		// Repeat from history buffer. //
775 		/////////////////////////////////
776 
777 		// The length is always between these limits. There is no way
778 		// to trigger the algorithm to set len outside this range.
779 		assert(len >= MATCH_LEN_MIN);
780 		assert(len <= MATCH_LEN_MAX);
781 
782 	case SEQ_COPY:
783 		// Repeat len bytes from distance of rep0.
784 		if (unlikely(dict_repeat(&dict, rep0, &len))) {
785 			coder->sequence = SEQ_COPY;
786 			goto out;
787 		}
788 	}
789 
790 	rc_normalize(SEQ_NORMALIZE);
791 	coder->sequence = SEQ_IS_MATCH;
792 
793 out:
794 	// Save state
795 
796 	// NOTE: Must not copy dict.limit.
797 	dictptr->pos = dict.pos;
798 	dictptr->full = dict.full;
799 
800 	rc_from_local(coder->rc, *in_pos);
801 
802 	coder->state = state;
803 	coder->rep0 = rep0;
804 	coder->rep1 = rep1;
805 	coder->rep2 = rep2;
806 	coder->rep3 = rep3;
807 
808 	coder->probs = probs;
809 	coder->symbol = symbol;
810 	coder->limit = limit;
811 	coder->offset = offset;
812 	coder->len = len;
813 
814 	// Update the remaining amount of uncompressed data if uncompressed
815 	// size was known.
816 	if (coder->uncompressed_size != LZMA_VLI_UNKNOWN) {
817 		coder->uncompressed_size -= dict.pos - dict_start;
818 
819 		// Since there cannot be end of payload marker if the
820 		// uncompressed size was known, we check here if we
821 		// finished decoding.
822 		if (coder->uncompressed_size == 0 && ret == LZMA_OK
823 				&& coder->sequence != SEQ_NORMALIZE)
824 			ret = coder->sequence == SEQ_IS_MATCH
825 					? LZMA_STREAM_END : LZMA_DATA_ERROR;
826 	}
827 
828 	// We can do an additional check in the range decoder to catch some
829 	// corrupted files.
830 	if (ret == LZMA_STREAM_END) {
831 		if (!rc_is_finished(coder->rc))
832 			ret = LZMA_DATA_ERROR;
833 
834 		// Reset the range decoder so that it is ready to reinitialize
835 		// for a new LZMA2 chunk.
836 		rc_reset(coder->rc);
837 	}
838 
839 	return ret;
840 }
841 
842 
843 
844 static void
845 lzma_decoder_uncompressed(void *coder_ptr, lzma_vli uncompressed_size)
846 {
847 	lzma_lzma1_decoder *coder = coder_ptr;
848 	coder->uncompressed_size = uncompressed_size;
849 }
850 
851 
852 static void
853 lzma_decoder_reset(void *coder_ptr, const void *opt)
854 {
855 	lzma_lzma1_decoder *coder = coder_ptr;
856 	const lzma_options_lzma *options = opt;
857 
858 	// NOTE: We assume that lc/lp/pb are valid since they were
859 	// successfully decoded with lzma_lzma_decode_properties().
860 
861 	// Calculate pos_mask. We don't need pos_bits as is for anything.
862 	coder->pos_mask = (1U << options->pb) - 1;
863 
864 	// Initialize the literal decoder.
865 	literal_init(coder->literal, options->lc, options->lp);
866 
867 	coder->literal_context_bits = options->lc;
868 	coder->literal_pos_mask = (1U << options->lp) - 1;
869 
870 	// State
871 	coder->state = STATE_LIT_LIT;
872 	coder->rep0 = 0;
873 	coder->rep1 = 0;
874 	coder->rep2 = 0;
875 	coder->rep3 = 0;
876 	coder->pos_mask = (1U << options->pb) - 1;
877 
878 	// Range decoder
879 	rc_reset(coder->rc);
880 
881 	// Bit and bittree decoders
882 	for (uint32_t i = 0; i < STATES; ++i) {
883 		for (uint32_t j = 0; j <= coder->pos_mask; ++j) {
884 			bit_reset(coder->is_match[i][j]);
885 			bit_reset(coder->is_rep0_long[i][j]);
886 		}
887 
888 		bit_reset(coder->is_rep[i]);
889 		bit_reset(coder->is_rep0[i]);
890 		bit_reset(coder->is_rep1[i]);
891 		bit_reset(coder->is_rep2[i]);
892 	}
893 
894 	for (uint32_t i = 0; i < DIST_STATES; ++i)
895 		bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
896 
897 	for (uint32_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
898 		bit_reset(coder->pos_special[i]);
899 
900 	bittree_reset(coder->pos_align, ALIGN_BITS);
901 
902 	// Len decoders (also bit/bittree)
903 	const uint32_t num_pos_states = 1U << options->pb;
904 	bit_reset(coder->match_len_decoder.choice);
905 	bit_reset(coder->match_len_decoder.choice2);
906 	bit_reset(coder->rep_len_decoder.choice);
907 	bit_reset(coder->rep_len_decoder.choice2);
908 
909 	for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
910 		bittree_reset(coder->match_len_decoder.low[pos_state],
911 				LEN_LOW_BITS);
912 		bittree_reset(coder->match_len_decoder.mid[pos_state],
913 				LEN_MID_BITS);
914 
915 		bittree_reset(coder->rep_len_decoder.low[pos_state],
916 				LEN_LOW_BITS);
917 		bittree_reset(coder->rep_len_decoder.mid[pos_state],
918 				LEN_MID_BITS);
919 	}
920 
921 	bittree_reset(coder->match_len_decoder.high, LEN_HIGH_BITS);
922 	bittree_reset(coder->rep_len_decoder.high, LEN_HIGH_BITS);
923 
924 	coder->sequence = SEQ_IS_MATCH;
925 	coder->probs = NULL;
926 	coder->symbol = 0;
927 	coder->limit = 0;
928 	coder->offset = 0;
929 	coder->len = 0;
930 
931 	return;
932 }
933 
934 
935 extern lzma_ret
936 lzma_lzma_decoder_create(lzma_lz_decoder *lz, const lzma_allocator *allocator,
937 		const void *opt, lzma_lz_options *lz_options)
938 {
939 	if (lz->coder == NULL) {
940 		lz->coder = lzma_alloc(sizeof(lzma_lzma1_decoder), allocator);
941 		if (lz->coder == NULL)
942 			return LZMA_MEM_ERROR;
943 
944 		lz->code = &lzma_decode;
945 		lz->reset = &lzma_decoder_reset;
946 		lz->set_uncompressed = &lzma_decoder_uncompressed;
947 	}
948 
949 	// All dictionary sizes are OK here. LZ decoder will take care of
950 	// the special cases.
951 	const lzma_options_lzma *options = opt;
952 	lz_options->dict_size = options->dict_size;
953 	lz_options->preset_dict = options->preset_dict;
954 	lz_options->preset_dict_size = options->preset_dict_size;
955 
956 	return LZMA_OK;
957 }
958 
959 
960 /// Allocate and initialize LZMA decoder. This is used only via LZ
961 /// initialization (lzma_lzma_decoder_init() passes function pointer to
962 /// the LZ initialization).
963 static lzma_ret
964 lzma_decoder_init(lzma_lz_decoder *lz, const lzma_allocator *allocator,
965 		const void *options, lzma_lz_options *lz_options)
966 {
967 	if (!is_lclppb_valid(options))
968 		return LZMA_PROG_ERROR;
969 
970 	return_if_error(lzma_lzma_decoder_create(
971 			lz, allocator, options, lz_options));
972 
973 	lzma_decoder_reset(lz->coder, options);
974 	lzma_decoder_uncompressed(lz->coder, LZMA_VLI_UNKNOWN);
975 
976 	return LZMA_OK;
977 }
978 
979 
980 extern lzma_ret
981 lzma_lzma_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
982 		const lzma_filter_info *filters)
983 {
984 	// LZMA can only be the last filter in the chain. This is enforced
985 	// by the raw_decoder initialization.
986 	assert(filters[1].init == NULL);
987 
988 	return lzma_lz_decoder_init(next, allocator, filters,
989 			&lzma_decoder_init);
990 }
991 
992 
993 extern bool
994 lzma_lzma_lclppb_decode(lzma_options_lzma *options, uint8_t byte)
995 {
996 	if (byte > (4 * 5 + 4) * 9 + 8)
997 		return true;
998 
999 	// See the file format specification to understand this.
1000 	options->pb = byte / (9 * 5);
1001 	byte -= options->pb * 9 * 5;
1002 	options->lp = byte / 9;
1003 	options->lc = byte - options->lp * 9;
1004 
1005 	return options->lc + options->lp > LZMA_LCLP_MAX;
1006 }
1007 
1008 
1009 extern uint64_t
1010 lzma_lzma_decoder_memusage_nocheck(const void *options)
1011 {
1012 	const lzma_options_lzma *const opt = options;
1013 	return sizeof(lzma_lzma1_decoder)
1014 			+ lzma_lz_decoder_memusage(opt->dict_size);
1015 }
1016 
1017 
1018 extern uint64_t
1019 lzma_lzma_decoder_memusage(const void *options)
1020 {
1021 	if (!is_lclppb_valid(options))
1022 		return UINT64_MAX;
1023 
1024 	return lzma_lzma_decoder_memusage_nocheck(options);
1025 }
1026 
1027 
1028 extern lzma_ret
1029 lzma_lzma_props_decode(void **options, const lzma_allocator *allocator,
1030 		const uint8_t *props, size_t props_size)
1031 {
1032 	if (props_size != 5)
1033 		return LZMA_OPTIONS_ERROR;
1034 
1035 	lzma_options_lzma *opt
1036 			= lzma_alloc(sizeof(lzma_options_lzma), allocator);
1037 	if (opt == NULL)
1038 		return LZMA_MEM_ERROR;
1039 
1040 	if (lzma_lzma_lclppb_decode(opt, props[0]))
1041 		goto error;
1042 
1043 	// All dictionary sizes are accepted, including zero. LZ decoder
1044 	// will automatically use a dictionary at least a few KiB even if
1045 	// a smaller dictionary is requested.
1046 	opt->dict_size = unaligned_read32le(props + 1);
1047 
1048 	opt->preset_dict = NULL;
1049 	opt->preset_dict_size = 0;
1050 
1051 	*options = opt;
1052 
1053 	return LZMA_OK;
1054 
1055 error:
1056 	lzma_free(opt, allocator);
1057 	return LZMA_OPTIONS_ERROR;
1058 }
1059